高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干扰和氮沉降对空心莲子草入侵湿地植物群落的短期影响

姜帆 阿斯哈 蔡竟芳 孙凯 沈一娈 高海燕 李红丽

姜帆, 阿斯哈, 蔡竟芳, 孙凯, 沈一娈, 高海燕, 李红丽. 干扰和氮沉降对空心莲子草入侵湿地植物群落的短期影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210552
引用本文: 姜帆, 阿斯哈, 蔡竟芳, 孙凯, 沈一娈, 高海燕, 李红丽. 干扰和氮沉降对空心莲子草入侵湿地植物群落的短期影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210552
Jiang Fan, A Siha, Cai Jingfang, Sun Kai, Shen Yiluan, Gao Haiyan, Li Hongli. Short-term effects of disturbance and nitrogen deposition on plant community of Alternanthera philoxeroides invasion in wetland plant community[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210552
Citation: Jiang Fan, A Siha, Cai Jingfang, Sun Kai, Shen Yiluan, Gao Haiyan, Li Hongli. Short-term effects of disturbance and nitrogen deposition on plant community of Alternanthera philoxeroides invasion in wetland plant community[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210552

干扰和氮沉降对空心莲子草入侵湿地植物群落的短期影响

doi: 10.12171/j.1000-1522.20210552
基金项目: 中央高校基本科研业务费专项(2015ZCQ-BH-01),国家重点研发计划(2021YFC2600405),水体污染控制与治理科技重大专项(No.2017ZX07602-004-003)
详细信息
    作者简介:

    姜帆。主要研究方向:湿地植被恢复与重建。Email:1061449208@qq.com 地址:100083北京市海淀区北京林业大学生态与自然保护学院

    责任作者:

    李红丽,教授。主要研究方向:湿地生态学、入侵生态学。Email:lihongli327@163.com 地址:同上

Short-term effects of disturbance and nitrogen deposition on plant community of Alternanthera philoxeroides invasion in wetland plant community

  • 摘要:   目的  干扰和氮沉降是影响植物入侵的重要环境要素。目前,干扰和氮沉降如何协同影响空心莲子草入侵湿地植物群落的研究相对缺乏。探讨干扰、氮沉降和湿地植物群落对空心莲子草入侵的短期影响,为入侵植物空心莲子草的物理控制及湿地植被的恢复与重建提供了一定的理论支撑和实践基础。  方法  本研究以入侵植物空心莲子草为主要研究对象,构建4种湿地植物粉绿狐尾藻、水葱、黄花鸢尾和千屈菜组成的湿地植物群落,设计干扰(无干扰、模拟采食、刈割)、氮沉降(无氮添加和氮添加)以及有无湿地植物群落竞争(仅空心莲子草单种模式和空心莲子草与湿地植物群落混种模式)的三因素控制实验。  结果  模拟采食和刈割两种干扰显著降低了空心莲子草的生长繁殖指标,结构方程模型显示其影响系数分别为−0.58和−0.98,且刈割相较于模拟采食影响更大。刈割处理下空心莲子草生物量、茎长和节数的相对生长率为负值,同时,刈割处理下3种指标的补偿系数均显著小于模拟采食处理,但存在欠补偿生长;湿地植物群落显著影响了空心莲子草根、叶、总生物量、叶片数、茎长和分枝数等指标;而氮沉降仅显著影响了空心莲子草分枝数补偿系数。除叶片数和分枝补偿系数,干扰与氮沉降对空心莲子草入侵的湿地植物群落并没有显著的交互作用。  结论  模拟采食和刈割两种干扰一定程度上不利于空心莲子草的入侵,且随着干扰强度增加,对空心莲子草生长恢复具有较强的抑制效应。氮沉降对空心莲子草综合指标影响不显著。本地湿地植物群落一定程度上可抑制空心莲子草入侵。而干扰与氮沉降的交互作用仅对空心莲子草叶片数和分枝数补偿系数有显著影响,对其入侵的湿地植物群落并无显著作用。

     

  • 图  1  实验设计图

    对照为无氮沉降,为喷施同量的去离子水。The control was no nitrogen deposition, and the same amount of deionized water was sprayed.

    Figure  1.  Experimental design

    图  2  干扰、氮沉降及湿地植物群落对空心莲子草生物量指标的影响

    对照为空心莲子草单种模式,群落为空心莲子草与湿地植物群落混种模式。不同的大写字母A表示有无氮沉降差异显著,不同小写字母abc表示干扰差异显著,不同小写字母xy表示有无湿地植物群落差异显著,下同。The control was a single species model of A. philoxeroides, and the community was a mixed species model of A. philoxeroides and wetland plant communities. A indicates whether there is significant difference in nitrogen deposition, abc indicates significant difference in disturbance, and xy indicates whether there is significant difference in community. The same below.

    Figure  2.  The effect of disturbance, nitrogen deposition and community on the biomass of A. philoxeroides

    图  3  干扰、氮沉降及湿地植物群落对空心莲子草其他生长指标的影响

    Figure  3.  The effect of disturbance, nitrogen deposition and community on other growth of A. philoxeroides

    图  4  干扰、氮沉降和湿地植物群落对空心莲子草生长指标相对生长率的影响

    Figure  4.  The effects of disturbance, nitrogen deposition and community on the relative growth rate of A. philoxeroides

    图  5  干扰、氮沉降和湿地植物群落对空心莲子草补偿系数的影响

    *表明t-检验结果显示与1.0之间无显著差异,即为等量补偿。对照为空心莲子草单种模式,群落为空心莲子草与湿地植物群落混种模式。* indicates that there is no significant difference between the t-test result and 1.0, which is equal compensation. The control was a single species model of A. philoxeroides, and the community was a mixed species model of A. philoxeroides and wetland plant communities.

    Figure  5.  The effects of disturbance, nitrogen deposition and community on the compensation coefficient of A. philoxeroides

    图  6  干扰和氮沉降对被空心莲子草入侵的湿地植物群落的整体生长指标的影响

    不同大写字母A表示干扰显著差异,不同小写字母a表示有无氮沉降显著差异。Different big letter A indicates significant difference in disturbance, different small letter a indicates significant difference in nitrogen deposition.

    Figure  6.  The effects of disturbance and nitrogen deposition on the overall growth of communities invaded by A. philoxeroides

    图  7  干扰、氮沉降及湿地植物群落对空心莲子草所有生长指标的影响

    N为氮沉降,D为干扰,C为群落,SH为模拟采食,M为刈割,K为空心莲子草的所有生长指标,NR为分枝,R为根生物量,SL为茎长,S茎生物量,NI为节数,L为叶生物量,IL为节间长,T为总生物量,NL为叶片数。N is nitrogen deposition, D is disturbance, C is community, SH is simulated herbivory, M is mowing, K is the total of growth of A. philoxeroides, R is root biomass, S is stem biomass, L is leaf biomass, T is total biomass, NL is the number of leaves, IL is internode length, NI is number of internodes, SL is the stem length, NR is the number of ramets.

    Figure  7.  The effect of disturbance, nitrogen deposition and community on the total of growth of A. philoxeroides

    表  1  干扰、氮沉降及群落对空心莲子草生长的影响

    Table  1.   The effect of disturbance, nitrogen deposition and wetland plant community on the growth traits of A. philoxeroides

    项目 Item干扰
    Disturbance (D
    氮沉降
    Nitrogen deposition (N
    群落
    Community (C

    D × N
    D × CN × C
    D × N × C
    (A)生物量 Biomass
    根生物量 Root biomass 25.497*** 0.885 12.881** 0.449 1.174 0.020 0.697
    茎生物量 Stem biomass 68.514*** 0.289 3.952 0.236 2.701 0.191 0.123
    叶生物量 Leaf biomass 52.331*** 0.395 18.869*** 0.265 7.982** 0.001 0.123
    总生物量 Total biomass 66.938*** 0.423 9.733** 0.231 4.457* 0.064 0.138
    (B)生长指标 Growth index
    叶片数 Number of leaves 131.223*** 0.734 19.582*** 3.465** 9.794*** 1.465 0.459
    节间长 Internode length 6.862** 3.129 3.419 0.882 0.482 0.069 0.190
    节数 Number of internodes 148.776*** 0.170 0.503 1.121 0.090 0.369 0.207
    茎长 Stem length 357.447*** 1.922 18.329*** 0.221 0.454 1.566 0.995
    分枝数 Number of ramets 71.112*** 0.137 7.802** 2.438 7.271** 0.137 0.157
    (C)相对生长率 Relative growth rate (RGR)
    生物量相对生长率 Biomass of RGR 568.727*** 2.684 23.474*** 0.312 0.682 0.669 0.669
    叶片数相对生长率 Leaves number of RGR 223.261*** 0.482 21.877*** 2.608 5.247** 1.692 1.692
    茎长相对生长率 Stem length of RGR 568.727*** 2.684 23.474*** 0.312 0.682 0.669 0.669
    节数相对生长率 Internodes of RGR 184.376*** 0.054 0.676 0.876 0.138 0.200 0.200
    (D)补偿系数Compensation index (CI)
    生物量补偿系数 a Biomass of CIa 58.763*** 1.717 4.981* 0.198 0.004 0.663 0.264
    茎长补偿系数 Stem length of CI 257.899*** 0.495 0.006 0.017 0.334 0.019 0.722
    分枝数补偿系数 Number of ramets of CI 101.221*** 7.746* 22.956*** 7.474* 8.822** 2.278 0.315
    注:数字显示得是F值,标粗表示具有显著性。*表示P < 0.05,**表示P < 0.01,***表示P < 0.001。a表示数据经过取对数数据转换。Notes: The digital display is the F value, and the bold mark indicates that it is significant. * means P < 0.05, ** means P < 0.01, *** means P < 0.001. a means data has been converted from logarithmic data.
    下载: 导出CSV

    表  2  干扰和氮沉降对湿地植物群落生物量的影响

    Table  2.   The effects of disturbance and nitrogen deposition on the biomass of communities

    项目 ItemDND × N
    (A) 整体群落 Whole community
    总生物量 Total biomass 0.047 0.174 0.381
    地上生物量 Aboveground biomass 0.104 0.001 0.277
    地下生物量 Underground biomass 0.435 0.490 0.304
    (B) 粉绿狐尾藻
    Myriophyllum aquaticum
    总生物量 Total biomass 0.086 0.885 0.050
    地上生物量 Aboveground biomass 0.050 0.548 0.015
    地下生物量 Underground biomass 0.826 1.815 0.276
    (C) 黄花鸢尾 Iris wilsonii
    总生物量 Total biomass 0.352 0.885 0.050
    地上生物量 Aboveground biomass 0.613 0.645 0.148
    地下生物量 Underground biomass 0.454 1.068 0.268
    (D) 千屈菜 Lythrum salicaria
    总生物量 Total biomass 0.473 0.477 0.520
    地上生物量 Aboveground biomass 0.582 0.914 0.448
    地下生物量 Underground biomass 0.285 0.074 0.527
    (E) 水葱 Scirpus validus
    总生物量 Total biomass 0.607 0.158 0.332
    地上生物量 Aboveground biomass 0.224 1.954 1.419
    地下生物量 Underground biomass 0.564 0.001 0.133
    注:数字显示得是F值,标粗表示具有显著性。*表示P < 0.05,**表示P < 0.01,***表示P < 0.001。Notes: The digital display is the F value, and the bold mark indicates that it is significant. * Means P < 0.05, ** means P < 0.01, *** means P < 0.001. a means data has been converted.
    下载: 导出CSV
  • [1] 吴昊, 丁建清. 入侵生态学最新研究动态[J]. 科学通报, 2014, 59(6): 438−448. doi: 10.1360/972013-450

    Wu H, Ding J Q. Recent progress in invasion ecology[J]. Chinese Science Bulletin, 2014, 59(6): 438−448. doi: 10.1360/972013-450
    [2] 彭少麟, 向言词. 植物外来种入侵及其对生态系统的影响[J]. 生态学报, 1999, 19(4): 560−568. doi: 10.3321/j.issn:1000-0933.1999.04.024

    Peng S L, Xiang Y C. The invasion of exotic plants and effects of ecosystems[J]. Acta Ecologica Sinica, 1999, 19(4): 560−568. doi: 10.3321/j.issn:1000-0933.1999.04.024
    [3] Mack R N, Simberloff D, Lonsdale W M, et al. Biotic invasions: causes, epidemiology, global consequences, and control[J]. Ecological Applications, 2000, 10(3): 689−710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2
    [4] Seebens H, Bacher S, Blackburn T M, et al. Projecting the continental accumulation of alien species through to 2050[J]. Global Change Biology, 2021, 27(5): 970−982. doi: 10.1111/gcb.15333
    [5] 陈俊芳. 浅谈生物入侵机制中的假说[J]. 农业与技术, 2020, 40(4): 51−53. doi: 10.19754/j.nyyjs.20200229014

    Chen J F. A brief talk on hypotheses in the mechanism of biological invasion[J]. Agriculture and Technology, 2020, 40(4): 51−53. doi: 10.19754/j.nyyjs.20200229014
    [6] Manzoor S A, Griffiths G, Lukac M. Land use and climate change interaction triggers contrasting trajectories of biological invasion[J]. Ecological Indicators, 2021, 120: 106936. doi: 10.1016/j.ecolind.2020.106936
    [7] Quijano-Medina T, Covelo F, Moreira X, et al. Compensation to simulated insect leaf herbivory in wild cotton (Gossypium hirsutum): responses to multiple levels of damage and associated traits[J]. Plant Biology, 2019, 21(5): 805−812. doi: 10.1111/plb.13002
    [8] 高芳磊, 郭素民, 闫明, 等. 不同生境下空心莲子草响应模拟昆虫采食的生长和化学防御策略[J]. 生态学报, 2018, 38(7): 2344−2352.

    Gao F L, Guo S M, Yan M, et al. Effects of simulated insect herbivory on the growth and chemical defense of Alternanthera philoxeroides in different habitats[J]. Acta Ecologica Sinica, 2018, 38(7): 2344−2352.
    [9] 申思, 郭文锋, 王伟, 等. 地上−地下植食性天敌对入侵植物空心莲子草与本地种莲子草种间关系的影响[J]. 应用生态学报, 2021, 32(8): 2975−2981.

    Shen S, Guo W F, Wang W, et al. Effects of above- and below-ground herbivore interactions on interspecific relationship between the invasive plant Alternanthera philoxeroides and its native congener Alternanthera sessilis[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2975−2981.
    [10] Kumaran N, Lockett C, Dhileepan K. Effect of simulated herbivory on bellyache bush (Jatropha gossypiifolia L.) growth and implications for biological control[J]. Weed Biology and Management, 2018, 18(4): 151−159. doi: 10.1111/wbm.12159
    [11] 闫卫东. 不同刈割强度对北方农牧交错带草地生态系统温室气体通量的影响[D]. 晋中: 山西农业大学, 2019.

    Yan W D. Effects of different cutting intensities on greenhouse gas fluxes in grassland ecosystem in northern agro-pastoral ecotone[D]. Jinzhong: Shanxi Agricultural University, 2019.
    [12] 王楠楠, 皇甫超河, 陈冬青, 等. 刈割对外来入侵植物黄顶菊的生长、气体交换和荧光的影响[J]. 生态学报, 2012, 32(9): 2943−2952. doi: 10.5846/stxb201103160328

    Wang N N, Huangfu C H, Chen D Q, et al. Effects of clipping on the growth, gas exchange and chlorophyll fluorescence of invasive plant, Flaveria bidentis[J]. Acta Ecologica Sinica, 2012, 32(9): 2943−2952. doi: 10.5846/stxb201103160328
    [13] Bozzolo F H, Lipson D A. Differential responses of native and exotic coastal sage scrub plant species to N additions and the soil microbial community[J]. Plant and Soil, 2013, 371(1/2): 37−51.
    [14] Yu H W, He W M. Congeneric invasive versus native plants utilize similar inorganic nitrogen forms but have disparate use efficiencies[J]. Journal of Plant Ecology, 2021, 14(2): 180−190. doi: 10.1093/jpe/rtaa085
    [15] 周一平, 张玉革, 马望, 等. 氮添加和干旱对呼伦贝尔草原5种植物性状的影响[J]. 生态环境学报, 2020, 29(1): 41−48.

    Zhou Y P, Zhang Y G, Ma W, et al. Effects of nitrogen addition and water reduction on the traits of five plants in Hulunbeir Grassland[J]. Ecology and Environmental Sciences, 2020, 29(1): 41−48.
    [16] 陆光亚, 王晋萍, 桑卫国. 氮沉降对外来种豚草入侵能力与竞争能力的影响[J]. 东北林业大学学报, 2012, 40(6): 60−66. doi: 10.3969/j.issn.1000-5382.2012.06.016

    Lu G Y, Wang J P, Sang W G. Effects of nitrogen deposition on invasive and competitive abilities of an alien plant Ambrosia artemisiifolia[J]. Journal of Northeast Forestry University, 2012, 40(6): 60−66. doi: 10.3969/j.issn.1000-5382.2012.06.016
    [17] 吴昊, 张三煜, 姬秋博, 等. 异质生境对水生型空心莲子草−双穗雀稗共存的影响[J]. 应用生态学报, 2022, 33(1): 85−96.

    Wu H, Zhang S Y, Ji Q B, et al. Effect of heterogeneous habitats on species coexistence of aquatic ecotype Alternanthera philoxeroides and Paspalum paspaloides[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 85−96.
    [18] Yu H W, He W M. Congeneric invasive versus native plants utilize similar inorganic nitrogen forms but have disparate use efficiencies[J]. Journal of Plant Ecology, 2021, 14(2): 180−190. doi: 10.1093/jpe/rtaa085
    [19] Jeschke J M. General hypotheses in invasion ecology[J]. Diversity and Distributions, 2014, 20(11): 1229−1234. doi: 10.1111/ddi.12258
    [20] Wang Z X, He Z S, He W M. Nighttime climate warming enhances inhibitory effects of atmospheric nitrogen deposition on the success of invasive Solidago canadensis[J]. Climatic Change, 2021, 167(1/2): 20. doi: 10.1007/s10584-021-03175-0
    [21] Livingstone S W, Isaac M E, Cadotte M W. Invasive dominance and resident diversity: unpacking the impact of plant invasion on biodiversity and ecosystem function[J]. Ecological Monographs, 2020, 90(4): e01425. https://doi.org/10.1002/ecm.1425.
    [22] Geng X M, He W M. Success of native and invasive plant congeners depends on inorganic nitrogen compositions and levels[J]. Journal of Plant Ecology, 2021, 14(2): 202−212. doi: 10.1093/jpe/rtaa088
    [23] 陈燕丽, 陈中义. 空心莲子草入侵控制的生态学研究进展[J]. 湖北农业科学, 2010, 49(9): 2260−2263, 2267. doi: 10.3969/j.issn.0439-8114.2010.09.068

    Chen Y L, Chen Z Y. Ecology research progress on invasion control of alligator weed Alternanthera philoxeroides (Mart.) Griseb[J]. Hubei Agricultural Sciences, 2010, 49(9): 2260−2263, 2267. doi: 10.3969/j.issn.0439-8114.2010.09.068
    [24] Geng Y, Gao L, Yang J. Epigenetic flexibility underlying phenotypic plasticity[M]. Heidelberg: Springer, 2013.
    [25] Gao L X, Geng Y P, Li B, et al. Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation[J]. Plant, Cell & Environment, 2010, 33(11): 1820−1827.
    [26] Burns J H. A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients[J]. Diversity & Distributions, 2004, 10(5/6): 387−397.
    [27] 秦启文, 赵昕, 周守标. 水禾和粉绿狐尾藻对生活污水净化效果研究[J]. 安徽师范大学学报(自然科学版), 2020, 43(5): 452−458. doi: 10.14182/J.cnki.1001-2443.2020.05.007

    Qin Q W, Zhao X, Zhou S B. Study on purification effect of Hygroryza aristata and Myriophyllum aquaticum vulgare on domestic sewage[J]. Journal of Anhui Normal University (Natural Science), 2020, 43(5): 452−458. doi: 10.14182/J.cnki.1001-2443.2020.05.007
    [28] 冯春慧, 孙梅, 田昆, 等. 模拟增温对水葱输导组织的影响[J]. 东北林业大学学报, 2020, 48(4): 24−28. doi: 10.3969/j.issn.1000-5382.2020.04.005

    Feng C H, Sun M, Tian K, et al. Effect of conducting tissue of Scirpus validus to simulated warming[J]. Journal of Northeast Forestry University, 2020, 48(4): 24−28. doi: 10.3969/j.issn.1000-5382.2020.04.005
    [29] 雷晓寒. 黄花鸢尾微生态系统底泥覆盖的水质效应研究[D]. 南京: 南京大学, 2018.

    Lei X H. Study The effects of sediment capping on water quality in an Iris wilsonii microcosm[D]. Nanjing: Nanjing University, 2018.
    [30] 孙焕荣, 李静, 封晓辉, 等. 盐胁迫对荷兰菊、千屈菜及狼尾草生长的影响[J]. 河北林业科技, 2020(2): 13−16.

    Sun H R, Li J, Feng X H, et al. Effects of salt stress on the growth of Symphyotrichum novi-belgii, Lythrum salicaria and Pennisetum alopecuroides[J]. The Journal of Hebei Forestry Science and Technology, 2020(2): 13−16.
    [31] 杨翔宇, 董炜华, 陆娟, 等. 生物质炭对黄花鸢尾湿地浮游植物群落的影响[J]. 吉林大学学报(理学版), 2018, 56(1): 184−189.

    Yang X Y, Dong W H, Lu J, et al. Effects of biochar on phytoplankton community in Iris wilsonii wetland[J]. Journal of Jilin University (Science Edition), 2018, 56(1): 184−189.
    [32] 周建. 环境因子对空心莲子草种内和种间关系的影响[D]. 北京: 北京林业大学, 2015.

    Zhou J. Effects of environmental factors on interspecific and intraspecific relationships of Alternanthera philoxeroides[D]. Beijing: Beijing Forestry University, 2015.
    [33] 赵鸿怡, 张勇, 崔媛, 等. 退化梯度上滇西北高山草甸植物群落的补偿生长能力[J]. 草业科学, 2020, 37(6): 1025−1034. doi: 10.11829/j.issn.1001-0629.2019-0526

    Zhao H Y, Zhang Y, Cui Y, et al. Study on the compensatory growth of alpine meadows along a degradation gradient in northwestern Yunnan Province[J]. Pratacultural Science, 2020, 37(6): 1025−1034. doi: 10.11829/j.issn.1001-0629.2019-0526
    [34] 申时才, 徐高峰, 李天林, 等. 5种入侵植物补偿反应及其形态可塑性比较[J]. 西北植物学报, 2012, 32(1): 173−179. doi: 10.3969/j.issn.1000-4025.2012.01.028

    Shen S C, Xu G F, Li T L, et al. Comparative study of compensatory response and morphological plasticity of five invasive plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(1): 173−179. doi: 10.3969/j.issn.1000-4025.2012.01.028
    [35] 赵威, 王艳杰, 李亚鸽. 草地入侵植物对枝叶去除的生理生态响应: 模式、机理与研究展望[J]. 草业学报, 2017, 26(6): 195−202. doi: 10.11686/cyxb2016368

    Zhao W, Wang Y J, Li Y G. The eco-physiological responses of invasive plants to defoliation in grassland: patterns, mechanisms, and research prospects[J]. Acta Prataculturae Sinica, 2017, 26(6): 195−202. doi: 10.11686/cyxb2016368
    [36] 廖慧璇, 周婷, 陈宝明, 等. 外来入侵植物的生态控制[J]. 中山大学学报(自然科学版), 2021, 60(4): 1−11.

    Liao H X, Zhou T, Chen B M, et al. Ecological control of exotic invasive plants[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(4): 1−11.
    [37] 陈中义, 陈燕丽, 李华成. 几种物理方式控制空心莲子草种群生长的效应研究[J]. 长江大学学报(自然科学版), 2014, 11(17): 47−51.

    Chen Z Y, Chen Y L, Li H C. Study on the effect of several physical methods on controlling the growth of Alternanthera philoxeroides community[J]. Journal of Yangtze University (Natural Science Edition), 2014, 11(17): 47−51.
    [38] 周颖, 刘杰, 闫晓慧, 等. 模拟昆虫取食对牛膝菊防御特征的影响[J]. 应用生态学报, 2022, 33(3): 808−812. doi: 10.13287/j.1001-9332.202202.036

    Zhou Y, Liu J, Yan X H, et al. Effects of simulated insect herbivory on the defense traits of Galinsoga parviflora[J]. Chinese Journal of Applied Ecology, 2022, 33(3): 808−812. doi: 10.13287/j.1001-9332.202202.036
    [39] 周雨露, 李凌云, 高俊琴, 等. 种间竞争对入侵植物和本地植物生长的影响[J]. 生态学杂志, 2016, 35(6): 1504−1510.

    Zhou Y L, Li L Y, Gao J Q, et al. Effects of interspecific competition on the growth of invasive and native species[J]. Chinese Journal of Ecology, 2016, 35(6): 1504−1510.
    [40] Grime J P. The role of plasticity in exploiting environmental heterogeneity[J]. Exploitation of Environmental Heterogeneity by Plants, 1994: 1−19.
    [41] Belsky A J, Carson C L, Jensen C L, et al. Overcompensation by plants: Herbivore optimization or red herring[J]. Evolutionary Ecology, 1993, 7(1): 109−121. doi: 10.1007/BF01237737
    [42] 杨中领, 张家洋, 楚莉莉, 等. 施肥和刈割对青藏高原东部高寒草甸群落生物量补偿效应的影响[J]. 生态学杂志, 2012, 31(9): 2276−2282.

    Yang Z L, Zhang J Y, Chu L L, et al. Effects of fertilization and mowing on community biomass compensation in eastern alpine meadow of Tibetan Plateau[J]. Chinese Journal of Ecology, 2012, 31(9): 2276−2282.
    [43] Lamb E G, Stewart A C, Cahill J F. Root system size determines plant performance following short-term soil nutrient pulses[J]. Plant Ecology, 2012, 213(11): 1803−1812. doi: 10.1007/s11258-012-0135-0
    [44] 刘琳. 氮沉降、繁殖体压力及基因型对加拿大一枝黄花(Solidago canadensis L.)入侵的影响[D]. 北京: 北京林业大学, 2018.

    Liu L. Effects of nitrogen pulses, propagule pressure and genotypic diversity on the invasion of Solidago canadensis L[D]. Beijing: Beijing Forestry University, 2018.
    [45] 孙思邈, 陈吉欣, 冯炜炜, 等. 植物氮形态利用策略及对外来植物入侵性的影响[J]. 生物多样性, 2021, 29(1): 72−80. doi: 10.17520/biods.2020072

    Sun S M, Chen J X, Feng W W, et al. Plant strategies for nitrogen acquisition and their effects on exotic plant invasions[J]. Biodiversity Science, 2021, 29(1): 72−80. doi: 10.17520/biods.2020072
    [46] 王桔红, 陈文, 张燕芳, 等. 不同入侵程度的微甘菊及本土种豨莶碳氮磷化学计量特征与营养策略[J]. 生态学杂志, 2020, 39(6): 1994−2003.

    Wang J H, Chen W, Zhang Y F, et al. Carbon, nitrogen, and phosphorus stoichiometry and nutrition strategy of invasive species Mikania micrantha with three invasive degrees and native species Siegesbeckia orientalis[J]. Chinese Journal of Ecology, 2020, 39(6): 1994−2003.
    [47] 陈旭, 王国严, 彭培好, 等. 四川攀西地区云南松群落物种多样性和谱系多样性对紫茎泽兰入侵的影响[J]. 生物多样性, 2021, 29(7): 865−874. doi: 10.17520/biods.2020485

    Chen X, Wang G Y, Peng P H, et al. Effects of taxonomic and phylogenetic diversity of resident Pinus yunnanensis communities on Ageratina adenophora invasion in the Panxi region, Sichuan Province[J]. Biodiversity Science, 2021, 29(7): 865−874. doi: 10.17520/biods.2020485
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  8
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 修回日期:  2022-03-29
  • 网络出版日期:  2022-08-06

目录

    /

    返回文章
    返回