Soil fertility quality evaluation of pure and mixed Larix principis-rupprechtii forests in Saihanba, Hebei Province of northern China
-
摘要:
目的 基于土壤质量指数(SQI),研究华北落叶松林不同混交方式对土壤肥力质量的影响,为其合理经营和地力恢复提供理论依据。 方法 该研究以河北省塞罕坝林场华北落叶松纯林(落叶松纯林)、华北落叶松白桦混交林(落桦混交林)和华北落叶松樟子松混交林(落樟混交林)为研究对象,采集和分析0 ~ 20 cm土层的土壤进行土壤理化性质、生物性质的调查研究,利用SQI法进行土壤肥力质量评价。建立SQI包括3个步骤:采用主成分分析法筛选最小数据集(MDS),利用非线性得分函数计算MDS指标得分,利用加权求和模型计算SQI。 结果 不同混交方式间土壤理化和生物性质存在不同程度的差异。与落叶松纯林相比,落桦混交林的土壤理化和生物性质有了明显改善;落樟混交林的土壤理化状况较差,土壤生物性质与落叶松纯林没有明显差异。在17个土壤肥力质量指标中,MDS由土壤微生物生物量氮、全磷、氨氮3个指标组成。不同混交方式间SQI差异显著,表现为落桦混交林(0.59) > 落叶松纯林(0.47) > 落樟混交林(0.39)。 结论 土壤肥力质量在不同混交方式下差异显著,塞罕坝机械林场落叶松白桦混交林有利于改善土壤肥力。利用指数法建立SQI进行土壤肥力质量评价,可为其他树种或其他地区的森林土壤质量评价提供借鉴。 Abstract:Objective In this study, soil quality index (SQI) was used to evaluate the effects of different mixed modes on soil fertility quality in Larix principis-rupprechtii forests, in order to provide theoretical basis for proper management and soil fertility recovery. Method The pure Larix principis-rupprechtii stands (LP), mixed Larix principis-rupprechtii and Betula platyphylla stands (BL), and mixed Larix principis-rupprechtii and Pinus sylvestris var. mongolica stands (ML) were selected as the research objects in Saihanba Mechanical Forest Farm of Hebei Province, northern China. The soils of 0−20 cm soil depths were collected and analyzed to investigate the soil physicochemical and biological properties. SQI was used to evaluate soil fertility quality. SQI was determined in three steps by selecting a minimum data set (MDS) through principal component analysis, scoring the MDS indicators using non-linear scoring functions, and integrating the indicator scores into a SQI using the weighted additive equation. Result There were different degrees of differences in soil physicochemical and biological properties among different mixed modes. Compared with LP, the soil physicochemical and biological properties of BL were significantly improved. The soil physicochemical conditions in ML were worse than those in LP. And there were no obvious differences in soil biological properties in ML and LP. The MDS consisted of soil microbial biomass nitrogen, total phosphorus, and ammonia nitrogen among 17 soil fertility quality indicators. There were significant differences in the SQI among three mixed modes, which were showed as: BL (0.59) > LP (0.47) > ML (0.39). Conclusion The soil fertility quality differed significantly among varied mixed modes. The mixed Larix principis-rupprechtii and Betula platyphylla stands in Saihanba Mechanical Forest Farm can improve soil fertility. Soil fertility quality evaluation based on SQI by indexing approach can provide the basis for evaluating forest soil quality of other species and regions. -
Key words:
- Larix principis-rupprechtii /
- mixed forests /
- soil quality index /
- evaluation
-
图 1 最小数据集指标(MDS)的得分值
不同小写字母表示不同混交方式间差异显著(P < 0.05),LP. 落叶松纯林;BL. 落桦混交林;ML. 落樟混交林。下同。Different lowercase letters indicate significant differences among varied mixed modes at P < 0.05 level. LP, pure Larix principis-rupprechtii forest; BL, mixed Larix principis-rupprechtii and Betula platyphylla forest; ML, mixed Larix principis-rupprechtii and Pinus sylvestris var. mongolica forest. The same below.
Figure 1. Scores of minimum data set indicators
表 1 样地基本特征
Table 1. Basic information for the sample plots
混交方式
Mixing mode坡度
Slope
degree/(°)坡向
Slope aspect海拔
Elevation/m株数密度/(株·hm−2)
Plant density/
(tree·ha−1)郁闭度
Canopy
density平均胸径
Average
DBH/cm平均树高
Average tree
height/m落叶松纯林
Pure Larix principis-rupprechtii forest9 西北,西,西南
Northwest, west, southwest1 598 1 195 0.77 20.28 15.88 落桦混交林
Mixed Larix principis-rupprechtii and
Betula platyphylla forest12 西北,西
Northwest, west1 588 1 289 0.73 18.20 14.90 落樟混交林
Mixed Larix principis-rupprechtii and
Pinus sylvestris var. mongolica forest11 西北,西南
Northwest, southwest1 589 1 328 0.83 19.08 15.32 表 2 落叶松纯林和混交林中土壤理化性质变化
Table 2. Changes of soil physicochemical properties in pure and mixed Larix principis-rupprechtii forests
指标
Indicator落叶松纯林
Pure Larix principis-
rupprechtii forest落桦混交林
Mixed Larix principis-rupprechtii
and Betula platyphylla stand落樟混交林
Mixed Larix principis-rupprechtii and
Pinus sylvestris var. mongolica forest质量含水率 Mass moisture content/% 16.06 ± 0.91ab 17.96 ± 0.93a 14.45 ± 0.56b pH 6.34 ± 0.05ab 6.24 ± 0.03b 6.39 ± 0.04a 有机碳 Organic C/(g·kg−1) 29.17 ± 1.27b 34.35 ± 1.84a 24.71 ± 1.35c 全氮 Total N/(g·kg−1) 1.97 ± 0.12b 2.77 ± 0.26a 1.56 ± 0.12b 全磷 Total P/(g·kg−1) 0.31 ± 0.01b 0.38 ± 0.01a 0.26 ± 0.01c 氨氮 Ammonia N/(mg·kg−1) 10.26 ± 1.09a 12.44 ± 1.11a 9.51 ± 0.90a 硝氮 Nitrate N/(mg·kg−1) 2.20 ± 0.25b 2.90 ± 0.27a 1.75 ± 0.17b 有效磷 Available P/(mg·kg−1) 2.91 ± 0.11ab 3.37 ± 0.21a 2.81 ± 0.20b 注:不同小写字母表示不同混交方式间差异显著(P < 0.05),数值为平均值 ± 标准误。下同。Notes: different lowercase letters mean significant differences among varied mixed modes at P<0.05 level. Values are mean ± standard error. The same below. 表 3 落叶松纯林和混交林中土壤生物性质变化
Table 3. Changes of soil biological properties in pure and mixed Larix principis-rupprechtii forests
指标
Indicator落叶松纯林
Pure Larix principis-
rupprechtii stand落桦混交林
Mixed Larix principis-rupprechtii
and Betula platyphylla forest落樟混交林
Mixed Larix principis-rupprechtii and
Pinus sylvestris var. mongolica forestPLFA总量 Total PLFAs/(nmol·g−1) 36.38 ± 1.38b 51.66 ± 3.34a 32.52 ± 1.67b 细菌 Bacteria/(nmol·g−1) 20.32 ± 0.78b 30.00 ± 2.05a 18.00 ± 0.98b 真菌 Fungi/(nmol·g−1) 3.64 ± 0.11b 4.92 ± 0.30a 3.41 ± 0.16b 放线菌 Actinomycete/(nmol·g−1) 3.79 ± 0.19b 5.67 ± 0.49a 3.31 ± 0.18b 微生物生物量碳 Microbial biomass C/(mg·kg−1) 334.55 ± 12.77ab 372.28 ± 16.46a 316.13 ± 9.98b 微生物生物量氮 Microbial biomass N/(mg·kg−1) 42.63 ± 2.24b 52.92 ± 3.18a 38.31 ± 2.16b 蔗糖酶 Invertase/(mg·g−1.h−1) 49.01 ± 2.20ab 56.66 ± 3.66a 44.62 ± 3.87b 脲酶 Urease/(mg·g−1.h−1) 0.23 ± 0.01b 0.36 ± 0.03a 0.21 ± 0.01b 酸性磷酸酶 Acid phosphatase/(nmol·g−1.h−1) 774.82 ± 76.25b 1 064.93 ± 105.86a 721.65 ± 56.77b 表 4 主成分因子旋转载荷矩阵、特征值与方差贡献率
Table 4. Rotated factor loading matrix, eigenvalue and variance explained of principal component analysis
指标 Indicator 主成分 Principal component 1 2 3 质量含水率 Mass moisture content 0.794 0.368 −0.011 pH −0.087 −0.234 −0.946 有机碳 Organic C 0.785 0.446 0.337 全氮 Total N 0.800 0.493 0.275 全磷 Total P 0.067 0.895 0.171 氨氮 Ammonia N 0.813 −0.021 0.463 硝氮 Nitrate N 0.888 0.292 −0.094 有效磷 Available P 0.813 0.285 0.246 PLFA总量 Total PLFAs 0.739 0.588 0.244 细菌 Bacteria 0.726 0.601 0.253 真菌 Fungi 0.617 0.682 0.135 放线菌 Actinomycete 0.736 0.561 0.194 微生物生物量碳 Microbial biomass C 0.909 0.349 −0.057 微生物生物量氮 Microbial biomass N 0.875 0.433 0.08 蔗糖酶 Invertase 0.927 0.158 0.118 脲酶 Urease 0.545 0.749 0.075 酸性磷酸酶 Acid phosphatase 0.875 0.301 0.265 特征值 Eigenvalue 9.524 4.075 1.676 方差贡献率 Variance contribution rate/% 56.025 23.973 9.860 累积方差贡献率 Cumulative variance contribution rate/% 56.025 79.998 89.858 注:粗体的因子载荷表示高因子载荷,粗体并加下划线的因子载荷对应入选最小数据集的指标。Notes: boldface factor loadings are considered highly weighted. Boldface and underlined loading values correspond to the indicators included in the MDS. 表 5 高因子载荷指标间的相关性
Table 5. Correlation coefficients for highly weighed variables
土壤指标
Soil indicator硝氮
Nitrate N微生物生物量碳
Microbial biomass C微生物生物量氮
Microbial biomass N蔗糖酶
Invertase酸性磷酸酶
Acid phosphatase硝氮 Nitrate N 1.000 0.909 0.912 0.886 0.820 微生物生物量碳 Microbial biomass C 0.909 1.000 0.947 0.894 0.900 微生物生物量氮 Microbial biomass N 0.912 0.947 1.000 0.880 0.930 蔗糖酶 Invertase 0.886 0.894 0.880 1.000 0.854 酸性磷酸酶 Acid phosphatase 0.820 0.900 0.930 0.854 1.000 -
[1] 国家林业和草原局. 中国森林资源报告[M]. 北京: 中国林业出版社, 2019.National Forestry and Grassland Administration. Chinese forest resources report[M]. Beijing: China Forestry Publishing House, 2019. [2] 陈立新, 陈祥伟, 段文标. 落叶松人工林凋落物与土壤肥力变化的研究[J]. 应用生态学报, 1998, 9(6):581−586.Chen L X, Chen X W, Duan W B. Larch litter and soil fertility[J]. Chinese Journal of Applied Ecology, 1998, 9(6): 581−586. [3] Bone J, Barraclough D, Eggleton P, et al. Prioritising soil quality assessment through the screening of sites: the use of publicly collected data[J]. Land Degrad Develop, 2014, 25(3): 251−266. doi: 10.1002/ldr.2138 [4] 闫德仁, 刘永军, 张幼军. 落叶松人工林土壤养分动态[J]. 东北林业大学学报, 2003, 31(3):16−18.Yan D R, Liu Y J, Zhang Y J. Dynamic of soil nutrients under larch plantation[J]. Journal of Northeast Forestry University, 2003, 31(3): 16−18. [5] 程旭, 吴彦强, 刘广营, 等. 迹地更新营造白桦、落叶松混交林试验[J]. 河北林业科技, 2005(2):12−22.Cheng X, Wu Y Q, Liu G Y, et al. Experiment on renewal of site to build mixed birch and larch forest[J]. The Journal of Hebei Forestry Science and Technology, 2005(2): 12−22. [6] 刘世荣, 李春阳. 落叶松人工林养分循环过程与潜在地力衰退趋势的研究[J]. 东北林业大学学报, 1993, 21(2):19−24.Liu S R, Li C Y. Nutrient cycling and stability of soil fertility in larch plantation in the eastern part of northern China[J]. Journal of Northeast Forestry University, 1993, 21(2): 19−24. [7] 范辉华. 杉木、拟赤杨混交对杉木持续生长的影响[J]. 林业科学研究, 2001, 14(4):455−458. doi: 10.3321/j.issn:1001-1498.2001.04.018Fan H H. Influence of miture with Alniphyllum fortunei on sustainable growth of Chinese fir[J]. Forest Research, 2001, 14(4): 455−458. doi: 10.3321/j.issn:1001-1498.2001.04.018 [8] Nakajima T, Lal R, Jiang S. Soil quality index of a crosby silt loam in central Ohio[J]. Soil and Tillage Research, 2015, 146(part B): 323−328. [9] Qiu X C, Peng D L, Wang H B, et al. Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China[J/OL]. Ecological Indicators, 2019, 103: 236−247 [2021−01−02]. https://doi.org/10.1016/j.ecolind.2019.04.010. [10] 骆东奇, 白洁, 谢德体. 论土壤肥力评价指标和方法[J]. 土壤与环境, 2002, 11(2):202−205.Luo D Q, Bai J, Xie D T. Research on evaluation norm and method of soil fertility[J]. Soil and Environmental Sciences, 2002, 11(2): 202−205. [11] Raiesi F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions[J/OL]. Ecological Indicators, 2017, 75: 307−320 [2020−12−29]. http://dx.doi.org/10.1016/j.ecolind.2016.12.049. [12] Guo L L, Sun Z G, Zhu O Y, et al. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River[J/OL]. Catena, 2017, 152: 135−143 [2020−12−20]. http://dx.doi.org/10.1016/j.catena.2017.01.015. [13] Dose H L, Fortuna A, Cihacek L J, et al. Biological indicators provide short term soil health assessment during sodic soil reclamation[J/OL]. Ecological Indicators, 2015, 58: 244−253 [2020−12−01]. http://dx.doi.org/10.1016/j.ecolind.2015.05.059. [14] 覃其云, 曹继钊, 李军, 等. 马尾松人工幼林土壤肥力变化及其综合评价研究[J]. 中南林业科技大学学报, 2013, 33(3):64−69.Qin Q Y, Cao J Z, Li J, et al. Comprehensive evaluation on soil fertility variations in Pinus massoniana young plantation[J]. Journal of Central South University of Forestry & Technology, 2013, 33(3): 64−69. [15] 孙宇, 李际平, 曹小玉, 等. 不同龄组杉木生态公益林土壤肥力综合评价[J]. 林业资源管理, 2019(1):57−62.Sun Y, Li J P, Cao X Y, et al. Comprehensive evaluation of soil fertility of Cunninghamia lanceolata ecological public welfare forests in different age groups[J]. Forest Resources Management, 2019(1): 57−62. [16] 杨晓娟, 王海燕, 刘玲, 等. 东北过伐林区不同林分类型土壤肥力质量评价研究[J]. 生态环境学报, 2012, 21(9):1553−1560.Yang X J, Wang H Y, Liu L, et al. Evaluation of soil fertility quality under different forest stands in over-logged forest region, northeast China[J]. Ecology and Environmental Sciences, 2012, 21(9): 1553−1560. [17] 岳西杰, 葛玺祖, 王旭东. 基于GIS的黄土丘陵沟壑区土壤质量评价研究:以陕西省长武县为例[J]. 干旱地区农业研究, 2011, 29(3):144−149.Yue X J, Ge X Z, Wang X D. GIS-based research on soil quality evaluation in the loess hilly gully region: a case study of Changwu County[J]. Agricultural Research in the Arid Areas, 2011, 29(3): 144−149. [18] Qi Y B, Darilek J L, Huang B, et al. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China[J]. Geoderma, 2009, 149(3−4): 325−334. doi: 10.1016/j.geoderma.2008.12.015 [19] Cheng J J, Ding C F, Li X G, et al. Soil quality evaluation for navel orange production systems in central subtropical China[J/OL]. Soil and Tillage Research, 2016, 155: 225−232 [2019−12−01]. https://doi.org/10.1016/j.still.2015.08.015. [20] 乔云发, 钟鑫, 苗淑杰, 等. 基于最小数据集的东北风沙土农田耕层土壤质量评价指标[J]. 水土保持研究, 2019, 26(4):132−138.Qiao Y F, Zhong X, Miao S J, et al. Evaluation indicators of soil quality in plough layer of aeolian sandy land in Northeast China based on minimum date set[J]. Research of Soil and Water Conservation, 2019, 26(4): 132−138. [21] 郭剑波, 赵国强, 贾书刚, 等. 施肥对高寒草原草地质量指数及土壤性质影响的综合评价[J]. 草业学报, 2020, 29(9):85−93.Guo J B, Zhao G Q, Jia S G, et al. Comprehensive evaluetion of effects of fertilization on grassland quality index and soil properties in alpine steppe[J]. Acta Prataculturae Sinica, 2020, 29(9): 85−93. [22] 李洁, 滑磊, 任启文, 等. 冀西北3种植被恢复类型土壤理化性质差异及肥力评价[J]. 生态环境学报, 2020, 29(8):1540−1546.Li J, Hua L, Ren Q W, et al. Physicochemical properties difference and fertility evaluation of soil within three types vegetation restoration in northwest Hebei[J]. Ecology and Environmental Sciences, 2020, 29(8): 1540−1546. [23] 郝宝宝, 艾宁, 刘广全, 等. 陕北风沙区不同植被类型土壤养分特征与肥力评价[J]. 福建农林大学学报(自然科学版), 2020, 49(5):678−682.Hao B B, Ai N, Liu G Q, et al. Soil nutrient characteristics and fertility evaluation of different vegetation types in aeolian sand region of northern Shaanxi[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(5): 678−682. [24] 张连金, 赖光辉, 孙长忠, 等. 北京九龙山不同林分土壤肥力诊断与综合评价[J]. 中南林业科技大学学报, 2017, 37(1):1−6.Zhang L J, Lai G H, Sun C Z, et al. Diagnosis and comprehensive evaluation on soil fertility of different stands in Beijing Jiulong Mountain[J]. Journal of Central South University of Forestry & Technology, 2017, 37(1): 1−6. [25] Imaz M J, Virto I, Bescansa P, et al. Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland[J]. Soil and Tillage Research, 2010, 107(1): 17−25. doi: 10.1016/j.still.2010.02.003 [26] 扈梦梅, 田龙, 吴亚楠, 等. 塞罕坝华北落叶松人工林间伐和混交改造对大型土壤动物群落结构的影响[J]. 林业科学, 2019, 55(11):153−162.Hu M M, Tian L, Wu Y N, et al. Influences of thinning and mixed transformation of Larix principis-rupprechtii plantations on the community structure of soil macro faunal in Saihanba Area[J]. Scientia Silvae Sinicae, 2019, 55(11): 153−162. [27] 李文博, 吕振刚, 黄选瑞, 等. 塞罕坝华北落叶松人工林生产力及其空间分布预测[J]. 自然资源学报, 2019, 34(7):1365−1375. doi: 10.31497/zrzyxb.20190702Li W B, Lü Z G, Huang X R, et al. Predicting productivity and spatial distribution of Larix principis-rupprechtii plantation[J]. Journal of Natural Resources, 2019, 34(7): 1365−1375. doi: 10.31497/zrzyxb.20190702 [28] 方文静, 蔡琼, 朱江玲, 等. 华北地区落叶松林的分布、群落结构和物种多样性[J]. 植物生态学报, 2019, 43(9):742−752. doi: 10.17521/cjpe.2018.0244Fang W J, Cai Q, Zhu J L, et al. Distribution, community structures and species diversity of larch forests in North China[J]. Chinese Journal of Plant Ecology, 2019, 43(9): 742−752. doi: 10.17521/cjpe.2018.0244 [29] 刘欣. 华北落叶松不同林型凋落物对土壤性质影响的研究[D]. 北京: 北京林业大学, 2019.Liu X. Study on the effects of different forest type litters about Larix principis-rupprechtii on the soil properties[D]. Beijing: Beijing Forestry University, 2019. [30] 刘欣, 彭道黎, 邱新彩. 华北落叶松不同林型土壤理化性质差异[J]. 应用与环境生物学报, 2018, 24(4):735−743.Liu X, Peng D L, Qiu X C. Differences in soil physicochemical properties between different forest types of Larix principis-rupprechtii[J]. Chinese Journal of Applied & Environmental Biology, 2018, 24(4): 735−743. [31] 张宇辰, 彭道黎. 间伐对塞罕坝华北落叶松人工林土壤活性有机碳的影响[J]. 应用与环境生物学报, 2020, 26(4):961−968.Zhang Y C, Peng D L. Effects of thinning on the soil active organic carbon of Larix principis-rupprechtii plantations in Saihanba[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(4): 961−968. [32] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000. [33] 吴然, 康峰峰, 韩海荣, 等. 山西太岳山不同林龄华北落叶松林土壤微生物特性[J]. 生态学杂志, 2016, 35(12):3183−3190.Wu R, Kang F F, Han H R, et al. Soil microbial properties in Larix principis-rupprechtii plantations of different ages in Mt. Taiyue, Shanxi, China[J]. Chinese Journal of Ecology, 2016, 35(12): 3183−3190. [34] 关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1983.Guan S Y. Soil enzyme and its research method[M]. Beijing: China Agricultural Press, 1983. [35] Li P, Zhang T, Wang X, et al. Development of biological soil quality indicator system for subtropical China[J/OL]. Soil & Tillage Research, 2013, 126: 112−118 [2020−12−12]. http://dx.doi.org/10.1016/j.still.2012.07.011. [36] Shao G D, Ai J J, Sun Q W, et al. Soil quality assessment under different forest types in the Mount Tai, central Eastern China[J/OL]. Ecological Indicators, 2020, 115: 106439 [2020−12−12]. https://doi.org/10.1016/j.ecolind.2020.106439. [37] Askari M S, Holden N M. Indices for quantitative evaluation of soil quality under grassland management[J/OL]. Geoderma, 2014, 230−231: 131−142 [2020−12−12]. https://doi.org/10.1016/j.geoderma.2014.04.019. [38] 秦娟, 唐心红, 杨雪梅. 马尾松不同林型对土壤理化性质的影响[J]. 生态环境学报, 2013, 22(4):598−604.Qin J, Tang X H, Yang X M. Effects of soil physical and chemical properties on different forest types of Pinus massoniana[J]. Ecology and Environmental Sciences, 2013, 22(4): 598−604. [39] 谷会岩, 金靖博, 陈祥伟, 等. 采伐干扰对大兴安岭北坡兴安落叶松林土壤化学性质的影响[J]. 土壤通报, 2009, 40(2):272−275.Gu H Y, Jin J B, Chen X W, et al. Effects of logging disturbance on soil chemical properties of Larix gmelini forests in the northern slope on Greater Hinggan Mountains[J]. Chinese Journal of Soil Science, 2009, 40(2): 272−275. [40] 丛高, 张志丹, 张晋京, 等. 长白山不同林型土壤有机碳特征[J]. 水土保持学报, 2019, 33(3):179−184.Cong G, Zhang Z D, Zhang J J, et al. Research on characteristics of soil organic carbon in different forest types in Changbai Mountain[J]. Journal of Soil and Water Consevation, 2019, 33(3): 179−184. [41] 牛庆花, 郭宇嘉, 任子蓓, 等. 坝上地区典型防护林土壤改良效益[J]. 东北林业大学学报, 2019, 47(9):63−70.Niu Q H, Guo Y J, Ren Z B, et al. Improvement benefits on soil of typical shelterbelt stands in Bashang Area[J]. Journal of Northeast Forestry University, 2019, 47(9): 63−70. [42] 陈立新, 陈祥伟, 史桂香, 等. 提高落叶松人工林林地质量的研究[J]. 东北林业大学学报, 1998, 26(3):6−11.Chen L X, Chen X W, Shi G X, et al. Study on improving the quality of forest land of larch plantations[J]. Journal of Northeast Forestry University, 1998, 26(3): 6−11. [43] 邹莉, 唐庆明, 王轶. 落叶松、樟子松纯林及混交林土壤微生物的群落分布特征[J]. 东北林业大学学报, 2010, 38(11):63−64.Zou L, Tang Q M, Wang Y. Ecological distribution of soil microorganism in pure and mixed forests of Pinus sylvestris var. mongolica and Larix gmelini[J]. Journal of Northeast Forestry University, 2010, 38(11): 63−64. [44] Zhang W, Xu Y D, Gao D X, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China[J/OL]. Soil Biology and Biochemistry, 2019, 134: 1−14 [2020−12−01]. https://doi.org/10.1016/j.soilbio.2019.03.017. [45] 林达, Dao Ngoc Chuong, 洪森先, 等. 间伐对杨树人工林土壤微生物量和氮含量的影响[J]. 森林与环境学报, 2016, 36(4):416−422.Lin D, Chuong D N, Hong S X, et al. Effects of thinning intensity and method on soil microbial biomass and nitrogen content in the poplar plantations[J]. Journal of Forest and Environment, 2016, 36(4): 416−422. [46] Lamb E G, Mengersen K L, Stewart K J, et al. Spatially explicit structural equation modeling[J]. Ecology, 2014, 95(9): 2434−2442. doi: 10.1890/13-1997.1 [47] Hu L, Ade L J, Wu X W, et al. Changes in soil C: N: P stoichiometry and microbial structure along soil depth in two forest soils[J]. Forests, 2019, 10(2): 113. doi: 10.3390/f10020113 [48] Sun J, Ma B B, Lu X Y. Grazing enhances soil nutrient effects: trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau[J]. Land Degrad Develop, 2018, 29(2): 337−348. doi: 10.1002/ldr.2822 [49] Jing X, Sanders N J, Shi Y, et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate[J/OL]. Nature Communications, 2015, 6: 8159 [2020−12−12]. DOI: 10.1038/ncomms9159. [50] Kline R. Principals and practice of structural equation modeling[M]. New York: Guilford Press, 1998. [51] 邓绍欢, 曾令涛, 关强, 等. 基于最小数据集的南方地区冷浸田土壤质量评价[J]. 土壤学报, 2016, 53(5):1326−1333.Deng S H, Zeng L T, Guan Q, et al. Minimum dataset-based soil quality assessment of waterlogged paddy field in South China[J]. Acta Pedologica Sinica, 2016, 53(5): 1326−1333. [52] Nabiollahi K, Golmohamadi F, Taghizadeh-Mehrjardi R, et al. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate[J/OL]. Geoderma, 2018, 318: 16−28 [2021−01−28]. https://doi.org/10.1016/j.geoderma.2017.12.024. [53] 邵森. 山西太岳山针叶林土壤肥力随林龄和营林措施变化特征的研究[D]. 北京: 北京林业大学, 2018.Shao S. The study on the changes of soil quality in coniferous forest with age and silvicultural measures of Shanxi Taiyue Mountain[D]. Beijing: Beijing Forestry University, 2018. [54] 边丽宁. 华北落叶松纯林与混交林生长、林下植被和枯落物差异分析[D]. 保定: 河北农业大学, 2018.Bian L N. Difference of growth, understory vegetation and litter in pure and mixed forests of Larix principis-rupprechti[D]. Baoding: Hebei Agricultural University, 2018. [55] 谢博. 针阔混交林中针叶树种枯落物分解所受的化感影响[D]. 杨凌: 西北农林科技大学, 2017.Xie B. Allelopathic effects of broad-leaf litter on coniferous litter decomposition in coniferous and broadleaved mixed forest[D]. Yangling: Northwest A & F University, 2017. [56] 刘增文, 杜良贞, 张晓曦, 等. 黄土高原不同树种枯落叶混合分解效应[J]. 生态学报, 2012, 32(8):2596−2602. doi: 10.5846/stxb201103110298Liu Z W, Du L Z, Zhang X X, et al. Effects of mix-leaf litter decomposition of different trees in the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32(8): 2596−2602. doi: 10.5846/stxb201103110298 -