• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

植酸改性木粉制备及其吸附性能研究

丁梦祎, 任祺恺, 罗婧盈, 王明枝

丁梦祎, 任祺恺, 罗婧盈, 王明枝. 植酸改性木粉制备及其吸附性能研究[J]. 北京林业大学学报, 2022, 44(2): 131-140. DOI: 10.12171/j.1000-1522.20210273
引用本文: 丁梦祎, 任祺恺, 罗婧盈, 王明枝. 植酸改性木粉制备及其吸附性能研究[J]. 北京林业大学学报, 2022, 44(2): 131-140. DOI: 10.12171/j.1000-1522.20210273
Ding Mengyi, Ren Qikai, Luo Jingying, Wang Mingzhi. Preparation and adsorption property of phytic acid modified wood flour[J]. Journal of Beijing Forestry University, 2022, 44(2): 131-140. DOI: 10.12171/j.1000-1522.20210273
Citation: Ding Mengyi, Ren Qikai, Luo Jingying, Wang Mingzhi. Preparation and adsorption property of phytic acid modified wood flour[J]. Journal of Beijing Forestry University, 2022, 44(2): 131-140. DOI: 10.12171/j.1000-1522.20210273

植酸改性木粉制备及其吸附性能研究

基金项目: 中央高校基本科研业务费专项(2019JQ03013)
详细信息
    作者简介:

    丁梦祎。主要研究方向:木材保护与改性。 Email:dingmengyi@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学材料科学与技术学院

    责任作者:

    王明枝,博士,副教授。主要研究方向:木材保护与改性。 Email:wmingzhi@bjfu.edu.cn 地址:同上

  • 中图分类号: TQ424.3;TS69

Preparation and adsorption property of phytic acid modified wood flour

  • 摘要:
      目的  将木材加工剩余物木粉和改性木粉作为废水中染料污染物的吸附剂,并探究其性能,为木粉高值化利用提供一种策略。
      方法  以植酸(PA)为绿色改性剂接枝木粉制备了木粉基吸附剂(PA-WF),利用SEM–EDS、ATR–FTIR、XRD、BET对PA-WF的表面形貌、元素分布、官能团、孔隙度、比表面积、结晶度和结晶结构进行表征,分析了植酸和木粉质量比、尿素和木粉质量比、反应温度和反应时间对木粉接枝率的影响,以及不同接枝率木粉的亚甲基蓝染料溶液吸附容量,探究了PA-WF在不同吸附时间、亚甲基蓝染料不同初始质量浓度条件下的吸附容量变化规律。
      结果  当植酸和木粉质量比2.5∶5、尿素和木粉质量比3∶50、反应温度70 ℃、反应时间3 h时,可制备接枝率为11.31%的改性木粉。SEM–EDS、ATR–FTIR、XRD和BET测试结果表明:PA成功接枝在木粉上引入磷酸基团,且增大了木粉的比表面积、平均孔径和孔体积。吸附测试结果表明:PA-WF在接枝率为8%时吸附性能最优,吸附容量可达22.53 mg/g,比未改性木粉的吸附容量(10.50 mg/g)提高了114.57%;PA-WF的吸附过程符合Langmuir吸附等温方程与准二级动力学方程。
      结论  采用适当条件制备植酸接枝改性木粉,经推测其吸附过程属于离子交换的单分子层化学吸附。利用植酸中阴离子磷酸基团,可大幅提升木粉的吸附性能,为木粉的高值化利用提供新的思路。
    Abstract:
      Objective  Exploring the performance of wood flour and modified wood flour from processing residues in the wood industry as an adsorbent for dye pollutants in wastewater provides a strategy for the high-value utilization of wood flour.
      Method  Wood flour-based adsorbent (PA-WF) was prepared by grafting wood flour with phytic acid (PA) as the green modifier. The surface morphology, element distribution, functional group, specific surface area, crystallinity, crystal structure and porosity of PA-WF were characterized by scanning electron microscope-EDS energy spectrum, infrared spectrum, X-ray diffractometer, and BET. The effects of mass ratio of phytic acid to wood flour, mass ratio of urea to wood flour, reaction temperature and reaction time on the grafting rate of wood flour were explored. Firstly, the effects of PA-WF grafting ratios on the adsorption capacity of methylene blue dye solution were analyzed, and the changing law of PA-WF adsorption capacity under different adsorption time and initial concentration of methylene blue dye were further explored.
      Result  With the mass ratio of phytic acid to wood flour was 2.5 to 5, the mass ratio of urea to wood flour was 3 to 50, the reaction temperature of 70 ℃, and the reaction time of 3 h, modified wood flour with a grafting rate of 11.31% can be prepared. PA was successfully grafted on the wood flour to introduce phosphate groups and increase the specific surface area, mean pore size and pore volume of wood flour, which was showed in SEM-EDS, ATR-FTIR, XRD and BET research. The adsorption test results showed that PA-WF had the best adsorption performance when the grafting rate was 8%, and the adsorption capacity was 22.53 mg/g, which was 114.57% higher than that of unmodified wood flour (10.50 mg/g). The adsorption process of the PA-WF conformed to the Langmuir adsorption isotherm equation and the quasi-second-order kinetic equation.
      Conclusion  We use proper conditions to prepare phytic acid grafted modified wood flour. It is speculated that the adsorption process of adsorbent belongs to ion-exchange monolayer chemical adsorption. Using the anionic phosphate group in phytic acid can greatly improve the adsorption performance of wood flour, which provides a new idea for the high-value utilization of wood flour.
  • 图  1   植酸接枝改性木粉机理

    Figure  1.   Mechanism of phytic acid (PA) grafted modified wood flour (WF)

    图  2   PA和WF质量比(a)、尿素和WF质量比(b)、反应温度(c)和反应时间(d)对PA-WF接枝率的影响

    Figure  2.   Effects of mass ratio of PA and WF(a), mass ratio of urea and WF(b), temperature of reaction(c), time of reaction(d) on the grafting rate of PA-WF

    图  3   WF和PA-WF在不同放大倍数下的SEM形貌图

    Figure  3.   SEM morphology of WF and PA-WF at different magnification

    图  4   WF和PA-WF的能谱分析图与元素分布

    Figure  4.   EDS and element distribution of WF and PA-WF

    图  5   PA-WF、WF和PA全反射红外光谱图

    Figure  5.   ATR-FTIR spectra of PA-WF, WF and PA

    图  6   PA-WF和WF的X射线衍射图

    Figure  6.   X-ray diffraction patterns of PA-WF and WF

    图  7   亚甲基蓝(MB)初始质量浓度(a)和吸附时间(b)对PA-WF吸附容量的影响

    Figure  7.   Effects of initial concentration of methylene blue (a) and adsorption time (b) on adsorption capacity of PA-WF

    图  8   Langmuir(a)与Freundlich(b)等温方程拟合结果

    Figure  8.   Fitting results of Langmuir(a)and Freundlich(b)adsorption isotherm

    图  9   准一级动力学方程(a)与准二级动力学方程(b)拟合结果

    Figure  9.   Fitting results of Pseudo-first-order model(a)and Pseudo-second-order model(b)

    表  1   不同接枝率PA-WF的吸附性

    Table  1   Adsorption of PA-WF with different grafting rates

    组别
    Group
    接枝率
    Grafting rate/%
    吸附容量
    Adsorption capacity/(mg·g−1
    1 0 10.50
    2 7.11 18.98
    3 8.04 22.53
    4 8.89 20.18
    5 10.56 18.98
    6 11.31 18.22
    下载: 导出CSV
  • [1] 卢俊. 废弃木质材料制备高性能复合材料工艺研究[D]. 广州: 华南农业大学, 2016.

    Lu J. Research on preparation of high performance composite materials by waste wood materials[D]. Guangzhou: South China Agricultural University, 2016.

    [2] 王静. 中国环境规制对木材加工业参与全球价值链的影响[D]. 北京: 北京林业大学, 2020.

    Wang J. The impact of Chinese environmental regulations on wood processing industry’s participation in global value chains[D]. Beijing: Beijing Forestry University, 2020.

    [3]

    Nan S, Wang T, Liu C. Preparation, characterization and photocatalytic study of wood-flour/β-cyclodextrin/TiO2 hybrid composite[J]. Wood Science and Technology, 2016, 50(6): 1243−1260. doi: 10.1007/s00226-016-0826-0

    [4]

    Chen C J, Hu L B. Nanoscale ion regulation in wood‐based structures and their device applications[J/OL]. Advanced Materials, 2020 [2021−02−11]. http:// DOI: 10.1002/adma.202002890.

    [5] 牛增元, 罗忻, 叶曦雯, 等. 高效液相色谱–质谱法测定电子电气产品塑料部件中偶氮染料释放的致癌芳香胺[J]. 色谱, 2014, 32(1): 34−39. doi: 10.3724/SP.J.1123.2013.08005

    Niu Z Y, Luo X, Ye X W, et al. Determination of carcinogenic aromatic amines derived from azo colorants in plastic components of electrical and electronic products by high performance liquid chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(1): 34−39. doi: 10.3724/SP.J.1123.2013.08005

    [6]

    Ou J H, Yan J J, Xu T, et al. Fabrication of nickel-iron layered double hydroxides using nickel plating wastewater via electrocoagulation, and its use for efficient dye removal[J/OL]. Journal of Molecular Liquids, 2021 [2021−02−12]. http://DOI: 10.1016/j.molliq.2021.116246.

    [7]

    Gupta V K, Pathania D, Agarwal S, et al. Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light[J]. Journal of Hazardous Materials, 2012, 243: 179−186. doi: 10.1016/j.jhazmat.2012.10.018

    [8]

    Deepak P, Sharma S, Singh P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast[J]. Arabian Journal of Chemistry, 2017, 10: S1445−S1451. doi: 10.1016/j.arabjc.2013.04.021

    [9]

    Islam M R, Mostafa M G. Characterization of textile dyeing effluent and its treatment using polyaluminum chloride[J]. Applied Water Science, 2020, 10: 119. doi: 10.1007/s13201-020-01204-4

    [10]

    Donkadokula N Y, Kola A K, Iffat N, et al. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(3): 543−560. doi: 10.1007/s11157-020-09543-z

    [11]

    Ilgin P, Ozay H, Ozay O. Selective adsorption of cationic dyes from colored noxious effluent using a novel N-tert-butylmaleamic acid based hydrogels[J]. Reactive and Functional Polymers, 2019, 142: 189−198. doi: 10.1016/j.reactfunctpolym.2019.06.018

    [12]

    Yazidi A, Sellaoui L, Dotto G L, et al. Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: application of advanced statistical physics models[J]. Journal of Molecular Liquids, 2019, 283: 276−286. doi: 10.1016/j.molliq.2019.03.101

    [13]

    Si H Y, Wang T, Xu Z W. Biosorption of methylene blue from aqueous solutions on β-cyclodextrin grafting wood flour copolymer: kinetic and equilibrium studies[J]. Wood Science and Technology, 2013, 47(6): 1177−1196. doi: 10.1007/s00226-013-0567-2

    [14]

    Tumlos R, Ting J L, Elias O, et al. Results of the study of chemical-, vacuum drying- and plasma-pretreatment of coconut (Cocos nucifera) lumber sawdust for the adsorption of methyl red in water solution[J]. Surface and Coatings Technology, 2011, 205: S425−S429. doi: 10.1016/j.surfcoat.2011.01.055

    [15] 陈光浩. 杉木木屑对水中亚甲基蓝及刚果红的吸附性能研究[D]. 南宁: 广西大学, 2014.

    Chen G H. Adsorption characteristics of methylene blue and congo red on fir sawdust[D]. Nanning: Guangxi University, 2014.

    [16] 蔡静. 改性木屑的制备及其对铜离子的吸附研究[D]. 北京: 北京化工大学, 2016.

    Cai J. The modification of sawdust and adsorption of copper ion from aqueous solution[D]. Beijing: Beijing University of Chemical Technology, 2016.

    [17] 柏松, 冯亚娥, 骆斌, 等. 桤木木屑对废水中Hg2+的静态吸附[J]. 光谱实验室, 2011, 28(2): 973−976. doi: 10.3969/j.issn.1004-8138.2011.02.115

    Bai S, Feng Y E, Luo B, et al. Static adsorption of Hg2+ from wast water by alder sawdust[J]. Chinese Journal of Spectroscopy Laboratory, 2011, 28(2): 973−976. doi: 10.3969/j.issn.1004-8138.2011.02.115

    [18]

    Tan Y, Wang K L, Yan Q, et al. Synthesis of amino-functionalized waste wood flour adsorbent for high-capacity Pb(II) adsorption[J]. ACS Omega, 2019, 4(6): 10475−10484. doi: 10.1021/acsomega.9b00920

    [19]

    Kalavathy M H, Karthikeyan T, Rajgopal S, et al. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust[J]. Journal of Colloid and Interface Science, 2005, 292(2): 354−362. doi: 10.1016/j.jcis.2005.05.087

    [20]

    Cheng X W, Guan JP, Chen G Q, et al. Adsorption and flame retardant properties of bio-based phytic acid on wool fabric[J]. Polymers, 2016, 8(4): 122. doi: 10.3390/polym8040122

    [21]

    Wang H, Wen X, Yang F, et al. Preparation of a novel two-dimensional carbon material and enhancing Cu(II) ions removal by phytic acid[J]. Environmental Earth Sciences, 2018, 77: 472. doi: 10.1007/s12665-018-7652-7

    [22]

    You H, Chen J C, Yang C, et al. Selective removal of cationic dye from aqueous solution by low-cost adsorbent using phytic acid modified wheat straw[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509: 91−98.

    [23]

    Cheng X W, Guan J P, Tang R C, et al. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric[J]. Journal of Cleaner Production, 2016, 124: 114−119. doi: 10.1016/j.jclepro.2016.02.113

    [24]

    Shao L, Li Y, Ma Z L, et al. Highly sensitive strain sensor based on a stretchable and conductive poly(vinyl alcohol)/phytic acid/NH2-POSS hydrogel with a 3D microporous structure[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26496−26508.

    [25] 黄国红, 敖日格勒, 冯玉, 等. AFM及其在植物纤维分析方面的应用[J]. 中华纸业, 2009, 30(15): 69−72. doi: 10.3969/j.issn.1007-9211.2009.15.016

    Huang G H, Aorigele, Feng Y, et al. A review on AFM and its application to the analysis of plant fiber[J]. China Pulp & Paper Industry, 2009, 30(15): 69−72. doi: 10.3969/j.issn.1007-9211.2009.15.016

    [26]

    Schwanninger M, Rodrigues J C, Pereira H, et al. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose[J]. Vibrational Spectroscopy, 2004, 36(1): 23−40. doi: 10.1016/j.vibspec.2004.02.003

    [27]

    Olga D, Dmitry S. Investigation of lignins by FTIR spectroscopy[J]. Macromolecular Symposia, 2008, 265(1): 61−68. doi: 10.1002/masy.200850507

    [28] 孙克时, 李志强, 张淑玲, 等. 水溶液共聚法合成耐盐性高吸水性树脂[J]. 化学与粘合, 2000(3): 105−107, 126.

    Sun K S, Li Z Q, Zhang S L, et al. Preparation of resins salt resisting and high water absorbing by water solution copolymerization[J]. Chemistry and Adhesion, 2000(3): 105−107, 126.

    [29]

    Nguyen T M, Chang S, Condon B, et al. Thermal decomposition reactions of cotton fabric treated with piperazine-phosphonates derivatives as a flame retardant[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 122−129. doi: 10.1016/j.jaap.2014.08.006

    [30]

    Zhang L C, Yi D Q, Hao J W, et al. One-step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy[J]. Polymers for Advanced Technologies, 2021, 32(3): 1176−1186. doi: 10.1002/pat.5165

    [31]

    Cave I D. Theory of X-ray measurement of microfibril angle in wood[J]. Wood Science and Technology, 1997, 31(4): 225−234. doi: 10.1007/BF00702610

    [32] 彭雄. 纤维素吸附材料的制备及其对六价铬和对氨基苯胂酸吸附性能研究[D]. 广州: 华南理工大学, 2020.

    Peng X. Preparation of cellulose adsorbent materials and study on their adsorption performance towards hexavalent chromium and p-arsanilic acid[D]. Guangzhou: South China University of Technology, 2020.

    [33] 王洪杰, 兰依博, 李晓东. KMnO4改性稻壳、稻杆水热炭吸附染料的研究[J]. 应用化工, 2019, 48(6): 1344−1350.

    Wang H J, Lan Y B, Li X D. Hydrothermal synthesis of KMnO4 modified rice husk and rice straw and its adsorption properties[J]. Applied Chemical Industry, 2019, 48(6): 1344−1350.

    [34] 徐金宝, 董文艺, 王宏杰, 等. KMnO4改性活性炭对臭气中甲硫醇的吸附特性[J]. 环境工程学报, 2020, 14(6): 1570−1578. doi: 10.12030/j.cjee.201908130

    Xu J B, Dong W Y, Wang H J, et al. Adsorption characteristics of methyl mercaptan in odor by KMnO4 modified activated carbon[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1570−1578. doi: 10.12030/j.cjee.201908130

  • 期刊类型引用(1)

    1. 陈铭,郭琳,郑笑,姜明云,王茹,丁雨龙,高志民,魏强. 中国15个主产区毛竹纤维形态比较. 南京林业大学学报(自然科学版). 2018(06): 7-12 . 百度学术

    其他类型引用(2)

图(9)  /  表(1)
计量
  • 文章访问数:  1261
  • HTML全文浏览量:  375
  • PDF下载量:  122
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-07-21
  • 修回日期:  2021-11-14
  • 录用日期:  2021-11-18
  • 网络出版日期:  2021-11-25
  • 发布日期:  2022-02-24

目录

    /

    返回文章
    返回