Volume modeling and yield for Liriodendron tulipifera based on terrestrial laser scan data
-
摘要:目的 马褂木是优良的用材树种,研究其材积模型并分析多种密度种植下的径级材种造材出材率,旨在为马褂木人工林高效培育提供重要的指导。方法 在马褂木多密度人工林试验区获取全样地地面激光雷达数据。通过点云提取单木结构参数,对4种造林密度(株行距配置:2 m × 2 m、3 m × 3 m、4 m × 4 m、5 m × 5 m)马褂木试验林测树因子(胸径DBH,树高H,材积V)进行分析,建立一元材积方程、削度方程模型,并应用削度方程计算各密度林分材种出材率。结果 研究得到的一元二次式V=0.0003D2+0.0065D−0.0369为研究区马褂木最优一元材积式,该模型的决定系数(R2)为0.884,经过剩余标准差(SEE)、系统误差(TRE)、平均相对误差(MSE)、预估精度(ρ)等评价指标检验,无明显系统偏差,可用于研究区马褂木材积估计。研究选定改进的舒马赫方程式作为不同密度马褂木的削度方程,该模型R2为0.924,经检验方程均方根误差为1.454,平均相对误差为0.050,预估精度达到0.910。进一步采用削度方程为多密度马褂木试验林进行多径级材造材,得到疏林地4 m × 4 m密度种植下的大径材出材率最大(39.582%),密林地2 m × 2 m密度种植下的小径材出材率最大(81.250%),而综合出材率最大的是4 m × 4 m密度(98.650%)。结论 马褂木多密度经营下,疏林地大径材出材率最大,密林则以小径材为主要径级材种。基于地面激光点云获取的单木参数可以直观地进行森林经理研究,对提升人工林的生产经营水平以及提高林业工作者的工作效率均有积极影响。Abstract:Objective Liriodendron tulipifera is an excellent timber species. It is of great significance to study the volume model of L. tulipifera wood and analyze the yield of merchantable timber under different densities for the efficient cultivation of L. tulipifera plantation.Method In this study, the terrestrial laser scan (TLS) data was obtained in the multi-density L. tulipifera plantation area in Jiangsu Province of eastern China. The single tree parameters (DBH, tree height H, volume V) were extracted for the various densities (2 m × 2 m, 3 m × 3 m, 4 m × 4 m, 5 m × 5 m) of the L. tulipifera sample stand. The single entry volume model was conducted and the taper equation model was established. The timber yield of each density stand was calculated by the taper equation.Result The quadratic formula with one variable: V=0.0003D2+0.0065D−0.0369 was obtained as the single entry volume model for L. tulipifera wood in the study area. The model’s coefficient of determination (R2) was 0.884. After the test of residual standard deviation (SEE), systematic error (TRE), mean relative error (MSE), precision estimation (ρ) and other indicators, there was no obvious systematic deviation, so the model can be used to estimate the volume of L. tulipifera in the study area. This study selected the improved Schumacher’s equations as taper equation for different afforestation densities, the model’s R2 was 0.924, root mean square error (RMSE) was 1.454, and MSE was 0.050, ρ was 0.910, etc. Furtherly, the taper equation was used to make multi-diameter grade wood in the multi-density afforestation forest sample plots. It was found that the output rate of large-diameter timber was the highest (39.582%) under 4 m × 4 m density planting forest, the output rate of small-diameter timber was the highest (81.250%) under 2 m × 2 m density planting forest, and the maximum composite yield was 4 m × 4 m density planting forest (98.650%).Conclusion For L. tulipifera plantation under the multi-density management, the yield of large-diameter timber in the open forest is the largest, while the small-diameter wood is the main diameter class in the dense forest. The single tree parameters obtained based on the ground laser point cloud could be intuitively studied for the forest manager, which has a positive impact on the improvement of the production and management level of the plantation and the improvement of the work efficiency of the forestry workers.
-
-
表 1 材积方程模型一览表
Table 1 List of volume equation models
公式 Formula 编号 No. y=a0+a1x V1 y=a0+a1x+a2x2 V2 y=a0lnx+a1 V3 y=a0xa1 V4 y=a0ea1x V5 注:y. 立木材积(m3);x. 直径(cm);ai. 参数(i = 0,1,2)。Notes: y, standing volume (m3); x, diameter (cm); ai, parameter (i = 0, 1, 2). 表 2 削度方程模型一览表
Table 2 List of taper equation models
公式 Formula 编号 No. d=D(H−hH−1.3)a0\setlength\voffset0pt T1 (dD)2=a0+a1(H−hH−1.3)a2\setlength\voffset0pt T2 d2=a0Da1(H−h)a2Ha3\setlength\voffset0pt T3 d2=a0D(H−hH−1.3)a1\setlength\voffset0pt T4 d2=D2(H−hH−1.3)a0\setlength\voffset0pt
T5注:d为树干h高处的带皮直径(cm);D为带皮胸径(cm);H为全树高(m);h为距地面的高度(m);a0、a1、a2、a3为待定参数。下同。Notes: d is the diameter (cm) of the bark at h height of the trunk; D is DBH (cm) with bark; H is the total tree height (m); h is the height (m) above the ground; a0, a1, a2, a3 are undetermined parameters. The same below. 表 3 点云测定马褂木测树因子概况
Table 3 General situation of mensuration factors of Liriodendron tulipifera forest with point cloud
样地密度
Sample plot density株数
Plant number平均地径
Average ground diameter/cm平均DBH
Average DBH/cm平均树高
Average tree height/m平均材积
Average volume/m32 m × 2 m 79 23.200 16.200 17.860 0.184 3 m × 3 m 79 27.820 20.570 17.220 0.213 4 m × 4 m 48 29.000 20.890 16.520 0.184 5 m × 5 m 18 30.870 21.920 16.570 0.213 总计/平均
Total/mean224 27.723 19.895 17.043 0.198 表 4 一元材积模型拟合结果
Table 4 Fitting results of univariate volume models
模型编号 Model No. 公式 Formula R2 SEE TRE/% MSE/% V1 V = 0.016 4D − 0.122 3 0.873 0.009 0.004 −184.440 V2 V = 0.000 3D2 + 0.006 5D − 0.036 9 0.884 0.008 0.003 −1.279 V3 V = 0.026 6lnD − 0.581 2 0.798 0.112 0.001 −20.018 V4 V = 0.000 6D1.9457 0.902 0.017 −0.066 39.572 V5 V = 0.019 5e0.1096D 0.823 0.056 0.271 −56.163 注:R2. 决定系数;SEE. 剩余标准差;TRE. 系统误差;MSE. 平均相对误差。Notes: R2, determination coefficient; SEE, residual standard deviation; TRE, systematical error; MSE, average relative error. 表 5 不同造林密度削度方程模型参数
Table 5 Model parameters of taper equations with different afforestation densities
密度
Density模型
Modela0 a1 a2 a3 R2 RMSE AIC 2 m × 2 m T1 0.625 0.945 0.940 −3479.60 T2 0.141 0.887 1.694 0.950 0.901 −3501.80 T3 3.237 2.130 1.247 1.761 0.949 0.904 −3499.70 T4 16.887 1.193 0.793 1.829 −3115.20 T5 1.250 0.945 0.940 −3479.60 3 m × 3 m T1 0.824 0.907 1.674 −4348.70 T2 0.063 0.930 1.903 0.911 1.636 −4362.30 T3 10.648 2.262 1.584 2.665 0.914 1.603 −4375.30 T4 21.401 1.557 0.815 2.357 −4101.80 T5 1.648 0.907 1.674 −4348.70 4 m × 4 m T1 1.006 0.872 2.746 −2098.50 T2 0.042 0.866 2.053 0.886 2.662 −2110.00 T3 9.253 1.706 1.775 2.220 0.899 2.580 −2121.10 T4 20.367 1.766 0.865 2.792 −2087.10 T5 2.011 0.872 2.746 −2093.40 5 m × 5 m T1 0.961 0.952 1.416 −817.72 T2 0.010 0.993 1.981 0.952 1.414 −817.01 T3 0.094 1.482 1.914 0.456 0.964 1.226 −840.86 T4 22.732 1.860 0.859 2.429 −724.96 T5 1.923 0.930 1.594 1641.07 整体
TotalT1 0.866 0.952 1.504 1641.07 T2 0.025 0.965 1.822 0.931 1.504 1642.55 T3 2.758 1.861 1.618 1.783 0.954 1.454 1505.00 T4 20.409 1.522 0.825 2.214 3192.55 T5 1.643 0.922 6.887 7747.51 表 6 不同造林密度削度方程模型的适用性检验结果
Table 6 Applicability test results of taper equation models with different afforestation densities
密度 Density 模型 Model SEE TRE/% MSE/% ρ 2 m × 2 m T1 0.117 −4.001 −4.20 0.862 T2 0.061 −3.772 −3.90 0.862 T3 0.052 −3.438 −1.10 0.863 T4 0.154 1.112 −3.20 0.873 T5 0.117 −4.000 −4.20 0.862 3 m × 3 m T1 0.051 1.250 −3.20 0.846 T2 0.058 0.626 −0.80 0.847 T3 0.057 0.087 −0.02 0.849 T4 0.207 7.415 −9.50 0.831 T5 0.051 1.250 −0.01 0.846 4 m × 4 m T1 0.057 14.805 21.50 0.681 T2 0.058 16.523 21.40 0.689 T3 0.047 6.600 10.70 0.701 T4 0.055 12.481 12.30 0.697 T5 0.056 14.327 16.30 0.699 5 m × 5 m T1 0.014 5.544 7.90 0.972 T2 0.015 5.511 7.80 0.996 T3 0.014 1.561 7.90 0.996 T4 0.118 11.530 12.70 0.994 T5 0.017 8.240 10.90 0.995 表 7 不同密度马褂木人工林材种出材率
Table 7 Yield of artificial Liriodendron tulipifera plantations with different densities
项目 Item 密度 Density 5 m × 5 m 4 m × 4 m 3 m × 3 m 2 m × 2 m 株数 Plant number 18 48 79 79 蓄积 Volume/cm3 5.002 13.236 20.948 14.955 胸径
DBH/cm平均 Average 21.918 20.959 17.046 16.413 最大 Max. 33.300 30.300 33.370 26.050 最小 Min. 10.370 8.100 9.480 5.820 树高
Tree height/m平均 Average 16.569 16.456 17.046 16.063 最大 Max. 18.810 20.470 19.520 16.840 最小 Min. 13.680 10.220 11.030 7.540 造材材积
Merchantable wood volume/cm3大径 Big 1.245 1.266 2.003 0.143 中径 Middle 1.552 5.239 6.752 2.331 小径 Small 1.914 6.552 11.878 12.151 出材率
Yield/%大径 Big 24.885 9.568 9.563 0.957 中径 Middle 31.020 39.582 32.232 15.588 小径 Small 38.269 49.500 56.704 81.250 合计Total 94.174 98.650 98.499 97.796 -
[1] 贾忠奎. 我国人工林长期生产力维持技术研究进展[J]. 世界林业研究, 2012, 25(1): 49−54. doi: 10.13348/j.cnki.sjlyyj.2012.01.014 Jia Z K. Research progress of maintenance technology of long-term productivity of plantation in China[J]. World Forestry Research, 2012, 25(1): 49−54. doi: 10.13348/j.cnki.sjlyyj.2012.01.014
[2] 李增元, 庞勇, 刘清旺, 等. 激光雷达森林参数反演技术与方法[M]. 北京: 科学出版社, 2015: 204−234. Li Z Y, Pang Y, Liu Q W, et al. LiDAR forest parameter retrieval technology and method[M]. Beijing: Science Press, 2015: 204−234.
[3] Liang X L, Hyyppä J, Kaartinen H, et al. International benchmarking of terrestrial laser scanning approaches for forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144(10): 137−179.
[4] Ekaterina B, Oscar P P, Tarek S M, et al. Using terrestrial laser scanning for characterizing tree structural parameters and their changes under different management in a Mediterranean open woodland[J]. Forest Ecology and Management, 2021, 486(4): 118945−118961.
[5] Sun Y, Lin X Y, Gong Y L, et al. Multi-station LiDAR scanning-based hierarchical features for generation of an allometric stem volume model[J]. Journal of Applied Remote Sensing, 2021, 15(2): 028503.
[6] Wang Y S, Pyörälä J, Liang X L, et al. In situ biomass estimation at tree and plot levels: what did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest[J]. Remote Sensing of Environment, 2019, 232(10): 111309.
[7] Chen J H, Hao Z D, Guang X M, et al. Liriodendron genome sheds light on angiosperm phylogeny and species−pair differentiation[J]. Nature Plants, 2019(5): 18−25.
[8] 郝自远, 李火根, 康昊, 等. 北美鹅掌楸人工林生长规律及早期选择可行性探究[J]. 林业科学研究, 2017, 30(5): 878−885. Hao Z Y, Li H G, Kang H, et al. Growth pattern and early selection of Liriodendron tulipifera[J]. Forest Research, 2017, 30(5): 878−885.
[9] 蔡伟建. 杂交马褂木人工林培育技术研究[D]. 南京: 南京林业大学, 2011. Cai W J. Research on cultural technology of Liriodendron chinense × L. tulipifera plantation[D]. Nanjing: Nanjing Forestry University, 2011.
[10] 李淑娟. 下蜀实习林场地理信息系统建立与应用[D]. 南京: 南京林业大学, 2007. Li S J. Establishment and application of geographic information system in Xiashu Forestry Centre[D]. Nanjing: Nanjing Forestry University, 2007.
[11] Mcgaughe R J. FUSION/LDV: softwaare for LIDAR data analysis and visualization[M]. Washington: USDA Forest Service, 2022.
[12] 汪献义, 邢艳秋, 尤号田, 等. 基于近邻几何特征的TLS林分点云分类研究[J]. 北京林业大学学报, 2019, 41(6): 138−146. Wang X Y, Xing Y Q, You H T, et al. TLS point cloud classification of forest based on nearby geometric features[J]. Journal of Beijing Forestry University, 2019, 41(6): 138−146.
[13] 刘鲁霞, 庞勇, 李增元. 基于地基激光雷达的亚热带森林单木胸径与树高提取[J]. 林业科学, 2016, 52(2): 26−37. Liu L X, Pang Y, Li Z Y. Individual tree DBH and height estimation using terrestrial laser scanning (TLS) in a subtropical forest[J]. Scientia Silvae Sinicae, 2016, 52(2): 26−37.
[14] 蒋佳文, 温小荣, 顾海波, 等. 基于多站扫描的点云特征参数与材积结构动态分析[J]. 南京林业大学学报(自然科学版), 2019, 3(6): 83−90. Jiang J W, Wen X R, Gu H B, et al. Dynamic analysis of point cloud characteristic parameters and volume structure based on multi-station scan[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 3(6): 83−90.
[15] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006. Meng X Y. Forest measurement[M]. Beijing: China Forestry Publishing House, 2006.
[16] 靳晓东, 姜立春. 基于树干不同形率的樟子松立木材积方程研建[J]. 北京林业大学学报, 2020, 42(3): 78−86. doi: 10.12171/j.1000-1522.20190047 Jin X D, Jiang L C. Equation construction on standing tree volume of Pinus sylvestris var. mongolica based on different form quotients of trunk[J]. Journal of Beijing Forestry University, 2020, 42(3): 78−86. doi: 10.12171/j.1000-1522.20190047
[17] Sun Y, Liang X L, Liang Z Y, et al. Deriving merchantable volume in poplar through a localized tapering function from non-destructive terrestrial laser scanning[J]. Forests, 2016, 7(12): 87−95. doi: 10.3390/f7040087
[18] Li Y M, Guo Q H, Su Y J, et al. Retrieving the gap fraction, element clumping index, and leaf area index of individual trees using single-scan data from a terrestrial laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130(8): 308−316.
[19] Cao L, Coops N, Sun Y, et al. Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148: 114−129. doi: 10.1016/j.isprsjprs.2018.12.006
[20] 黄星旻, 孙圆, 刘慧倩, 等. 多回波点云数据解算单株木叶面积指数[J]. 遥感学报, 2018, 22(6): 1042−1050. Huang X W, Sun Y, Liu H Q, et al. Resolving leaf area index of individual trees based on multi-return terrestrial laser point cloud data[J]. Journal of Remote Sensing, 2018, 22(6): 1042−1050.
[21] Shen X, Cao L, Chen D, et al. Prediction of forest structural parameters using airborne full-waveform LiDAR and hyperspectral data in subtropical forests[J]. Remote Sensing, 2018, 10(11): 1729. doi: 10.3390/rs10111729
[22] Schumacher F X, Hall F S. Logarithmic expression of timber tree volume[J]. Journal of Agricultural Research, 1993, 47: 719−734.
-
期刊类型引用(11)
1. 赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 . 百度学术
2. 任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 . 百度学术
3. 杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 . 百度学术
4. 赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 . 本站查看
5. 李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 . 本站查看
6. 刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 . 百度学术
7. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 . 百度学术
8. 周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 . 百度学术
9. 吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 . 百度学术
10. 张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 . 百度学术
11. 陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 . 百度学术
其他类型引用(14)