高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同叶片质地行道树枝叶功能性状对冠下硬化地表覆盖的响应

岳阳 韦柳端 徐程扬 张海燕

岳阳, 韦柳端, 徐程扬, 张海燕. 不同叶片质地行道树枝叶功能性状对冠下硬化地表覆盖的响应[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210262
引用本文: 岳阳, 韦柳端, 徐程扬, 张海燕. 不同叶片质地行道树枝叶功能性状对冠下硬化地表覆盖的响应[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210262
Yue Yang, Wei Liuduan, Xu Chengyang, Zhang Haiyan. Response of functional characters of street trees with different leaf textures to impervious land coverage under canopy[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210262
Citation: Yue Yang, Wei Liuduan, Xu Chengyang, Zhang Haiyan. Response of functional characters of street trees with different leaf textures to impervious land coverage under canopy[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210262

不同叶片质地行道树枝叶功能性状对冠下硬化地表覆盖的响应

doi: 10.12171/j.1000-1522.20210262
基金项目: 朝阳区平原生态林定向抚育关键技术集成与示范(CYSF-1904)
详细信息
    作者简介:

    岳阳。主要研究方向:城市树木与环境。Email:yue-yang@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学

    责任作者:

    徐程扬,教授,博士生导师。主要研究方向:城市树木与环境、城市森林构建与经营等。Email:cyxu@bjfu.edu.cn 地址:同上

  • 中图分类号: S732

Response of functional characters of street trees with different leaf textures to impervious land coverage under canopy

  • 摘要:   目的  通过比较枝叶功能性状变化规律及其协同与权衡关系,研究不同叶片质地树种对硬化地表环境的响应,并分析各类树种的资源利用与分配策略。  方法  以济南市常见绿化树种国槐、悬铃木、大叶女贞分别代表纸质叶、蜡质叶、革质叶树种,以20%等值设置5个硬化地面覆盖度梯度环境,采取典型抽样方式获取枝叶功能性状样品。  结果  (1)不同叶片质地树种的枝叶性状对冠下硬化地表覆盖响应的敏感性不同,小枝功能性状对冠下硬化地表覆盖响应的敏感度随着叶片表面的蜡质层厚度增加而显著降低,悬铃木的叶功能性状对冠下硬化地表覆盖面积的变化更加敏感,而表征枝叶关系的性状(出叶强度和枝叶质量比)均对冠下硬化地表覆盖环境的响应较敏感。(2)光合产物的分配随着硬化地表覆盖程度的提高而减少,树木的枝叶生长量、叶片着生空间、叶片面积随硬化地表覆盖度增加显著降低。随着硬化地表覆盖程度升高,3个树种均采取减小叶片面积、维持叶片数量的方式适应环境。(3)异速生长关系表明:在硬化地表覆盖的胁迫条件下,树木对叶片的资源投入要高于小枝。在小枝内部中,小枝加粗生长的资源投入要多于伸长生长。叶片内部资源的利用方式随叶片质地变化而变化:纸质叶片树种倾向于将资源更多地分配到叶片资源获取的组织建成上,革质叶片树种则倾向于将资源更多地分配到叶片防御机制的建成上。  结论  硬化地表覆盖环境会显著影响树木的枝叶生长情况。不同叶片质地树种的叶片应对硬化地表环境所采取的适应策略有所区别,纸质叶片树种倾向于采取“低消耗−快收益”的适应策略,而革质叶片树种倾向于采取“高消耗−慢收益”的适应策略,蜡质叶片树种的适应策略介于二者之间。

     

  • 图  1  3种树木枝叶功能性状在不同硬化地表覆盖环境下的差异

    不同小写字母表示在P < 0.05水平上有显著差异。纵坐标数值是对原数据进行标准化后的数据。Different lowercase letters indicate significant differences at P < 0.05 level. The ordinate values are the data after standardizing the original data.

    Figure  1.  Differences in twig and leaf functional traits among three tree species under different impervious land coverage conditions

    表  1  研究树木的生长情况

    Table  1.   Tree growth conditions of researched trees

    树种
    Tree species
    株数
    Plant number

    DBH/cm
    树高
    Tree height/m
    冠幅 Crown width/m
    南北 South-north东西 East-west
    国槐 Sophora japonica 232 25.94 ± 4.52 9.30 ± 1.97 6.89 ± 1.89 6.83 ± 1.54
    悬铃木 Platanus acerifolia 340 27.30 ± 7.01 11.25 ± 1.93 7.02 ± 1.96 6.58 ± 1.52
    大叶女贞 Ligustrum lucidum 243 11.59 ± 3.27 4.81 ± 0.76 3.17 ± 1.10 3.17 ± 1.23
    下载: 导出CSV

    表  2  各树种枝叶性状的相关系数

    Table  2.   Correlation coefficients between leaf and twig traits of different tree species

    树种
    Tree species
    TDTLTDMCTLMRLTLILASLA
    国槐
    Sophora japonica
    TL 0.876** 1.000
    TDMC 0.026 0.048 1.000
    TLMR 0.505** 0.552** −0.003 1.000
    LT 0.283** 0.294** 0.169* 0.227 1.000
    LI −0.654** −0.667** 0.008 −0.692** −0.323** 1.000
    LA 0.497** 0.433** 0.056 0.099 0.080 −0.380** 1.000
    SLA −0.279** −0.259** −0.047 0.016 −0.347** 0.375** 0.205** 1.000
    LDMC 0.049 0.040 0.130 −0.155* 0.159* −0.040 −0.024 −0.388**
    悬铃木
    Platanus acerifolia
    TL 0.722** 1.000
    TDMC −0.212** −0.438** 1.000
    TLMR −0.100 −0.053 0.008 1.000
    LT −0.030 0.058 −0.140* 0.141* 1.000
    LI −0.567** −0.653** 0.206** 0.044 −0.046 1.000
    LA 0.626** 0.642** −0.281** 0.030 0.019 −0.580** 1.000
    SLA 0.127* 0.172** 0.022 0.107 −0.044 −0.112* 0.268** 1.000
    LDMC 0.062 0.006 0.074 −0.156** −0.247** −0.126* 0.083 −0.108
    大叶女贞
    Ligustrum lucidum
    TL 0.841** 1.000
    TDMC −0.247** −0.282** 1.000
    TLMR 0.488** 0.584** −0.182** 1.000
    LT −0.117 −0.296** 0.212** −0.191** 1.000
    LI −0.613** −0.571** 0.061 −0.588** 0.048 1.000
    LA 0.349** 0.313** −0.091 −0.108 −0.156* −0.270** 1.000
    SLA 0.170** 0.336** −0.157* 0.389** −0.391** 0.047 0.375** 1.000
    LDMC −0.143* −0.234** 0.255** −0.139* 0.219** −0.060 −0.108 −0.350**
    注:TD. 小枝基径;TL. 小枝长度;TDMC. 小枝干物质含量;TLMR. 枝叶质量比;LT. 单叶厚度;LI. 出叶强度;LA. 单叶面积;SLA. 比叶面积;LDMC. 叶干物质含量。**表示在P < 0.01 水平上有显著性差异,*表示在P < 0.05水平上有显著差异。下同。Notes: TD, twig diameter; TL, twig length; TDMC, twig dry mass content; TLMR, twig leaf mass ratio; LT, leaf thickness; LI, leafing intensity; LA, leaf area; SLA, specific leaf area; LDMC, leaf dry mass content. ** means extremely significant difference at P < 0.01 level,* means extremely significant difference at P < 0.05 level. The same below.
    下载: 导出CSV

    表  3  枝叶功能性状的标准化主轴估计

    Table  3.   Summary of standardized major axis estimation regression parameters for the twig and leaf functional traits

    指标
    Index
    树种
    Tree species
    R2P
    P value
    斜率
    Slope
    95%置信区间
    95% confidence interval
    截距
    Intercept
    TDW-LDW 国槐 Sophora japonica 0.721 < 0.001 1.51* (1.40,1.62) −0.06
    悬铃木 Platanus acerifolia 0.648 < 0.001 1.79* (1.67,1.91) −0.09
    大叶女贞 Ligustrum lucidum 0.656 < 0.001 1.41* (1.30,1.52) −0.06
    TL-LI 国槐 Sophora japonica 0.512 < 0.001 −0.82* (–0.91,–0.75) −0.140
    悬铃木 Platanus acerifolia 0.743 < 0.001 −1.03 (–1.09,–0.97) −0.330
    大叶女贞 Ligustrum lucidum 0.227 < 0.001 −1.40* (–1.56,–1.25) −0.206
    TL-TD 国槐 Sophora japonica 0.746 < 0.001 1.89* (1.76,2.02) −0.03
    悬铃木 Platanus acerifolia 0.393 < 0.001 4.15* (3.81,4.52) −0.09
    大叶女贞 Ligustrum lucidum 0.683 < 0.001 2.85* (2.65,3.06) −0.07
    LI-LA 国槐 Sophora japonica 0.163 < 0.001 −2.05* (–2.33,–1.81) −0.14
    悬铃木 Platanus acerifolia 0.544 < 0.001 −2.12* (–2.29,–1.97) −0.27
    大叶女贞 Ligustrum lucidum 0.049 < 0.05 −1.42* (–1.61,–1.26) −0.11
    LT-SLA 国槐 Sophora japonica 0.142 < 0.001 −0.55* (–0.63,–0.49) −0.021
    悬铃木 Platanus acerifolia 0.327 < 0.001 −0.63* (–0.70,–0.56) −0.044
    大叶女贞 Ligustrum lucidum 0.131 < 0.001 −0.73* (–0.82,–0.65) −0.043
    LDMC-SLA 国槐 Sophora japonica 0.516 0.002 −1.60* (–1.84,–1.40) −0.100
    悬铃木 Platanus acerifolia 0.237 < 0.001 1.68* (1.53,1.85) −0.041
    大叶女贞 Ligustrum lucidum 0.108 < 0.001 1.44* (1.28,1.63) −0.029
    LDMC-LT 国槐 Sophora japonica 0.041 0.003 2.90* (2.54,3.31) −0.039
    悬铃木 Platanus acerifolia 0.316
    大叶女贞 Ligustrum lucidum 0.069 < 0.001 −1.98* (–2.25,–1.75) −0.115
    下载: 导出CSV
  • [1] 王美娇, 周丽, 周青, 等. 地表硬化的植物学效应及机理研究进展[J]. 土壤通报, 2019, 50(1): 226−232.

    Wang M J, Zhou L, Zhou Q, et al. Advances in botanic effects and mechanisms of impervious surface[J]. Chinese Journal of Soil Science, 2019, 50(1): 226−232.
    [2] 朱济友, 于强, 刘亚培, 等. 植物功能性状及其叶经济谱对城市热环境的响应[J]. 北京林业大学学报, 2018, 40(9): 72−81.

    Zhu J Y, Yu Q, Liu Y P, et al. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72−81.
    [3] Hanley P A, Arndt S K, Livesley S J, et al. Relating the climate envelopes of urban tree species to their drought and thermal tolerance[J/OL]. Science of the Total Environment, 2020, 753: 142012[2021−06−01]. https://doi.org/10.1016/j.scitotenv.2020.142012.
    [4] Jim C Y. Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth[J]. Urban Ecosystems, 1998, 2(2): 171−181.
    [5] Calfapietra C, Peuelas J, Niinemets L. Urban plant physiology: adaptation-mitigation strategies under permanent stress[J]. Trends in Plant Science, 2015, 20(2): 72−75. doi: 10.1016/j.tplants.2014.11.001
    [6] Esperón-Rodríguez M, Rymer P D, Power S A, et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient[J/OL]. Urban Forestry & Urban Greening, 2020, 54: 126771[2021−06−02]. https://doi.org/10.1016/j.ufug.2020.126771.
    [7] Zhu J, Zhu H, Cao Y, et al. Effect of simulated warming on leaf functional traits of urban greening plants[J/OL]. BMC Plant Biology, 2020, 20(1): 139[2021−06−01]. https://doi.org/10.1186/s12870-020-02359-7.
    [8] Williams N, Hahs A K, Vesk P A. Urbanisation, plant traits and the composition of urban floras[J]. Perspectives in Plant Ecology Evolution & Systematics, 2015, 17(1): 78−86.
    [9] Mullaney J, Lucke T, Trueman S J. The effect of permeable pavements with an underlying base layer on the growth and nutrient status of urban trees[J]. Urban Forestry & Urban Greening, 2015, 14(1): 19−29.
    [10] 朱济友, 于强, 徐程扬, 等. 植物功能性状及其叶经济谱对硬化地表的响应[J]. 农业机械学报, 2019, 50(3): 204−211. doi: 10.6041/j.issn.1000-1298.2019.03.022

    Zhu J Y, Yu Q, Xu C Y, et al. Response of plant function spectrum to urban pavement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 204−211. doi: 10.6041/j.issn.1000-1298.2019.03.022
    [11] 陈媛媛, 江波, 王效科, 等. 北京典型绿化树种幼苗光合特性对硬化地表的响应[J]. 生态学报, 2017, 37(11): 3673−3682.

    Chen Y Y, Jiang B, Wang X K, et al. Effect of pavement on the leaf photosynthetic characteristics of saplings of three common tree species (Pinus tabulaeformis,Fraxinus chinensis, and Acer truncatum) in Beijing[J]. Acta Ecologica Sinica, 2017, 37(11): 3673−3682.
    [12] 于伟伟, 陈媛媛, 杨宁, 等. 硬化地表对油松和白蜡树下非根围及根围土壤微生物量碳氮的影响[J]. 生态学报, 2020, 40(4): 1376−1382.

    Yu W W, Chen Y Y, Yang N, et al. Effects of pavements on soil microbial biomass carbon and nitrogen in non-rhizosphere and rhizosphere of Pinus tabuliformis and Fraxinus chinensis[J]. Acta Ecological Sinica, 2020, 40(4): 1376−1382.
    [13] 于伟伟, 陈媛媛, 汪旭明, 等. 硬化地表对不同树种土壤微生物群落结构和功能的影响[J]. 生态学报, 2019, 39(10): 3575−3585.

    Yu W W, Chen Y Y, Wang X M, et al. Effects of land pavement on the structure and function of soil microbial community under different tree species[J]. Acta Ecologica Sinica, 2019, 39(10): 3575−3585.
    [14] Fajardo A, Siefert A. Phenological variation of leaf functional traits within species[J]. Oecologia, 2016, 180(4): 951−959. doi: 10.1007/s00442-016-3545-1
    [15] Laughlin C L, Lusk C H , Bellingham P J, et al. Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum[J]. Ecology and Evolution, 2017, 7: 8936−8949. doi: 10.1002/ece3.3447
    [16] Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33(1): 125−159. doi: 10.1146/annurev.ecolsys.33.010802.150452
    [17] 杨建军, 苏文华, 王玲玲, 等. 高山栲叶性状种内变异及其与环境因子的关系[J]. 广东农业科学, 2015, 42(12): 152−158. doi: 10.3969/j.issn.1004-874X.2015.12.030

    Yang J J, Su W H, Wang L L, et al. Intraspecific variations of Castanopsis delavayi leaf traits and their relationship with environmental factors[J]. Guangdong Agricultural Sciences, 2015, 42(12): 152−158. doi: 10.3969/j.issn.1004-874X.2015.12.030
    [18] 杨冬梅, 章佳佳, 周丹, 等. 木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志, 2012, 31(3): 702−713.

    Yang D M, Zhang J J, Zhou D, et al. Leaf and twig functional traits of woody plants and their relationships with environmental change: a review[J]. Chinese Journal of Ecology, 2012, 31(3): 702−713.
    [19] Wright I J, Falster D S. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics[J]. Physiologia Plantarum, 2006, 127: 445−456. doi: 10.1111/j.1399-3054.2006.00699.x
    [20] Westoby M, Wright I J. The leaf size - twig size spectrum and its relationship to other important spectra of variation among species[J]. Oecologia, 2003, 135(4): 621−628. doi: 10.1007/s00442-003-1231-6
    [21] Sun S C, Jin D M, Shi P L. The leaf size–twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship[J]. Annals of Botany, 2006, 97(1): 97−107. doi: 10.1093/aob/mcj004
    [22] 郭庆学, 柴捷, 钱凤, 等. 不同木本植物功能型当年生小枝功能性状差异[J]. 生态学杂志, 2013, 32(6): 1465−1470.

    Guo Q X, Chai J, Qian F, et al. Leaf and stem traits of current-year twigs vary with different functional types of woody plant[J]. Chinese Journal of Ecology, 2013, 32(6): 1465−1470.
    [23] Corner E J H. The durian theory or the origin of the modern tree[J]. Annals of Botany, 1949, 13(4): 367−414. doi: 10.1093/oxfordjournals.aob.a083225
    [24] 钟巧连, 刘立斌, 许鑫, 等. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报, 2018, 42(5): 562−572. doi: 10.17521/cjpe.2017.0270

    Zhong Q L, Liu L B, Xu X, et al. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China[J]. Chinese Journal of Plant Ecology, 2018, 42(5): 562−572. doi: 10.17521/cjpe.2017.0270
    [25] 龙嘉翼, 赵宇萌, 孔祥琦, 等. 观赏灌木小枝和叶性状在林下庇荫环境中的权衡关系[J]. 生态学报, 2018, 38(22): 8022−8030.

    Long J Y, Zhao Y M, Kong X Q, et al. Trade-offs between twig and leaf traits of ornamental shrubs grown in shade[J]. Acta Ecologica Sinica, 2018, 38(22): 8022−8030.
    [26] Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x
    [27] 史青茹, 许洺山, 赵延涛, 等. 浙江天童木本植物Corner法则的检验: 微地形的影响[J]. 植物生态学报, 2014, 38(7): 665−674.

    Shi Q R, Xu M S, Zhao Y T, et al. Testing of corner’s rules across woody plants in Tiantong Region, Zhejiang Province: effects of micro-topography[J]. Chinese Journal of Plant Ecology, 2014, 38(7): 665−674.
    [28] 李亚男, 杨冬梅, 孙书存, 等. 杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响: 异速生长分析[J]. 植物生态学报, 2008, 32(5): 1175−1183. doi: 10.3773/j.issn.1005-264x.2008.05.022

    Li Y N, Yang D M, Sun S C, et al. Effects of twig size on biomass allocation within twigs and on lamina area supporting efficiency in Rhododendron: allometric scaling analyses[J]. Chinese Journal of Plant Ecology, 2008, 32(5): 1175−1183. doi: 10.3773/j.issn.1005-264x.2008.05.022
    [29] Normand F, Bissery C, Damour G, et al. Hydraulic and mechanical stem properties affect leaf-stem allometry in mango cultivars[J]. New Phytologist, 2008, 178(3): 590−602. doi: 10.1111/j.1469-8137.2008.02380.x
    [30] 杨冬梅, 毛林灿, 彭国全. 常绿和落叶阔叶木本植物小枝内生物量分配关系研究: 异速生长分析[J]. 植物研究, 2011, 31(4): 472−477. doi: 10.7525/j.issn.1673-5102.2011.04.015

    Yang D M, Mao L C, Peng G Q. Within-twig biomass allocation in evergreen and deciduous broad-leave species: allometric scaling analyses[J]. Bulletin of Botanical Research, 2011, 31(4): 472−477. doi: 10.7525/j.issn.1673-5102.2011.04.015
    [31] 张志翔. 树木学[M]. 北京: 中国林业出版社, 2008.

    Zhang Z X. Dendrology [M]. Beijing: China Forestry Publishing House, 2008.
    [32] 中华人民共和国交通运输部. 公路沥青路面设计规范(JTG D50—2017) [S]. 北京: 人民交通出版社, 2017.

    Ministry of Transport of the People’s Republic of China. Specifications for design of highway asphalt pavement: JTG D50−2017 [S]. Beijing: China Communications Press, 2017.
    [33] 徐程扬. 紫椴幼苗, 幼树对光的响应与适应研究[D]. 北京: 北京林业大学, 1999.

    Xu C Y. Responses and adaptations of Tilia amurensis seedlings and saplings to light regimes [D]. Beijing: Beijing Forestry University, 1999.
    [34] Warton D I, Wright I J, Falster D S, et al. Bivariate line-fitting methods for allometry[J]. Biological Reviews, 2006, 81(2): 259. doi: 10.1017/S1464793106007007
    [35] 赵园园, 陈洪醒, 陈红, 等. 重庆市6种常见园林植物功能性状对城乡生境梯度的响应[J]. 生态学杂志, 2019, 8(8): 2346−2353.

    Zhao Y Y, Chen H X, Chen H, et al. Changes of functional traits of six common garden plant species across an urban-rural gradient of Chongqing[J]. Chinese Journal of Ecology, 2019, 8(8): 2346−2353.
    [36] 巨鑫慧, 高肖, 李伟峰, 等. 京津冀城市群土地利用变化对地表径流的影响[J]. 生态学报, 2020, 40(4): 1413−1423.

    Ju X H, Gao X, Li W F, et al. Effects of land use changes on surface runoff in Beijing-Tianjin-Hebei urban agglomeration[J]. Acta Ecologica Sinica, 2020, 40(4): 1413−1423.
    [37] 孔正红, 李树人, 李有福, 等. 不同硬化地面类型对城市悬铃木物质循环的影响[J]. 河南农业大学学报, 1998, 32(4): 13−18.

    Kong Z H, Li S R, Li Y F, et al. Effects of different hardened grounds on the material recycling of Platanus acerifolia (Ait) wild[J]. Acta Agricultural Universitatis Henanensis, 1998, 32(4): 13−18.
    [38] 徐振东. 城市热岛效应成因的研究与分析[D]. 大连: 大连理工大学, 2003.

    Xu Z D. Study and analysis of the causes of urban heat island effect [D]. Dalian: Dalian University of Technology, 2003.
    [39] Asaeda T, Ca V T, Wake A. Heat storage of pavement and its effect on the lower atmosphere[J]. Atmospheric Environment, 1996, 30(3): 413−427. doi: 10.1016/1352-2310(94)00140-5
    [40] Montague T, Kjelgren R. Energy balance of six common landscape surfaces and the influence of surface properties on gas exchange of four containerized tree species[J]. Scientia Horticulturae, 2004, 100(1−4): 229−249. doi: 10.1016/j.scienta.2003.08.010
    [41] Schoettle A W. The interaction between leaf longevity and shoot growth and foliar biomass per shoot in Pinus contorta at two elevations[J]. Tree Physiology, 1990, 7: 209−214. doi: 10.1093/treephys/7.1-2-3-4.209
    [42] 宋金艳, 刘东焕, 赵世伟, 等. 高温伤害光合机构原初位点的研究进展[J]. 生命科学, 2008, 21(2): 263−267. doi: 10.3969/j.issn.1004-0374.2008.02.020

    Song J Y, Liu D H, Zhao S W, et al. Advances in studies on primary site of photosynthetic apparatus injured by high temperature[J]. Chinese Bulletin of Life Sciences, 2008, 21(2): 263−267. doi: 10.3969/j.issn.1004-0374.2008.02.020
    [43] Peppe D J, Royer D L, Cariglino B, et al. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications[J]. The New phytologist, 2011, 190(3): 724−739. doi: 10.1111/j.1469-8137.2010.03615.x
    [44] 占红. 城市不透水面的扩张对地表径流量的影响[D]. 哈尔滨: 哈尔滨师范大学, 2016.

    Zhan H. The expansion of impervious surface on runoff [D]. Harbin: Harbin Normal University, 2016.
    [45] Wang R, Huang W, Chen L, et al. Anatomical and physiological plasticity in Leymus chinensis (Poaceae) along large-scale longitudinal gradient in Northeast China[J/OL]. PLoS One, 2011, 6(11): e26209[2021−06−01]. https://doi.org/10.1371/journal.pone.0026209.
    [46] Craine J M, Froehle J, Tilman D G, et al. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients[J]. Oikos, 2001, 93(2): 274−285. doi: 10.1034/j.1600-0706.2001.930210.x
    [47] 任悦. 不同水分梯度下垂柳枝叶性状及其与光合特性的关系[D]. 兰州: 西北师范大学, 2019.

    Ren Y. The relationship between leaf traits and photosynthetic characteristics of Salix babylonica under different water gradients [D]. Lanzhou: Northwest Normal University, 2019.
    [48] Harvey P H, Pagel M D. The comparative method in evolutionary biology [M]. Oxford: Oxford University Press, 1991.
    [49] Enquist B J, Niklas K J. Invariant scaling relations across tree-dominated communities[J]. Nature, 2001, 410: 655−660. doi: 10.1038/35070500
    [50] 卢艺苗, 王满堂, 陈晓萍, 等. 江西常绿阔叶林木本植物不同冠层高度当年生小枝茎构型对叶生物量的影响[J]. 应用生态学报, 2019, 30(11): 3653−3661.

    Lu Y M, Wang M T, Chen X P, et al. Effects of the current-year shoot stem configuration on leaf biomass in different canopy heights of woody plants in evergreen broad-leaved forest in Jiangxi Province, China[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3653−3661.
    [51] Hacke U G, Sperry J S. Functional and ecological xylem anatomy[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2001, 4(2): 97−115. doi: 10.1078/1433-8319-00017
    [52] King D, Loucks O L. The theory of tree bole and branch form[J]. Radiation & Environmental Biophysics, 1978, 15(2): 141−165.
    [53] Long J N, Smith F W, Scott D. The role of Douglas-fir stem sapwood and heartwood in the mechanical and physiological support of crowns and development of stem form[J]. Canadian Journal of Forest Research, 1981, 11(3): 459−464. doi: 10.1139/x81-063
    [54] Costa D S, Classen A, Ferger S, et al. Relationships between abiotic environment, plant functional traits, and animal body size at Mount Kilimanjaro, Tanzania[J/OL]. PLoS One, 2017, 12(3): e0174157[2021−06−02]. https://doi.org/10.1371/journal.pone.0174157.
    [55] 李俊慧, 彭国全, 杨冬梅. 常绿和落叶阔叶物种当年生小枝茎长度和茎纤细率对展叶效率的影响[J]. 植物生态学报, 2017, 41(6): 650−660. doi: 10.17521/cjpe.2016.0376

    Li J H, Peng G Q, Yang D M. Effect of stem length to stem slender ratio of current-year twigs on the leaf display efficiency in evergreen and deciduous broadleaved trees[J]. Chinese Journal of Plant Ecology, 2017, 41(6): 650−660. doi: 10.17521/cjpe.2016.0376
    [56] 刘艳芳. 贡嘎山阔叶木本植物叶片解剖结构特征及其环境适应研究 [D]. 重庆: 西南大学, 2015.

    Liu Y F. The study on anatomical structures character and its environmental adaptation of leaves from broad-leaved woody plants in Mt. Gongga, Southwest China [D]. Chongqing: Southwest University, 2015.
    [57] Diemer M. Life span and dynamics of leaves of herbaceous perennials in high-elevation environments: ‘news from the elephant’s leg’[J]. Functional Ecology, 1998, 12(3): 413−425. doi: 10.1046/j.1365-2435.1998.00207.x
    [58] Coley P D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense[J]. Oecologia, 1988, 74(4): 531−536. doi: 10.1007/BF00380050
    [59] Pratt C J. Use of permeable, reservoir pavement constructions for stormwater treatment and storage for re-use[J]. Water Science and Technology, 1999, 39(5): 145−151. doi: 10.2166/wst.1999.0233
    [60] 侯立柱, 冯绍元, 韩志文, 等. 透水砖铺装地面垫层结构对城市雨水入渗过程的影响[J]. 中国农业大学学报, 2006(4): 83−88. doi: 10.3321/j.issn:1007-4333.2006.04.018

    Hou L Z, Feng S Y, Han Z W, et al. Experimental study on impacts of infiltration treated with porous pavement[J]. Journal of China Agricultural University, 2006(4): 83−88. doi: 10.3321/j.issn:1007-4333.2006.04.018
    [61] 侯立柱, 刘江涛, 吕建华. 透水性铺装地面的壤中流特征[J]. 中国水土保持科学, 2014, 12(2): 52−58. doi: 10.3969/j.issn.1672-3007.2014.02.009

    Hou L Z, Liu J T, Lü J H. Characteristics of subsurface flow in porous pavement[J]. Science of Soil and Water Conservation, 2014, 12(2): 52−58. doi: 10.3969/j.issn.1672-3007.2014.02.009
    [62] 武晟, 汪志荣, 张建丰, 等. 不同下垫面径流系数与雨强及历时关系的实验研究[J]. 中国农业大学学报, 2006, 11(5): 55−59. doi: 10.3321/j.issn:1007-4333.2006.05.012

    Wu S, Wang Z R, Zhang J F, et al. Experimental study on relationship among runoff coefficients of different underlying surfaces, rainfall intensity and duration[J]. Journal of China Agricultural University, 2006, 11(5): 55−59. doi: 10.3321/j.issn:1007-4333.2006.05.012
    [63] 赵芳. 绿色建筑与小区低影响开发雨水利用技术研究 [D]. 重庆: 重庆大学, 2012.

    Zhao F. Study on low impact development technology of rainwater utilization in green building and community [D]. Chongqing: Chongqing University, 2012.
    [64] Soenke B, 陈义荣. 透水性混凝土路面砖路面现场的长期渗透性能研究[J]. 建筑砌块与砌块建筑, 2008(2): 37−41. doi: 10.3969/j.issn.1003-5273.2008.02.012

    Soenke B, Chen Y R. Study on long-term permeability properties of permeable concrete pavement[J]. Structures Units & Units Architecture, 2008(2): 37−41. doi: 10.3969/j.issn.1003-5273.2008.02.012
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  21
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-10-14
  • 网络出版日期:  2022-06-02

目录

    /

    返回文章
    返回