Correlation between bird species composition and multi-scale environmental factors in spring in Wenyu River ecological corridor of Beijing
-
摘要:
目的 城市化进程加剧了城市绿地的破碎化,严重威胁了城市鸟类多样性,河流生态廊道在鸟类栖息地保护方面起到重要作用。然而,各类群鸟类多样性受多尺度环境因子的共同影响,针对不同类群的城市生态廊道鸟类栖息地格局优化与栖息地营造亟待理论研究的支撑。本文在分析北京温榆河生态廊道春季鸟类物种构成特征的基础上,对景观格局、栖息地斑块和微栖息地3个尺度下的环境因子对各类群鸟类物种构成的影响进行综合分析,以期深入了解影响鸟类栖息地选择的环境因素,为城市鸟类多样性保护和城市河流生态廊道栖息地建设提供参考。 方法 于2019年春季对温榆河生态廊道内部鸟类物种构成和植物群落结构特征进行实地调研,并对流域栖息地类型进行目视解译和格局分析,通过冗余分析法(RDA)对鸟类物种构成特征与多尺度环境因子的相关性进行分析。 结果 50 ~ 200 m内的景观格局环境因子对廊道内鸟类总体物种构成解释度最高。鸣禽类群物种构成与微栖息地内的乔木均匀度、小范围内的水体、湿地面积以及较大范围内的草地、落叶林地相关指数相关;陆禽类群物种构成与耕地和灌丛相关;游禽和涉禽类群物种构成与较小范围内的水体面积、湿地面积相关;猛禽与湿地水体相关性强。相同生态类群下不同居留型鸟类与环境因子之间的相关关系存在差异。多数鸟类的多度与100 m范围内湿地面积、湿地最大斑块占比和湿地结合度以及2 000 m范围内水体分离度等指数正相关。 结论 不同类群鸟类与各环境因子的关系存在差异,但水体和湿地相关指数对河流生态廊道内各生态类群鸟类均有影响。在未来的城市生态廊道建设中,建议考虑不同类群鸟类的栖息地偏好,注重廊道内部湿地水体格局的优化,针对目标物种开展鸟类栖息地营造与保护工作。 Abstract:Objective In recent years, urban green space is increasingly fragmented because of urbanization, which seriously threatens urban bird diversity. River ecological corridor plays an important role in the protection of urban bird habitats. However, the diversity of different ecological community of birds is influenced by environmental factors at multiple scales. The habitat pattern optimization and habitat construction of birds in urban ecological corridors for specific ecological community need the support of theoretical research urgently. Based on the analysis of bird species composition in Beijing Wenyu River ecological corridor in spring, we comprehensively analyzed the effects of environmental factors on bird species composition of different ecological communities at three scales of landscape pattern, habitat patch and micro-habitat, in order to understand the impact of environmental factors on bird habitat selection, and provide reference for bird diversity protection and habitat construction of urban river ecological corridors. Method In the spring of 2019, we conducted a field survey of bird species composition and plant community structure in the Wenyu River ecological corridor. Landscape pattern analysis was conducted after visual interpretation of the habitats in the corridor. Redundant analysis (RDA) was used to analyze the correlation between bird species composition and multi-scale environmental factors. Result The pattern characteristics within 50−200 m had the highest interpretation for the overall composition of birds. The composition of songbirds was mainly related to the Pielou index of trees in the community, the area of water and wetland within a small range, and some indexes of grassland and deciduous forest within a large range. The composition of terrestrial bird was mainly related to cropland and shrub. The composition of swimming birds and wading birds had a strong correlation with water body area and wetland area within a small range. The composition of raptorial birds was associated with wetland waters. In same ecological community, the composition of different reside pattern birds had different correlations with environmental factors. Most bird abundance was positively correlated with wetland area, wetland largest patch index and wetland cohesion index within 100 m, and waterbody splitting index within 2 000 m. Conclusion The relationship between birds of different ecological communities and various environmental factors is diverse, but the indices of water body and wetland have influence on birds of all ecological communities in the river ecological corridor. In the future construction of urban ecological corridors, we suggest to consider the habitat preferences of different bird communities, pay attention to the optimization of the habitat pattern of wetland water in corridors, and carry out the construction and protection of bird habitats for targeted species. -
Key words:
- ecological corridor /
- urban birds /
- habitat /
- landscape pattern /
- biodiversity
-
图 1 温榆河生态廊道栖息地分类及调查样点分布
E. 常绿林地;D. 落叶林地;S.灌丛地;G.草地;WL.湿地;CR.耕地;WB.水域;R.道路;CO.建筑用地;O.其他用地。下同。E, evergreen forest land; D, deciduous forest land; S, shrub land; G, grassland; WL, wetland; CR, cropland; WB, water body; R, road; CO, construction land; O, other land. The same below.
Figure 1. Distribution of habitats and survey samples in Wenyu River ecological corridor
图 2 温榆河生态廊道景观格局因子对各生态类群鸟类的解释度
G-COHESION中,G表示草地,COHESION表示平均聚集度。其他指标同理,不逐一列出。In G-COHESION, G means grassland, COHESION means average aggregation. The same goes for other indicators, which are not listed individually.
Figure 2. Explanation degree of landscape pattern factors of Wenyu River ecological corridor to birds of various ecological groups
表 1 温榆河生态廊道各尺度环境因子选取
Table 1. List of multi-scale environmental factors in Wenyu River ecological corridor
分析尺度
Analysis scale环境因子
Environmental factor景观格局尺度
Landscape pattern scale斑块数量(NP)、平均斑块面积(AMN)、平均形状指标(SMN)、辛普森多样性指数(SIDI)、辛普森均匀度指数(SIEI)、各栖息地类型总面积(CA)、最大斑块占比(LPI)、平均聚集度(CONTIGMN)、结合度(COHESION)、分离度(SPLIT)
Number of patch (NP), mean patch area (AMN), mean shape index (SMN), Simpson’s diversity index (SIDI), Simpson’s evenness index (SIEI), total class area (CA), Max. patch proportion (LPI), mean contiguity index (CONTIGMN), cohesion index (COHESION), splitting index (SPLIT)栖息地斑块尺度
Habitat patch scale类型(TYPE)、面积(AREA)、边缘周长比(PARA)、聚集指数(CONTIG)
Patch type (TYPE), patch area (AREA), perimeter area ratio (PARA), contiguity index (CONTIG)微栖息地尺度
Micro-habitat scale乔(T)灌(SH)草(HE)的平均高度(HM)、盖度(C)、丰富度(Rp)、Shannon-Wiener指数(H)、Pielou指数(J)
Average height (HM), coverage (C), richness (Rp), Shannon-Wiener index (H), and Pielou index (J) of trees (T), shrubs (SH) and grasses (HE)表 2 温榆河生态廊道鸟类调查名录及物种频度
Table 2. List and frequency of birds in Wenyu River ecological corridor
生态类群
Ecological
community代称
Code
name物种
Species目
Order科
Family居留型
Reside
pattern繁殖期
Breeding time频度
Frequency/%鸣禽
SongbirdS-A 家燕 Hirundo rustica 雀形目 Passeriformes 燕科 Hirundinidae S 4—7月
April to July12.00 S-B 金腰燕 Cecropis daurica 雀形目 Passeriformes 燕科 Hirundinidae S 4—9月
April to September3.75 S-C 黄头鹡鸰 Motacilla citreola 雀形目 Passeriformes 鹡鸰科 Motacillidae S 5—7月
May to July3.75 S-D 白鹡鸰 Motacilla alba 雀形目 Passeriformes 鹡鸰科 Motacillidae S 4—7月
April to July5.00 S-E 黄鹡鸰 Motacilla tschutschensis 雀形目 Passeriformes 鹡鸰科 Motacillidae P 5—7月
May to July3.75 S-F 灰鹡鸰 Motacilla cinerea 雀形目 Passeriformes 鹡鸰科 Motacillidae S 5—7月
May to July1.25 S-G 树鹨 Anthus hodgsoni 雀形目 Passeriformes 鹡鸰科 Motacillidae P 6—7月
June to July5.00 S-H 白头鹎 Pycnonotus sinensis 雀形目 Passeriformes 鹎科 Pycnonotidae R 4—8月
April to August15.00 S-I 灰椋鸟 Spodiopsar cineraceus 雀形目 Passeriformes 椋鸟科 Sturnidae S 5—7月
May to July17.50 S-J 灰喜鹊 Cyanopica cyanua 雀形目 Passeriformes 鸦科 Corvidae R 5—7月
May to July25.00 S-K 喜鹊 Pica pica 雀形目 Passeriformes 鸦科 Corvidae R 3—5月
March to May53.75 S-L 黑喉石䳭 Saxicola maurus 雀形目 Passeriformes 鸫科 Turdidae P 5—7月
May to July3.75 S-M 乌鸫 Turdus merula 雀形目 Passeriformes 鸫科 Turdidae R 4—7月
April to July3.75 S-N 红喉姬鹟 Ficedula albicilla 雀形目 Passeriformes 鹟科 Muscicapidae S 5—7月
May to July6.25 S-O 棕头鸦雀 Sinosuthora webbiana 雀形目 Passeriformes 鸦雀科 Corvidae R 4—8月
April to August3.75 S-P 黄眉柳莺 Phylloscopus inornatus 雀形目 Passeriformes 莺科 Sylviidae S 5—8月
May to August8.75 S-Q 沼泽山雀 Poecile palustris 雀形目 Passeriformes 山雀科 Paridae R 4—6月
April to June3.75 S-R 远东山雀 Parus minor 雀形目 Passeriformes 山雀科 Paridae R 4—6月
April to June1.25 S-S 麻雀 Passer montanus 雀形目 Passeriformes 文鸟科 Ploceidae R 3—8月 March to August 47.50 S-T 金翅雀 Carduelis sinica 雀形目 Passeriformes 燕雀科 Fringillidae R 3—8月 March to August 2.50 S-U 黑尾蜡嘴雀 Eophona migratoria 雀形目 Passeriformes 燕雀科 Fringillidae S 5—7月
May to July1.25 S-V 白眉鹀 Emberiza tristrami 雀形目 Passeriformes 鹀科 Emberizidae P 5—7月
May to July1.25 S-W 芦鹀 Emberiza schoeniclus 雀形目 Passeriformes 鹀科 Emberizidae W 5—7月
May to July2.50 攀禽
Scansorial birdSC-A 四声杜鹃 Cuculus micropterus 鹃形目 Cuculiformes 杜鹃科 Cuculidae S 5—7月
May to July1.25 SC-B 东方中杜鹃 Cuculus optatus 鹃形目 Cuculiformes 杜鹃科 Cuculidae S 5—7月
May to July3.75 SC-C 噪鹃 Eudynamys scolopaceus 鹃形目 Cuculiformes 杜鹃科 Cuculidae S 3—8月
March to August1.25 SC-D 冠鱼狗 Megaceryle lugubris 佛法僧目 Coraciiformes 翠鸟科 Alcedinidae R 5—6月
May to June1.25 SC-E 戴胜 Upupa epops 戴胜目 Upupiformes 戴胜科 Upupidae S 4—6月
April to June3.75 SC-F 星头啄木鸟 Dendrocopos canicapillus 鴷形目 Piciformes 啄木鸟科 Picidae R 4—6月
April to June1.25 SC-G 大斑啄木鸟 Dendrocopos major 鴷形目 Piciformes 啄木鸟科 Picidae R 4—5月
April to May1.25 SC-H 灰头绿啄木鸟 Picus canus 鴷形目 Piciformes 啄木鸟科 Picidae R 4—6月
April to June8.75 陆禽
Terrestrial birdT-A 灰斑鸠 Streptopelia decaocto 鸽形目 Columbiformes 鸠鸽科 Columbidae R 4—8月
April to August16.25 T-B 山斑鸠 Streptopelia orientalis 鸽形目 Columbiformes 鸠鸽科 Columbidae R 4—7月
April to July2.50 T-C 珠颈斑鸠 Spilopelia chinensis 鸽形目 Columbiformes 鸠鸽科 Columbidae R 4—10月
April to October3.75 涉禽
Wading birdW-A 苍鹭 Ardea cinerea 鹳形目 Ciconiiformes 鹭科 Ardeidae R 4—6月
April to June7.50 W-B 大白鹭 Ardea alba 鹳形目 Ciconiiformes 鹭科 Ardeidae S 4—7月
April to July6.25 W-C 白鹭 Egretta garzetta 鹳形目 Ciconiiformes 鹭科 Ardeidae S 5—7月
May to July1.25 W-D 夜鹭 Nycticorax nycticorax 鹳形目 Ciconiiformes 鹭科 Ardeidae S 4—7月
April to July1.25 W-E 白琵鹭 Platalea leucorodia 鹳形目 Ciconiiformes 鹮科 Threskiornithidae S 5—7月
May to July1.25 W-F 反嘴鹬 Recurvirostra avosetta 鸻形目 Charadriiformes 反嘴鹬科 Recurvirostridae P 5—7月
May to July1.25 W-G 红脚鹬 Tringa totanus 鸻形目 Charadriiformes 鹬科 Scolopacidae P 5—7月
May to July1.25 W-H 矶鹬 Actitis hypoleucos 鸻形目 Charadriiformes 鹬科 Scolopacidae S 5—7月
May to July2.50 W-I 红颈滨鹬 Calidris ruficollis 鸻形目 Charadriiformes 鹬科 Scolopacidae P 6—8月
June to August2.50 W-J 扇尾沙锥 Gallinago gallinago 鸻形目 Charadriiformes 鹬科 Scolopacidae P 5—7月
May to July1.25 W-K 金眶鸻 Charadrius dubius 鸻形目 Charadriiformes 鸻科 Charadriidae S 5—7月
May to July3.75 游禽
Swimming birdSW-A 小䴙䴘 Tachbybaptus ruficollis 䴙䴘目 Podicipediformes 䴙䴘科 Podicipedidae R 5—7月
May to July1.25 SW-B 鸳鸯 Aix galericulata 雁形目 Anseriformes 鸭科 Anatidae P 4—6月
April to June2.50 SW-C 绿头鸭 Anas platyrhynchos 雁形目 Anseriformes 鸭科 Anatidae R 4—6月
April to June10.00 SW-D 红头潜鸭 Aythya ferina 雁形目 Anseriformes 鸭科 Anatidae P 4—6月
April to June3.75 猛禽
Raptorial birdR-A 普通鵟 Buteo japonicus 隼形目 Falconiformes 鹰科 Accipitridae W 5—7月
May to July1.25 注:P. 旅鸟;R. 留鸟;S. 夏候鸟;W. 冬候鸟。下同。Notes: P, migrant bird; R, resident bird; S, summer migratory bird; W, winter migratory bird. The same below. 表 3 温榆河生态廊道各尺度环境因子对鸟类的解释度
Table 3. Explanation degree of environmental factors on birds at different scales of Wenyu River ecological corridor
% 生态类群
Ecological community解释度
Explanation degree微栖息地尺度
Micro-habitat scale栖息地斑块尺度
Habitat patch scale景观格局尺度
Landscape pattern scale/m50 100 200 500 1 000 1 500 2 000 鸣禽
Songbird总体解释度
Total explanation degree23.8 8.3** 63.8 67.0 70.5** 73.1 72.2 75.7* 70.3 显著及极显著相关因子解释度 Explanation degree of highly significantly and significantly correlated factors 5.4 5.8 17.7 16.5 22.6 15.9 18.3 20.9 8.5 攀禽
Scansorial bird总体解释度
Total explanation degree24.9 3.5 48.4 56.1 63.2 62.9 58.6 54.8 54.4 显著及极显著相关因子解释度 Explanation degree of highly significantly and significantly correlated factors 5.1 2.2 3.4 2.2 7.1 2.3 3.2 5.4 陆禽
Terrestrial bird总体解释度
Total explanation degree20.0 3.5 59.1 79.0** 74.9* 76.4 66.2 68.9 54.5 显著及极显著相关因子解释度 Explanation degree of highly significantly and significantly correlated factors 7.4 20.5 52.4 20.5 16.8 7.3 13.4 3.9 涉禽
Wading bird总体解释度
Total explanation degree13.1 8.4* 79.5* 74.7 66.2 74.0 75.1 70.7 62.2 显著及极显著相关因子解释度 Explanation degree of highly significantly and significantly correlated factors 6.5 7.2 55.6 19.3 27.2 16.2 15.6 7.6 8.0 游禽
Swimming bird总体解释度 Total explanation degree 10.8 9.0 66.8 70.7 65.6 66.3 61.6 65.7 61.8 显著及极显著相关因子解释度 Explanation degree of highly significantly and significantly correlated factors 5.7 6.6 23.4 17.4 16.8 16.8 8.7 5.6 17.4 猛禽
Raptorial bird总体解释度
Total explanation degree9.7 4.5 80.1 98.1 90.6 85.3 84.1 94.6 91.8 显著及极显著相关因子解释度 Explanation degree of highly significantly and significantly correlated factors 57.8 95.1 52.9 50.5 25.7 75.3 17.2 鸟类
Bird总体解释度
Total explanation degree20.2 7.2* 64.4 68.5 69.3 71.8 70.2 71.0 65.5 显著及极显著相关因子解释度 Explanation degree of highly significantly and significantly correlated factors 4.8 4.3 23.0 20.5 19.5 15.5 14.5 18.6 5.1 注:**表示极显著相关(P < 0.01),*表示显著相关(P < 0.05)。Notes: ** stands for extremely significant correlation (P < 0.01); * stands for significant correlation (P < 0.05). 表 4 鸟类物种构成−环境因子RDA排序摘要
Table 4. RDA ordination summary of the relationship between bird diversity and environmental factors
特征参数 Characteristic parameter 第1轴 Axis 1 第2轴 Axis 2 第3轴 Axis 3 第4轴 Axis 4 特征值 Eigenvalue 0.112 7 0.052 9 0.039 7 0.030 7 累计贡献率 Cumulative contribution rate/% 11.27 16.55 20.53 23.60 相关系数 Correlation coefficient 0.923 3 0.879 4 0.918 4 0.821 9 累积贡献率 Cumulative contribution rate/% 25.46 37.41 46.40 53.34 所有典范轴的显著性测验 Significance test for all canonical ordination axes pseudo-F = 1.8, P = 0.002 表 5 环境因子对鸟类物种构成的影响
Table 5. Effects of environmental factors on bird diversity
项目 Item 解释度 Explanation degree/% 贡献率 Contribution rate/% pseudo-F P 100-WL-CA 6.9 13.3 5.8 0.002 2000-WB-SPLIT 3.8 7.2 3.2 0.002 100-WL-LPI 3.5 6.7 3.1 0.002 50-WL-COHESION 2.6 5.0 2.3 0.002 T-J 2.4 4.6 2.2 0.002 100-WL-CONTIGMN 2.1 4.0 1.9 0.042 100-WL-COHESION 3.1 5.9 2.9 0.002 100-D-COHESION 2.1 4.0 2.0 0.022 200-E-LPI 1.7 3.3 1.7 0.008 200-O-SPLIT 1.7 3.3 1.7 0.010 50-WB-CA 1.5 2.9 1.5 0.028 AREA 1.5 2.8 1.5 0.030 1000-G-LPI 1.3 2.6 1.3 0.068 1000-CR-SPLIT 1.3 2.4 1.3 0.144 200-O-COHESION 1.2 2.4 1.2 0.184 200-O-LPI 1.2 2.4 1.2 0.190 TYPE 1.2 2.4 1.3 0.140 1000-SMN 1.1 2.2 1.1 0.270 100-AMN 1.0 2.0 1.1 0.418 1500-G-SPLIT 1.0 2.0 1.1 0.358 1500-CR-CA 1.0 1.9 1.0 0.400 1500-CR-LPI 1.0 2.0 1.1 0.416 注:100-WL-CA中,100表示100 m范围内,WL表示湿地,CA表示总面积。其他指标同理,不逐一列出。下同。Notes: In 100-WL-CA, 100 means within 100 m range; WL means wetland; CA means total class area. The same goes for other indicators which are not listed individually. The same below. -
[1] 付刚, 肖能文, 乔梦萍, 等. 北京市近二十年景观破碎化格局的时空变化[J]. 生态学报, 2017, 37(8): 2551−2562.Fu G, Xiao N W, Qiao M P, et al. Spatial-temporal changes of landscape fragmentation patterns in Beijing in the last two decades[J]. Acta Ecologica Sinica, 2017, 37(8): 2551−2562. [2] 俞文灏, 吴保锋, 刘勇波. 生境破碎化对动植物遗传多样性的影响研究进展[J]. 应用与环境生物学报, 2019, 25(3): 743−749.Yu W H, Wu B F, Liu Y B. Effects of habitat fragmentation on genetic diversity of plants and animals[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(3): 743−749. [3] 宗跃光. 城市景观生态规划中的廊道效应研究: 以北京市区为例[J]. 生态学报, 1999, 19(2): 145−150. doi: 10.3321/j.issn:1000-0933.1999.02.001Zong Y G. The corridor effects in urban ecological landscape planning: a case study on Beijing[J]. Acta Ecologica Sinica, 1999, 19(2): 145−150. doi: 10.3321/j.issn:1000-0933.1999.02.001 [4] Beier P, Noss R F. Do habitat corridors provide connectivity?[J]. Conservation Biology, 1998, 12: 1241−1252. doi: 10.1111/j.1523-1739.1998.98036.x [5] Gentry D J, Carlisle S J D. Species richness and nesting success of migrant forest birds in natural river corridors and anthropogenic woodlands in southeastern South Dakota[J]. The Condor, 2006, 108(1): 140−153. doi: 10.1093/condor/108.1.140 [6] Fernandez-Juricic E. Avifaunal use of wooded streets in an urban landscape[J]. Conservation Biology, 2000, 14(2): 513−521. doi: 10.1046/j.1523-1739.2000.98600.x [7] Fernandez-Juricic E, Jokimaki J. A habitat island approach to conserving birds in urban landscapes: case studies from southern and northern Europe[J]. Biodiversity and Conservation, 2001, 10(12): 2023−2043. doi: 10.1023/A:1013133308987 [8] 贾丽丽, 陈卓琳, 关文彬. 城市公园鸟类群落多样性与复杂性初探: 以北京地坛公园为例[J]. 安徽农业大学学报, 2016, 43(6): 989−995.Jia L L, Chen Z L, Guan W B. The diversity and complexity of the bird community in city park: a case study of Ditan Park in Beijing[J]. Journal of Anhui Agricultural University, 2016, 43(6): 989−995. [9] 雍凡, 徐海根, 崔鹏, 等. 中国森林鸟类繁殖季和越冬季分布格局及其影响因子[J]. 生态与农村环境学报, 2015, 31(5): 658−663. doi: 10.11934/j.issn.1673-4831.2015.05.007Yong F, Xu H G, Cui P, et al. Distribution pattern of forest birds in breeding and wintering seasons distribution pattern of forest birds in breeding and wintering seasons[J]. Journal of Ecology and Rural Environment, 2015, 31(5): 658−663. doi: 10.11934/j.issn.1673-4831.2015.05.007 [10] Mason J, Moorman C, Hess G, et al. Designing suburban greenways to provide habitat for forest-breeding birds[J]. Landscape and Urban Planning, 2007, 80(1−2): 160−164. [11] 蔡妤, 董丽. 绿道生态价值研究进展及展望[J]. 山东农业大学学报(自然科学版), 2018, 49(1): 110−116.Cai Y, Dong L. Progress and prospects of green way ecological value[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2018, 49(1): 110−116. [12] 庄艳美, 孔繁花, 尹海伟, 等. 城市绿地空间格局对鸟类群落影响的研究进展[J]. 南京林业大学学报(自然科学版), 2012, 36(3): 131−136.Zhuang Y M, Kong F H, Yin H W, et al. A review on the urban green space pattern affecting avian community[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2012, 36(3): 131−136. [13] Kang W, Minor E, Park C R, et al. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities[J]. Urban Ecosystems, 2015, 18(3): 857−870. doi: 10.1007/s11252-014-0433-5 [14] 张征恺, 黄甘霖. 中国城市鸟类学研究进展[J]. 生态学报, 2018, 38(10): 3357−3367.Zhang Z K, Huang G L. Urban ornithological research in China: a review[J]. Acta Ecologica Sinica, 2018, 38(10): 3357−3367. [15] James F C, Wamer N O. Relationships between temperate forest bird communities and vegetation structure[J]. Ecology, 1982, 63(1): 159−171. doi: 10.2307/1937041 [16] Ferenc M, Sedlacek O, Fuchs R. How to improve urban greenspace for woodland birds: site and local- scale determinants of bird species richness[J]. Urban Ecosystems, 2014, 17(2): 625−640. doi: 10.1007/s11252-013-0328-x [17] Hostetler M, Holling C S. Detecting the scales at which birds respond to structure in urban landscapes[J]. Urban Ecosystems, 2000, 4(1): 25−54. doi: 10.1023/A:1009587719462 [18] Cushman S A, Mcgarigal K. Hierarchical, multi-scale decomposition of species-environment relationships[J]. Landscape Ecology, 2002, 17(7): 637−646. doi: 10.1023/A:1021571603605 [19] Cushman S A, Mcgarigal K. Hierarchical analysis of forest bird species–environment relationships in the oregon coast range[J]. Ecological Applications, 2004, 14(4): 1090−1105. doi: 10.1890/03-5131 [20] 魏湘岳, 朱靖. 北京城市及近郊区环境结构对鸟类的影响[J]. 生态学报, 1989, 9(4): 285−289. doi: 10.3321/j.issn:1000-0933.1989.04.011Wei X Y, Zhu J. Effects of environmental structure on birds in urban and suburban areas of Beijing[J]. Acta Ecologica Sinica, 1989, 9(4): 285−289. doi: 10.3321/j.issn:1000-0933.1989.04.011 [21] 隋金玲, 张香, 胡德夫, 等. 北京绿化隔离地区鸟类群落与环境因子关系研究[J]. 北京林业大学学报, 2007, 29(5): 121−126. doi: 10.3321/j.issn:1000-1522.2007.05.024Sui J L, Zhang X, Hu D F, et al. Relationship between bird communities and environment factors at green belts in the urban area of Beijing[J]. Journal of Beijing Forestry University, 2007, 29(5): 121−126. doi: 10.3321/j.issn:1000-1522.2007.05.024 [22] 谢世林, 逯非, 曹垒, 等. 北京城区公园景观格局对夏季鸟类群落的影响[J]. 景观设计学, 2016, 4(3): 10−21.Xie S L, Lu F, Cao L, et al. The effects of landscape patterns on avian communities during summer months in Beijing’s urban parks[J]. Landscape Architecture Frontiers, 2016, 4(3): 10−21. [23] 叶辛. 城市景观格局对鸟类群落结构的作用机制[D]. 上海: 华东师范大学, 2016.Ye X. The effects of urban pattern on bird community structure [D]. Shanghai: East China Normal University, 2016. [24] 杨刚, 王勇, 许洁, 等. 上海大型城市公园斑块结构对鸟类群落的影响[J]. 华东师范大学学报(自然科学版), 2016(6): 46−53, 70.Yang G, Wang Y, Xu J, et al. Influence of patch structure on bird community and structure in Shanghai large urban parks[J]. Journal of East China Normal University (Natural Science), 2016(6): 46−53, 70. [25] 北京市城市规划设计研究院. 北京市绿地系统规划[EB/OL]. (2019−11−29) [2021−04−20]. http://yllhj.beijing.gov.cn/zwgk/ghxx/gh/201911/t20191129_734967.shtml.Beijing MunicipalIinstitude of City Planning and Design. Planning of Beijing green space system[EB/OL]. (2019−11−29) [2021−04−20]. http://yllhj.beijing.gov.cn/zwgk/ghxx/gh/201911/t20191129_734967.shtml. [26] 北京市城市规划设计研究院. 北京城市总体规划(2016年—2035年) [EB/OL]. (2017−09−29)[2021−04−20]. http://www.beijing.gov.cn/gongkai/guihua/wngh/cqgh/201907/t20190701_100008.html.Beijing Municipal Institute of City Planning and Design. Master plan of Beijing [EB/OL]. (2017−09−29) [2021−04−20]. http://www.beijing.gov.cn/gongkai/guihua/wngh/cqgh/201907/t20190701_100008.html. [27] 北京市统计局. 北京统计年鉴−2020 [EB/OL]. (2020−12−04) [2021−04−20]. http://nj.tjj.beijing.gov.cn/nj/main/2020-tjnj/zk/indexch.htm.Beijing Municipal Bureau Statistics. Beijing statisticsal yearbook-2020 [EB/OL]. (2020−12−04) [2021−04−20]. http://nj.tjj.beijing.gov.cn/nj/main/2020-tjnj/zk/indexch.htm [28] 中国国家标准化管理委员会. 土地利用现状分类: GB/T 21010—2007[S]. 北京: 中国标准出版社, 2007.Standardization Administration. Current land use classification: GB/T 21010−2007 [S]. Beijing: China Standard Press, 2007. [29] Petr S, Jan L. Multivariate analysis of ecological data using Canoco 5[M]. Cambridge: Cambridge University Press, 2014: 24−28. [30] Grand J, Cushman S A. A multi-scale analysis of species-environment relationships: breeding birds in a pitch pine-scrub oak (Pinus rigida-Quercus ilicifolia) community[J]. Biological Conservation, 2003, 112(3): 307−317. doi: 10.1016/S0006-3207(02)00323-3 [31] 曹铭昌, 刘高焕, 徐海根. 丹顶鹤多尺度生境选择机制: 以黄河三角洲自然保护区为例[J]. 生态学报, 2011, 31(21): 6344−6352.Cao M C, Liu G H, Xu H G. A multi-scale analysis of red-crowned crane’s habitat selection at the Yellow River Delta Nature Reserve, Shandong, China[J]. Acta Ecologica Sinica, 2011, 31(21): 6344−6352. [32] Yamaura Y, Katoh K, Fujita G, et al. The effect of landscape contexts on wintering bird communities in rural Japan[J]. Forest Ecology and Management, 2005, 216(1−3): 190−200. [33] 张姚, 谢汉宾, 曾伟斌, 等. 崇明东滩人工湿地春季水鸟群落结构及其生境分析[J]. 动物学杂志, 2014, 49(4): 490−504.Zhang Y, Xie H B, Zeng W B, et al. Analysis on the waterbird community structure and its habitat on the artificial wetlands in spring in Chongming Dongtan, China[J]. Chinese Journal of Zoology, 2014, 49(4): 490−504. [34] 邹业爱. 崇明东滩水鸟群落对生境变化及湿地修复的响应[D]. 上海: 华东师范大学, 2014.Zou Y A. Waterbird community response to habitat changes and wetland restoration strategies in the Chongming Dongtan Wetlands, China[D]. Shanghai: East China Normal University, 2014. [35] Catry P, Mellanby R, Suleiman K A, et al. Habitat selection by terrestrial birds on Pemba Island (Tanzania), with particular reference to six endemic taxa[J]. Biological Conservation, 2000, 95(3): 260−267. [36] 鲍伟东, 李晓京, 史阳. 北京地区隼形目鸟类物种多样性现状调查[J]. 四川动物, 2005(4): 119−120.Bao W D, Li X J, Shi Y. A recent survey on bird species diversity of falconiformes in Beijing region[J]. Sichuan Journal of Zoology, 2005(4): 119−120. [37] Barbe L, Morel R, Rantier Y, et al. Bird communities of a temperate forest: spatio-temporal partitioning between resident and migratory species[J]. Journal of Ornithology, 2017, 159(2): 1−13. [38] 叶芬, 黄乘明, 李汉华. 广西防城7种鹭类混群繁殖的空间生态位研究[J]. 四川动物, 2006(3): 577−583.Ye F, Huang C M, Li H H. Study on spartial niche of seven species of colonial breeding egrets and herons of Fangcheng, Guangxi Autonomous Region[J]. Sichuan Journal of Zoology, 2006(3): 577−583. [39] 张皖清, 董丽. 北京城市公园中鸟类对植物生境及种类的偏好研究[J]. 中国园林, 2015, 31(8): 15−19. doi: 10.3969/j.issn.1000-6664.2015.08.004Zhang W Q, Dong L. Study of bird preference to plant habitat and species in Beijing urban park[J]. Chinese Landscape Architecture, 2015, 31(8): 15−19. doi: 10.3969/j.issn.1000-6664.2015.08.004 [40] 刘旭, 张文慧, 李咏红, 等. 湿地公园鸟类栖息地营建研究: 以北京琉璃河湿地公园为例[J]. 生态学报, 2018, 38(12): 4404−4411.Liu X, Zhang W H, Li Y H, et al. Planning and restoration of bird habitats in a wetland park: a case study of the Liuli River Wetland Park in Beijing[J]. Acta Ecologica Sinica, 2018, 38(12): 4404−4411. [41] 赵振斌, 赵洪峰, 田先华, 等. 多尺度结合的西安市浐灞河湿地水鸟生境保护规划[J]. 生态学报, 2008, 28(9): 4494−4500. doi: 10.3321/j.issn:1000-0933.2008.09.050Zhao Z B, Zhao H F, Tian X H, et al. Multiple scale protection planning of waterbird habitats in Xi’an Chanba River Wetland[J]. Acta Ecologica Sinica, 2008, 28(9): 4494−4500. doi: 10.3321/j.issn:1000-0933.2008.09.050 -