Development of secondary branches and apical buds of Paeonia ludlowii under cultivated conditions
-
摘要:
目的 确定引种栽培条件下的大花黄牡丹二次枝及其顶芽生长发育特点、引种地和原产地花芽分化进程,为大花黄牡丹的引种栽培和开发利用提供参考。 方法 以河南栾川引种栽培的成年株大花黄牡丹为对象,观测其二次枝及其顶芽的生长发育动态,并利用石蜡切片法观察大花黄牡丹在引种地(栾川和拉萨)及原产地(林芝)三地的二次枝顶芽花芽分化进程。 结果 (1)在栾川栽植的大花黄牡丹二次枝的生长期从5月上旬持续到9月中旬,其中5月上旬—6月上旬为生长高峰;但部分花枝的腋芽发育停滞,不形成二次枝。(2)栾川栽植的大花黄牡丹二次枝的生长可分为三类:第1类占比28.57%,于7月中旬形成顶芽并开始花芽分化,次年正常开花结实;第2类主要位于花枝/果枝中下部,形成顶芽但不分化,次年仅营养生长;第3类不形成顶芽,入冬后至次年春受冻干枯。(3)原产地林芝大花黄牡丹二次枝56.25%的顶芽可分化成花芽,次年开花结实,未观察到第3类二次枝。(4)在引种地和原产地,大花黄牡丹的二次枝顶芽分化过程一致,历经6个分化阶段后,最终形成含1个主花蕾、2 ~ 3个侧花蕾、腋芽原基和叶原基的复合芽,主花蕾较侧花蕾分化时间早;腋芽原基位于第3 ~ 4个叶原基基部,次年在花枝上发育形成新的二次枝。(5)引种地和原产地顶芽花芽分化起始时间和持续时间不同,引种地栾川分化起始晚,历时相对较长(88 ~ 97 d),引种地拉萨及原产地林芝花芽分化较早,历时相对较短(近70 d)。 结论 栾川引种栽培的大花黄牡丹花芽分化比例低,分化起始较晚,持续时间较长,但能够形成稳定且正常花芽分化、开花结实的二次枝,其自然环境可作为选择大花黄牡丹的引种栽培地点的参考。 Abstract:Objective This paper aims to determine the characteristics of growth and development of secondary branches and their apical buds of cultivated Paeonia ludlowii as well as the differentiation process of flower buds in the cultivated site and the original site, then provide a reference for the introduction, cultivation, development and utilization of P. ludlowii. Method Taking the adult P. ludlowii introduced and cultivated in Luanchuan, Henan Province of Central China as the object, the growth and development dynamics of the secondary branches and its apical buds were observed. And the apical bud floral differentiation process in introduction site (Luanchuan and Lhasa) and original site (Nyingchi) was observed by paraffin section method. Result (1) In Luanchuan, the secondary branches of P. ludlowii grew from early May to mid-September, and the peak period was from early May to early June. However, some axillary buds of flowering branches were stagnant and did not develop into secondary branches. (2) In Luanchuan, the secondary branches of cultivated P. ludlowii had three growth types: the type 1, which accounted for 28.57%, its apical buds formed and began to differentiate in mid-July, blossom and bear fruits normally in following year. The type 2 was mainly located in the middle and lower parts of the flowering/fruit branches, apical buds formed but did not differentiate and there was only vegetative growth in the following year. The type 3 did not form apical bud, freeze-dried during winter and following spring. (3) In original site Nyingchi, 56.25% of the apical buds on the secondary branches of P. ludlowii differentiated and blossomed and bore fruits normally in following year, the secondary branches of type 3 were not observed. (4) The differentiation process of the apical bud on the secondary branches was the same in introduction site and original site. The apical bud finally formed a compound bud with a top flower bud, 2–3 lateral flower buds, axillary bud primordiums and leaf primordiums though six differentiation stages, the top flower bud differentiated earlier than the lateral flower buds. The axillary bud primordiums located at the base of the 3rd–4th leaf primordiums, which will develop new secondary branches on the flowering branches in the following year. (5) The start time and duration of flower bud differentiation in introduction site and original site were different. In Luanchuan, P. ludlowii began to differentiate late and lasted relatively longer (88–97 d), while in Lhasa and Nyingchi, it began to differentiate earlier and lasted relatively shorter (nearly 70 d). Conclusion The flower bud differentiation ratio of cultivated P. ludlowii in Luanchuan is low, the differentiation begins late and lasts long but it could form a stable secondary branch with normal flower bud differentiation, blossom and bear fruit.The natural environment of it could be a reference for site selection to introduce and cultivate P. ludlowii. -
Key words:
- Peaonia ludlowii /
- secondary branch /
- growth dynamics /
- flower bud differentiation /
- composite bud
-
图 1 栾川大花黄牡丹二次枝发育
A. 2019年9月4日取样于栾川,主花蕾萼片原基分化时,顶芽基部叶腋处可见腋芽原基;B. 2019年10月12日取样于栾川,腋芽原基分化出叶原基;C. 2020年5月6日取样于栾川,立蕾期花枝的腋芽;D&E. 2020年8月25日取样于栾川,果枝上部腋芽萌发形成二次枝,下部腋芽不萌发;ABP. 腋芽原基;ApB. 二次枝顶芽;Le. 叶原基;①. 花枝中上部腋芽;②. 花枝/果枝下部腋芽,逐渐膨大或加长,但不形成二次枝;③. ①发育成的二次枝。下同。A, sampled in Luanchuan on September 4, 2019, the axillary bud primordia in the basal leaf axils of the apical buds when the sepal primordium differentiates ; B, sampled in Luanchuan on October 12, 2019, the axillary bud primordia differentiates into leaf primordia; C, sampled in Luanchuan on May 6, 2020, the axillary buds at bud stage;D&E, sampled in Luanchuan on August 25, 2020, the axillary buds on upper part of the fruit branch develop into secondary branches, and the axillary buds on lower part are not germimated. ABP, axillary bud primordium; ApB, apical bud on secondary branch; Le, leaf primordia; ①, the secondary branch on the upper and middle part; ②, atagnant axillary bud,gradually enlarged or lengthened, failing to form a secondary branch; ③, the secondary branch developed from ①. The same below.
Figure 1. Development of secondary branch of Paeonia ludlowii in Luanchuan
图 2 栾川大花黄牡丹二次枝示意图(A)及平均生长动态(B)
BD. 二次枝基部直径;BL. 二次枝长度;FB. 果枝;Fr. 果实;④. 上部二次枝;⑤. 下部二次枝。BD, base diameter of secondary branch; BL, length of secondary branch; FB, fruit branch; Fr, frui; ④, upper secondary branch; ⑤, lower secondary branch.
Figure 2. Schematic diagram (A) and average growth dynamics (B) of secondary branches of P. ludlowii in Luanchuan
图 3 栾川大花黄牡丹二次枝顶芽平均生长动态
A. 形成顶芽的二次枝;B. 不形成顶芽的二次枝(2020年9月5日,栾川);C. 二次枝顶芽平均生长动态。A, secondary branch with apical bud; B, secondary branch that could not form apical bud (taken on September 5, 2020,Luanchuan); C, average growth dynamics of apical buds of secondary branches.
Figure 3. Average growth dynamics of apical buds of secondary branches of P. ludlowii in Luanchuan
图 4 大花黄牡丹二次枝顶芽分化过程
A. 花芽分化初期;B. 苞片原基分化期;C. 萼片原基分化期;D. 花瓣原基分化期;E. 雄蕊原基分化期;F. 雌蕊原基分化期;G. 侧花蕾晚于主花蕾完成分化;H. 顶芽内不同位置的侧蕾分化时期不同;I. 含主花蕾、侧花蕾、叶原基、腋芽原基的复合芽。GP. 生长点;Le. 叶片原基;Br. 苞片原基;Se. 萼片原基;Pe. 花瓣原基;St. 雄蕊原基;Sta. 雄蕊:Pi. 雌蕊原基;MFB. 主花蕾;LFB. 侧花蕾;LFB1.顶芽基部向上第1个侧花蕾;LFB2. 顶芽基部向上第2个侧花蕾。A, early stage of flower bud differentiation; B, bract primordium differentiation period; C, Sepal primordium differentiation period; D, Petal primordium differentiation period; E, stamen primordium differentiation period; F, pistillode primordium differentiation period; G, the lateral flower-bud differentiated later than the main flower-bud; H, different position of lateral flower buds; I, compound buds with main flower bud, lateral flower buds, leaf primordium and axillary bud primordium. GP, growing point; Le, leaf primordium; Ax, axillary bud; Br, bract primordium; Se, sepal primordium; Pe, petal primordium; St, stamen primordium; Sta, staminode; Pi, pistil primordium; MFB, main flower bud; LFB, the lateral flower bud; LFB1, the first lateral flower bud; LFB2, the second lateral flower bud.
Figure 4. Differentiation process of the apical buds on the secondary branches of P. ludlowii
表 1 大花黄牡丹二次枝顶芽性状
Table 1. Characteristics of the apical buds on secondary branches of P. ludlowii
试验区 Test area 二次枝和未发育的腋芽在花/果枝上的着生位置
Implanting position of secondary branches and undeveloped axillary buds on flowering/fruiting branch第1类二次枝占比 Proportion of the type 1 secondary branch/% 上 Upper 中 Intermediate 下 Lower 不生成二次枝的腋芽数 Number of axillary buds that don,t develop into secondary branch 第1类二次枝数 Number of the type 1 secondary branch 第2类二次枝数 Number of the type 2 secondary branch 第3类二次枝数 Nnumber of the type 3 secondary branch 不生成二次枝的腋芽数 Number of axillary buds that don,t develop into secondary branch 第1类二次枝数 Number of the type 1 secondary branch 第2类二次枝数 Number of the type 2 secondary branch 第3类二次枝数 Nnumber of the type 3 secondary branch 不生成二次枝的腋芽数 Number of axillary buds that don,t develop into secondary branch 第1类二次枝数 Number of the type 1 secondary branch 第2类二次枝数 Number of the type 2 secondary branch 第3类二次枝数 Nnumber of the type 3 secondary branch 栾川
Luanchuan0 18 10 2 1 2 7 0 16 0 14 0 28.57 林芝
Nyingchi0 30 0 0 0 1 5 0 14 5 9 0 56.25 表 2 大花黄牡丹顶芽主花蕾的分化进程
Table 2. Differentiation process of the main flower buds in apical buds of P. ludlowii
试验区
Test area取样年份
Year of
sampling叶原基形成结束时间
Leaf primordium formation
ending time花芽分化起始时间
Initiation time of flower bud differentiation苞片原基
Bract primordium萼片原基
Sepal primordium花瓣原基
Petal primordium雄蕊原基
Stamen primordium雌蕊原基
Pistil primordium栾川 Luanchuan 2019 7月26日
July 268月2日
August 29月4日
September 49月23日
September 2310月12日
October 1210月31日
October 312020 7月16日
July 167月26日
July 268月14日
August 149月10日
September 1010月1日
October 110月11日
October 11拉萨 Lhasa 2019 7月17日
July 177月21日
July 218月11日
August 118月25日
August 259月8日
September 89月23日
September 23林芝 Nyingchi 2019 7月16日
July 167月23日
July 238月10日
August 108月23日
August 239月2日
September 29月20日
September 20 -
[1] Hong D Y. Paeonia (Paeoniaceae) in Xizang (Tibet)[J]. Novon, 1997, 7(2): 156−161. doi: 10.2307/3392188 [2] 李嘉珏, 赵西方, 赵孝庆. 中国牡丹[M]. 北京: 中国大百科全书出版社, 2011: 17−23.Li J J, Zhao X F, Zhao X Q, et al. Tree peony of China[M]. Beijing: Encyclopedia of China Publishing House, 2011: 17−23. [3] 曾秀丽, 张姗姗, 杨勇, 等. 西藏不同居群大花黄牡丹的种子油脂成分分析[J]. 四川农业大学学报, 2015, 33(3): 285−288.Zeng X L, Zhang S S, Yang Y, et al. Analysis on seed oil composition of different Paeonia ludlowii population in Tibet[J]. Journal of Sichuan Agricultural University, 2015, 33(3): 285−288. [4] 蒋丽丽, 李鹏飞, 蒋帅, 等. 藏药大花黄牡丹根皮挥发油的提取和成分分析[J]. 黑龙江大学工程学报, 2016, 7(3): 63−67.Jiang L L, Li P F, Jiang S, et al. Extraction and chemical constituents analysis of essential oil from cortical root of Tibetan medicinal herb Paeonia ludlowii[J]. Journal of Engineering of Heilongjiang University, 2016, 7(3): 63−67. [5] 李杰, 旦真次仁, 许晓嘉, 等. 西藏大花黄牡丹花朵氨基酸组成和矿质元素比较分析[J]. 云南农业大学学报(自然科学), 2017, 32(6): 1058−1063.Li J, Danzhenciren, Xu X J, et al. Amino acid composition and mineral elements analysis of Paeonia ludlowii flower in Tibet[J]. Journal of Yunnan Agricultural University (Natural Science), 2017, 32(6): 1058−1063. [6] 张志翔, 刘全儒. 大花黄牡丹[J]. 生物学通报, 2019, 54(9): 7. doi: 10.3969/j.issn.0006-3193.2019.09.003Zhang Z X, Liu Q R. Paeonia ludlowii[J]. Bulletin of Biology, 2019, 54(9): 7. doi: 10.3969/j.issn.0006-3193.2019.09.003 [7] 李睿, 何丽霞, 宋桂英. 野生牡丹在兰州地区的引种栽培试验[J]. 林业实用技术, 2011(7): 55−56.Li R, He L X, Song G Y. Introduction and cultivation of the wild tree-peony in Lanzhou area[J]. Practical Forestry Technology, 2011(7): 55−56. [8] 倪圣武. 紫牡丹、黄牡丹、大花黄牡丹引种与迁地保护研究[D]. 北京: 北京林业大学, 2009.Ni S W. Introduction and ex-situ conservation of Paeonia delavayi, Paeonia lutea, Paeonia ludlowii[D]. Beijing: Beijing Forestry University, 2009. [9] 王福,李清道,马钧,等. 大花黄牡丹引种驯化成功的经验[C]// 中国花协牡丹芍药分会. 2013中国洛阳国际牡丹高峰论坛论文集. 北京: 中国林业出版社, 2013:122−126.Wang F, Li Q D, Ma J, et al. The successfhl experience of Paeonia ludlowii introduction and domestication [C]// Peony Branch of China Flower Association. 2013 Luoyang International Peony Summit Forum, China. Beijing: China Forestry Publishing House, 2013: 122−126. [10] 焦鹏,赵永清. 大花黄牡丹在北京地区引种驯化初报[C]// 中国花协牡丹芍药分会. 2013中国洛阳国际牡丹高峰论坛论文集. 北京: 中国林业出版社, 2013: 117−121.Jiao P, Zhao Y Q. The report of Paeonia ludlowii domestication in Beijing[C]. Peony Branch of China Flower Association. 2013 Luoyang International Peony Summit Forum, China. Beijing: China Forestry Publishing House, 2013:117−121. [11] 崔永宁, 张姗姗, 曾秀丽, 等. 拉萨大花黄牡丹变异材料的光合特性研究[J]. 中国农学通报, 2019, 35(22): 60−64. doi: 10.11924/j.issn.1000-6850.casb18030071Cui Y N, Zhang S S, Zeng X L, et al. Photosynthetic characteristics of Paeonia ludlowii variant material in Lhasa[J]. Chinese Agricultural Science Bulletin, 2019, 35(22): 60−64. doi: 10.11924/j.issn.1000-6850.casb18030071 [12] 袁涛, 陈庭巧, 唐英. 大花黄牡丹枝条二次发育特点的观察[J]. 园艺学报, 2021, 48(1): 117−126.Yuan T, Chen T Q, Tang Y. Secondary branches development of Paeonia ludlowii[J]. Acta Horticulturae Sinica, 2021, 48(1): 117−126. [13] 刘立强, 李建贵, 张兵, 等. ‘温185’和‘新新2’核桃二次枝混合芽的成花与结实特性[J]. 新疆农业大学学报, 2016, 39(6): 442−446. doi: 10.3969/j.issn.1007-8614.2016.06.003Liu L Q, Li J G, Zhang B, et al. Flower formation and fruit setting on mixed buds of secondary shoots in ‘Wen 185’ and ‘Xinxin 2’ walnut[J]. Journal of Xinjiang Agricultural University, 2016, 39(6): 442−446. doi: 10.3969/j.issn.1007-8614.2016.06.003 [14] 刘立强. 温185和新新2核桃枝条与混合芽的生长动态分析[J]. 经济林研究, 2018, 36(4): 150−154.Liu L Q. Growth dynamic analysis of shoots and mixed buds in Wen 185 and Xinxin 2 walnut[J]. Nonwood Forest Research, 2018, 36(4): 150−154. [15] 关欣, 陈温福, 徐正进, 等. 不同年代水稻品种穗部性状比较研究[J]. 沈阳农业大学学报, 2004, 35(2): 81−84. doi: 10.3969/j.issn.1000-1700.2004.02.001Guan X, Chen W F, Xu Z J, et al. Analysis of evolution on the panicle characteristics of rice varieties[J]. Journal of Shenyang Agricultural University, 2004, 35(2): 81−84. doi: 10.3969/j.issn.1000-1700.2004.02.001 [16] 马丙尧, 邢尚军, 杜振宇, 等. 根系修剪与施肥对冬枣二次枝生长、果实产量及品质的影响[J]. 中国农学通报, 2013, 29(1): 183−187. doi: 10.3969/j.issn.1000-6850.2013.01.038Ma B Y, Xing S J, Du Z Y, et al. Effect of root pruning and fertilization on secondary branch growth, fruit yield and quality of Zizyphus jujube Mill.[J]. China Agronomy Science Bulletin, 2013, 29(1): 183−187. doi: 10.3969/j.issn.1000-6850.2013.01.038 [17] 胡琼, 王森, 李凡松, 等. 南方鲜食枣二次枝结果特性[J]. 中南林业科技大学学报, 2018, 38(2): 50−56.Hu Q, Wang S, Li F S, et al. Bearing fruit properties of secondary branches in southern fresh jujube[J]. Journal of Central South University of Forestry & Technology, 2018, 38(2): 50−56. [18] 曾小鲁, 程景福. 实用生物学制片技术[M]. 北京: 高等教育出版社, 1989.Zeng X L, Cheng J F. Applied biology filmmaking technique[M]. Beijing: High Education Press, 1989. [19] 王东辉. 植物发育生物学常用实验技术[M]. 北京: 北京大学出版社, 2017: 124.Wang D H. Experimental technology of plant developmental biology[M]. Beijing: Peking University Press, 2017: 124. [20] 许世磊. 芍药植株促芽的研究[D]. 泰安: 山东农业大学, 2012.Xu S L. The study of promoting crown bud formation in herbaceous cultivars[D]. Tai ’an: Shandong Agricultural University, 2012. [21] 张建军, 杨勇, 于晓南. 芍药根茎芽发育及更新规律的形态学研究[J]. 西北农业学报, 2018, 27(7): 1008−1016. doi: 10.7606/j.issn.1004-1389.2018.07.012Zhang J J, Yang Y, Yu X N. Morphological observation on the development and regeneration of rhizome buds in Paeonia lactiflora[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(7): 1008−1016. doi: 10.7606/j.issn.1004-1389.2018.07.012 [22] 方强恩. 紫花苜蓿根颈芽发育成枝及越冬休眠特性研究[D]. 兰州: 甘肃农业大学, 2016.Fang Q E. Study on the rules of alfalfa rhizome bud developing into shoot and its winter hardiness in the state of dormancy[D]. Lanzhou: Gansu Agricultural University, 2016. [23] 常月梅. 核桃树体微环境与枝条干枯发生的关系[J]. 经济林研究, 2017, 35(4): 185−191.Chang Y M. Relationship between tree micro-environment and occurrence of shoot wilting in walnut[J]. Nonwood Forest Research, 2017, 35(4): 185−191. [24] 李嘉珏, 何丽霞, 陈德忠, 等. 西藏大花黄牡丹引种试验初报[J]. 植物引种训化集刊, 1995(10): 105−110.Li J J, He L X, Chen D Z, et al. Preliminary report of introduction experiment of Paeonia ludlowii in Tibet[J]. Plant Introduction and Acclimatization, 1995(10): 105−110. [25] 李振蒙, 李俊清. 植物引种训化研究概述[J]. 内蒙古林业调查设计, 2007, 30(4): 47−50, 65. doi: 10.3969/j.issn.1006-6993.2007.04.021Li Z M, Li J Q. Summary of studies on Introduction and acclimatization of plant[J]. Inner Mongolia Forestry Investigation and Design, 2007, 30(4): 47−50, 65. doi: 10.3969/j.issn.1006-6993.2007.04.021 [26] 张德全, 石敬爱, 孙景民, 等. 关于林木引种技术的探析[J]. 防护林科技, 2005(增刊1): 104−105.Zhang D Q, Shi J A, Sun J M, et al. Discussion and analysis on forest tree introduction technology[J]. Protection Forest Science and Technology, 2005(Suppl.1): 104−105. [27] 曾洪学. 如何判定资源植物引种训化是否成功[J]. 生物学通报, 2005, 35(12): 29. doi: 10.3969/j.issn.0006-3193.2005.12.016Zeng H X. How to judge whether the introduction and acclimatization of resource plants was successful[J]. Bulletin of Biology, 2005, 35(12): 29. doi: 10.3969/j.issn.0006-3193.2005.12.016 [28] 王莲英. 牡丹品种花芽形态分化观察及花型成因分析[J]. 园艺学报, 1986, 13(3): 203−208.Wang L Y. Observations in the morphological of flower bud differentiation of cultivars of tree peony and the analysis on the formation of flower roems[J]. Acta Horticulturae Sinica, 1986, 13(3): 203−208. [29] 王宗正, 章月仙. 牡丹花芽的形态发生及其生命周期的观察[J]. 山东农业大学学报, 1987, 18(3): 9−16.Wang Z Z, Zhang Y X. Studies on morphogenesis and life cycle of the flower bud of tree peony (Paeonia suffruticosa Andr.)[J]. Journal of Shandong Agriculture University, 1987, 18(3): 9−16. [30] 辛明志, 陶炼, 樊胜, 等. 纬度和海拔对主要苹果品种花芽分化期的影响[J]. 园艺学报, 2019, 46(4): 761−774.Xin M Z, Tao L, Fan S, et al. Effect of latitude and altitude on flower bud differentiation of major apple cultivars[J]. Acta Horticulturae Sinica, 2019, 46(4): 761−774. [31] 黄冬华, 周超华, 宋小民, 等. 温度和光照对金边瑞香花芽分化的影响[J]. 园艺学报, 2010, 37(10): 1685−1689.Huang D H, Zhou C H, Song X M, et al. Effects of temperature and light on flower bud differentiation in Daphne odora var. marginata[J]. Acta Horticulturae Sinica, 2010, 37(10): 1685−1689. [32] 高庆玉, 蒋明凤, 张丙秀, 等. 光照处理对树莓品种费尔杜德花芽分化的影响[J]. 东北农业大学学报, 2012, 43(10): 69−73.Gao Q Y, Jiang M F, Zhang B X, et al. Effect of light on flower bud differentiation of raspberry Fertod Zamatos[J]. Journal of Northeast Forestry University, 2012, 43(10): 69−73. [33] Sønsteby A, Solhaug K A, Heide O M. Functional growth analysis of ‘Sonata’ strawberry plants grown under controlled temperature and daylength conditions[J]. Scientia Horticulturae, 2016, 211: 26−33. doi: 10.1016/j.scienta.2016.08.003 [34] 韩佩汝, 张正伟, 郑静, 等. 低温对草莓花芽分化的影响[J]. 中国农业大学学报, 2019, 24(1): 30−39. doi: 10.11841/j.issn.1007-4333.2019.01.05Han P R, Zhang Z W, Zheng J, et al. Effects of low temperature on flower bud differentiation in strawberry[J]. Journal of China Agricultural University, 2019, 24(1): 30−39. doi: 10.11841/j.issn.1007-4333.2019.01.05 [35] Su W R, Chen W S, Koshioka M, et al. Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked[J]. Plant Physiology and Biochemistry, 2001, 39(1): 45−50. doi: 10.1016/S0981-9428(00)01218-3 [36] Rosen A, Rottem A. The effect of high temperature exposure on the creep resistance of Ti-6AI-4V alloy[J]. Material Science and Engineerin, 1976, 22: 23−29. [37] Lee H B, An S K, Kim K S. Inhibition of premature flowering by intermittent high temperature treatment to young Phalaenopsis plants[J]. Horticulture, Environment, Biotechnology, 2015, 56(5): 618−625. doi: 10.1007/s13580-015-1082-1 [38] 李嘉珏. 控制水分对梅花生长及花芽分化的影响[J]. 园艺学报, 1981(2): 53−60.Li J J. The effect of controlling water to the growth and flower-bud differentiation of Mei flower[J]. Acta Horticulturae Sinica, 1981(2): 53−60. [39] 路瑶. 水分胁迫、夏季修剪对葡萄花芽分化的影响研究[D]. 长沙: 湖南农业大学, 2012.Lu Y. Effect of water stress and summer pruning on flower bud differentiation of grapes[J]. Changsha: Hunan Agricultural University, 2012. [40] 万春雁, 糜林, 李金凤, 等. 苗期不同水分处理对草莓花芽分化及果实早熟化的影响[J]. 果树学报, 2016, 33(12): 1523−1531.Wan C Y, Mi L, Li J F, et al. Effect of different water treatments at seedling stage on flower bud differentiation and prematurity of strawberry[J]. Journal of Fruit Science, 2016, 33(12): 1523−1531. [41] 张军莉, 苗锦山, 张笑笑, 等. 园艺植物花芽分化的研究进展[J]. 园艺与种苗, 2020, 40(1): 36−39.Zhang J L, Miao J S, Zhang X X, et al. Advances in flower bud differentiation in horticultural plants[J]. Horticulture & Seed, 2020, 40(1): 36−39. [42] 杨正申, 张益民. 牡丹花芽分化过程的观察[J]. 豫西农专学报, 1986(1): 36−38.Yang Z S, Zhang Y M. The process of flower bud differentiation in tree peony[J]. Journal of Western Henan Agricultural College, 1986(1): 36−38. [43] 贺丹, 高小峰, 吕博雅, 等. 牡丹、芍药花芽分化的形态学研究[J]. 河南农业科学, 2014, 43(12): 117−120. doi: 10.3969/j.issn.1004-3268.2014.12.026He D, Gao X F, Lü B Y, et al. Morphology research of flower bud differentiation of tree peony and herbaceeos peony[J]. Journal of Henan Agricultural Sciences, 2014, 43(12): 117−120. doi: 10.3969/j.issn.1004-3268.2014.12.026 [44] 董晓晓, 别沛婷, 袁涛. 3个牡丹品种花芽分化过程形态及叶片碳水化合物质量分数变化[J]. 东北林业大学学报, 2020, 48(7): 34−39. doi: 10.3969/j.issn.1000-5382.2020.07.007Dong X X, Bie P T, Yuan T. Changes of morphology and carbohydrate content in leaves of three tree peony during flower bud differentiation[J]. Journal of Northeast Forestry University, 2020, 48(7): 34−39. doi: 10.3969/j.issn.1000-5382.2020.07.007 [45] 陈庭巧, 董晓晓, 袁涛, 等. 单花、有侧花牡丹品种花芽分化特点及内源激素变化[J/OL].广西植物, 2022. [2022−06−09]. DOI: 10.11931/guihaia.gxzw202111068.Chen T Q, Dong X X, Yuan T, et al. Flower bud differentiation and endogenous hormones changes of in single and lateral-flowered tree peony (Paeonia Sect. Moutan) cultivars[J/OL]. Guihaia, 2022. [2022−06−09]. DOI: 10.11931/guihaia.gxzw202111068. -