高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅镁凝胶强化人工林杉木的制备工艺优化及性能研究

王燕 张源 李萍 袁光明 李新功 王向军 左迎峰

王燕, 张源, 李萍, 袁光明, 李新功, 王向军, 左迎峰. 硅镁凝胶强化人工林杉木的制备工艺优化及性能研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220074
引用本文: 王燕, 张源, 李萍, 袁光明, 李新功, 王向军, 左迎峰. 硅镁凝胶强化人工林杉木的制备工艺优化及性能研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220074
Wang Yan, Zhang Yuan, Li Ping, Yuan Guangming, Li Xingong, Wang Xiangjun, Zuo Yingfeng. Technology optimization and properties of Chinese fir plantation wood strengthened by silica and magnesium gel[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220074
Citation: Wang Yan, Zhang Yuan, Li Ping, Yuan Guangming, Li Xingong, Wang Xiangjun, Zuo Yingfeng. Technology optimization and properties of Chinese fir plantation wood strengthened by silica and magnesium gel[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220074

硅镁凝胶强化人工林杉木的制备工艺优化及性能研究

doi: 10.12171/j.1000-1522.20220074
基金项目: 国家自然科学基金项目(32171708),湖南省教育厅科学研究优秀青年项目(21B0238),湖湘青年英才计划(2019RS2040),湖南省科技创新计划(2021RC4062)
详细信息
    作者简介:

    王燕。主要研究方向:木材功能性改良研究。Email:15576707045@163.com 地址:410004 湖南省长沙市韶山南路中南林业科技大学材料科学与工程学院

    责任作者:

    左迎峰,博士,副教授。主要研究方向:木材功能性改良及生物质复合材料研究。Email:zuoyf1986@163.com 地址:同上

  • 中图分类号: S781.7

Technology optimization and properties of Chinese fir plantation wood strengthened by silica and magnesium gel

  • 摘要:   目的   为有效提升人工林杉木物理力学性能,以无机硅酸钠(Na2SiO3)溶液为浸渍改性剂,硫酸镁(MgSO4)溶液为固化剂,采用真空―加压循环浸渍方法制备硅镁凝胶改性杉木,探究硫酸镁的添加量和不同浸渍工艺对改性杉木浸渍效果和性能的影响,并优化浸渍工艺为硅镁凝胶改性杉木的规模生产提供理论依据。   方法  通过单因素试验探讨硫酸镁和硅酸钠的摩尔比、浸渍时间、浸渍压力与负/正压时间比4个因素对杉木试件改性效果的影响,在此基础上设计L9(34)正交试验优化浸渍工艺参数。由最佳工艺制得硅镁凝胶改性杉木与硅酸钠改性杉木,考察其质量增加率、顺纹抗压强度、硬度、吸水率、抗流失率、耐热性等性能和微观形貌表征,对比两种改性杉木之间及与未处理杉木的差异。  结果  综合单因素和正交试验结果得到:以硫酸镁和硅酸钠的摩尔比为1∶2的MgSO4溶液和Na2SiO3溶液改性杉木,浸渍时间2 h、浸渍压力0.3 MPa和负/正压时间比2∶1的条件下制得的硅镁凝胶改性杉木性能最佳。对比未处理杉木,硅镁凝胶改性杉木的抗压强度、端面硬度、弦切面硬度和径切面硬度分别提升81.1%、73.1%、52.6%和37.2%,吸水率由129.3%降至73.3%。SEM结果显示硅镁凝胶改性杉木中硫酸镁成功浸入杉木管胞与硅酸钠反应并将其固化,导致其沉积物形貌不同,相比硅酸钠改性杉木其抗流失性提升了22.1%。TGA曲线中硅镁凝胶改性杉木的质量损失速率显著降低,由于无机组分的浸入,残余质量提升了27.09%。  结论  杉木经硅镁凝胶改性后,密度和强度增加,耐水性能改善,硬度、抗流失性及热稳定性显著提高,较硅酸钠改性杉木更具性能和应用方面的优势。

     

  • 图  1  各因素对杉木改性效果的影响

    Figure  1.  Influence of various factors on the modification effect of Chinese fir wood

    图  2  不同杉木试件吸水率测定结果

    MS-S表示硅镁凝胶改性杉木试件,S-S表示硅酸钠改性杉木试件,Ctrl-S表示未处理杉木试件,下同。MS-S stands for silica-magnesium gel modified Chinese fir samples, S-S stands for sodium silicate modified Chinese fir samples and Ctrl-S stands for untreated Chinese fir samples, the same below.

    Figure  2.  Determination results of water absorption of differentChinese fir specimen

    图  3  改性杉木和未处理杉木横切面的电镜图

    Figure  3.  Electron micrograph of transverse section of modified and unmodified Chinese fir woods

    图  4  沉积填充物微观形貌的电镜图

    Figure  4.  Electron micrographs of micro-morphology of deposited fillers

    图  5  杉木改性杉木和未处理材的TGA-DTG曲线

    Figure  5.  TGA-DTG curves of modified and untreated Chinese fir wood

    表  1  正交试验因素–水平表

    Table  1.   Orthogonal experiment factor-level table

    水平
    Level
    浸渍时间
    Impregnation
    time (A)/h
    浸渍压力
    Impregnation
    pressure (B)/MPa
    负/正压时间比
    Negative-positive
    pressure time ratio (C)
    120.31∶2
    230.51∶1
    340.72∶1
    下载: 导出CSV

    表  2  正交试验方案与性能检测结果极差分析

    Table  2.   Orthogonal experiment scheme and range analysis of performance detection results

    试验号
    Test No.
    因素 Factor质量增加率
    Mass gain rate (1)/%
    抗压强度
    Compressive strength (2)/MPa
    ABC误差 Error
    1111164.6953.4
    2122251.8055.9
    3133364.7657.9
    4212362.1654.3
    5223165.9456.7
    6231247.4751.3
    7313272.3658.0
    8321351.9355.2
    9332158.9450.4
    k1-160.4266.4054.7063.19
    k1-258.5256.5657.6357.21
    k1-361.0757.0667.6959.62
    极差 Range(R12.559.8512.995.98
    k2-155.755.253.353.5
    k2-254.155.953.555.1
    k2-354.553.257.555.8
    极差 Range (R21.62.74.22.3
    下载: 导出CSV

    表  3  硅镁凝胶改性杉木试件质量增加率的方差分析表

    Table  3.   Variance analysis table of weight gain rate of magnesium gel modified Chinese fir specimens

    因素
    Factor
    均方和
    Mean sum
    of square
    df均方
    Mean square
    F
    F value
    显著性
    Significance
    B184.54292.275.70*
    C278.382139.198.60**
    误差 Error64.75416.19
    注:**表示因素水平变化对硅镁凝胶改性杉木的质量增加率影响显著(F0.05 = 6.94),*表示因素水平变化对硅镁凝胶改性杉木的质量增加率影响一般显著(F0.1 = 4.32)。下同。Notes: ** indicates significant influence of factor level change on the mass gain rate of silica-magnesium gel modified Chinese fir (F0.05 = 6.94) and * indicates noticeable influence of factor level change on the mass gain rate of silica-magnesium gel modified Chinese fir (F0.1 = 4.32). The same below.
    下载: 导出CSV

    表  4  硅镁凝胶改性杉木试件顺纹抗压强度的方差分析表

    Table  4.   Variance analysis table of longitudinal compressive strength of magnesium gel modified Chinese fir specimens

    因素
    Factor
    均方和
    Mean sum
    of square
    df均方
    Mean square (F)
    F
    F value
    显著性
    Significance
    B12.1026.011.91
    C33.98216.995.41*
    误差 Error12.5843.14
    下载: 导出CSV

    表  5  改性杉木试件性能检测结果

    Table  5.   Property test results of modified Chinese fir specimens

    检测项目 Test items硅镁凝胶改性杉木
    The silica-magnesium gel
    modified Chinese fir wood
    硅酸钠改性杉木
    The sodium silicate modified
    Chinese fir wood
    未处理杉木
    The untreated Chinese
    fir wood
    质量增加率 Mass gain rate/% 68.23 ± 1.80 50.71 ± 1.60
    吸水率 Water absorption rate/% 73.3 ± 3.1 80.9 ± 3.3 129.3 ± 4.1
    流失率 Leach rate/% 14.9 ± 1.5 18.2 ± 1.4
    抗压强度 Compressive strength/MPa 57.6 ± 2.8 48.5 ± 2.2 31.8 ± 3.1
    端面硬度 Cross section hardness/N 6 632 ± 531 5 592 ± 467 3 832 ± 472
    径切面硬度 Radial section hardness/N 2 471 ± 456 2 637 ± 327 1 619 ± 306
    弦切面硬度 Tangential section hardness/N 2 285 ± 399 2 298 ± 434 1 434 ± 328
    下载: 导出CSV
  • [1] 国家林业局. 中国林业和草原统计年鉴[Z]. 北京: 中国林业出版社, 2019, 2−3.

    State Forestry Administration. China forestry and grassland statistical yearbook[Z]. Beijing: China Forestry Publishing House, 2019, 2−3.
    [2] 杨洋, 张蕾, 宋菲菲, 等. 人工林速生材高值化利用研究进展[J]. 林产工业, 2020, 57(5): 53−55. doi: 10.19531/j.issn1001-5299.202005012

    Yang Y, Zhang L, Song F F, et al. Research progress on high value utilization of fast-growing wood in plantation[J]. China Forest Products Industry, 2020, 57(5): 53−55. doi: 10.19531/j.issn1001-5299.202005012
    [3] Li F, Ye C Y, Huang Y H, et al. Incorporation of in situ synthesized nano-copper modified phenol-formaldehyde resin to improve the mechanical properties of Chinese fir: a preliminary study[J]. Polymers, 2021, 13(6): 876. doi: 10.3390/polym13060876
    [4] 李萍, 张源, 吴义强, 等. 硅酸盐浸渍改性对杉木视觉物理量的影响[J]. 北京林业大学学报, 2020, 42(9): 122−129. doi: 10.12171/j.1000-1522.20200189

    Li P, Zhang Y, Wu Y Q, et al. Effects of silicate impregnation modification on visual physical parameters of Chinese fir wood[J]. Journal of Beijing Forestry University, 2020, 42(9): 122−129. doi: 10.12171/j.1000-1522.20200189
    [5] 秦泽秀, 张银亮, 刘明利, 等. 浸渍处理对木材尺寸稳定性影响研究进展[J]. 林产工业, 2021, 58(12): 22−25, 38.

    Qin Z X, Zhang Y L, Liu M L, et al. Research progress on effect of impregnation treatment on dimensional stability of wood[J]. Chinese Journal of Wood Science and Technology, 2021, 58(12): 22−25, 38.
    [6] 孙振宇, 张源, 左迎峰, 等. 有机−无机复合改性速生木材研究现状与展望[J]. 材料导报, 2021, 35(5): 5181−5187. doi: 10.11896/cldb.19120224

    Sun Z Y, Zhang Y, Zuo Y F, et al. Research status and prospect of organic-inorganic compound modified fast-growing wood[J]. Materials Reports, 2021, 35(5): 5181−5187. doi: 10.11896/cldb.19120224
    [7] 周亚, 李萍, 左迎峰, 等. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989−2996. doi: 10.11896/cldb.19010184

    Zhou Y, Li P, Zuo Y F, et al. Research progress and development trend of inorganic reinforced wood[J]. Materials Reports, 2019, 33(17): 2989−2996. doi: 10.11896/cldb.19010184
    [8] Furuno T, Imamura Y. Combinations of wood and silicate[J]. Mokuzai Gakkaishi, 1992, 38(5): 448−457.
    [9] 邓邵平. 两段处理法对杉木间伐材性能改良的研究[J]. 森林与环境学报, 2007, 27(1): 52−56.

    Deng S P. Modification on thinning wood of Cunninghamia lancelolate by double diffusion[J]. Journal of Forest and Environment, 2007, 27(1): 52−56.
    [10] 郑雅娴, 吕文华, 许茂松. 树脂型无机硅酸盐浸渍改性人工林杉木的性能[J]. 木材科学与技术, 2015, 29(6): 36−39. doi: 10.3969/j.issn.1001-8654.2015.06.009

    Zheng Y X, Lü W H, Xu M S. Properties of Chinese fir modified with inorganic silicate resin[J]. Chinese Journal of Wood Science and Technology, 2015, 29(6): 36−39. doi: 10.3969/j.issn.1001-8654.2015.06.009
    [11] Sun Z Y, Lv J X, Wang Z H, et al. Sodium silicate/waterborne epoxy resin hybrid-modified Chinese fir wood[J]. Wood Science and Technology, 2021, 55(3): 837−855. doi: 10.1007/s00226-021-01287-5
    [12] Sanghavi R J, Dobariya R, Bhatti S, et al. Preparation of high-purity magnesium-ammonium-phosphate fertilizer using sea bittern and industrial waste streams[J]. Environmental Science and Pollution Research, 2020, 27(7): 7720−7728. doi: 10.1007/s11356-019-07445-4
    [13] 刘磊, 朱玮, 赵砺. 杨木/无机硅化物复合材处理工艺初探[J]. 木材工业, 2001, 15(3): 8−11.

    Liu L, Zhu W, Zhao Li. Preliminary study on preparation of poplar/inorganic silicided composites[J]. Wood Industry, 2001, 15(3): 8−11.
    [14] Klapiszewski Ł, Zietek J, Ciesielczyk F, et al. Magnesium silicate conjugated with calcium lignosulfonate: In situ synthesis and comprehensive physicochemical evaluations[J]. Physicochemical Problems of Mineral Processing, 2018, 54(3): 793−802.
    [15] Zhang Y, Bi X Q, Li P. Sodium silicate/magnesium chloride compound-modified Chinese fir wood[J]. Wood Science and Technology, 2021, 55(6): 1781−1794. doi: 10.1007/s00226-021-01327-0
    [16] Zhou Y, Zhang Y, Zuo Y F, et al. Construction of a network structure in Chinese fir wood by Na2SiF6 crosslinked Na2SiO3[J]. Journal of Materials Research and Technology, 2020, 9(6): 14190−14199. doi: 10.1016/j.jmrt.2020.10.033
    [17] 党力, 吕智慧. 无机阻燃剂的研究进展[J]. 中国塑料, 2018, 32(9): 1−8.

    Dang L, Lü Z H. Research progress on inorganic flame retardants[J]. China Plastics, 2018, 32(9): 1−8.
    [18] 高义钦, 李元元, 任瑞清, 等. 弱酸改性对高温热处理杉木结构及性能的影响[J]. 林业工程学报, 2021, 6(4): 49−55.

    Gao Y Q, Li Y Y, Ren R Q, et al. Effect of weak acid modification on the structure and properties of heat-treated Chinese fir[J]. Journal of Forestry Engineering, 2021, 6(4): 49−55.
    [19] Gao X, Dong Y M, Wang K L, et al. Improving dimensional and thermal stability of poplar wood via aluminum-based sol-gel and furfurylation combination treatment[J]. BioResources, 2017, 12(2): 3277−3288.
    [20] 黄艳辉, 费本华, 赵荣军. 低分子量酚醛树脂处理对杉木细胞壁的改性机理研究[J]. 光谱学与光谱分析, 2015, 35(12): 3356−3359.

    Huang Y H, Fei B H, Zhao R J. Modified mechanism of cell walls from Chinese fir treated with low-molecular-weight phenol formaldehyde resin[J]. Spectroscopy and Spectral Analysis, 2015, 35(12): 3356−3359.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-07-25
  • 网络出版日期:  2022-08-06

目录

    /

    返回文章
    返回