高级检索
    刘红梅, 郑永涛, 郭盈添, 张晶星, 李伟. 油松PtNF-YC1基因鉴定及其调控球花发育的作用机制研究[J]. 北京林业大学学报, 2023, 45(9): 1-8. DOI: 10.12171/j.1000-1522.20220250
    引用本文: 刘红梅, 郑永涛, 郭盈添, 张晶星, 李伟. 油松PtNF-YC1基因鉴定及其调控球花发育的作用机制研究[J]. 北京林业大学学报, 2023, 45(9): 1-8. DOI: 10.12171/j.1000-1522.20220250
    Liu Hongmei, Zheng Yongtao, Guo Yingtian, Zhang Jingxing, Li Wei. Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development[J]. Journal of Beijing Forestry University, 2023, 45(9): 1-8. DOI: 10.12171/j.1000-1522.20220250
    Citation: Liu Hongmei, Zheng Yongtao, Guo Yingtian, Zhang Jingxing, Li Wei. Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development[J]. Journal of Beijing Forestry University, 2023, 45(9): 1-8. DOI: 10.12171/j.1000-1522.20220250

    油松PtNF-YC1基因鉴定及其调控球花发育的作用机制研究

    Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development

    • 摘要:
        目的  针叶树中NF-Y核因子调控球花发育的研究尚未见报导,对油松PtNF-YC1基因克隆、表达特性及功能分析,旨在为针叶树NF-Y基因家族在球花生殖发育中的功能研究提供依据。
        方法  (1)利用系统进化树分析油松PtNF-YC1与拟南芥NF-YC亚家族蛋白的亲缘关系;(2)瞬时转化烟草检测PtNF-YC1的亚细胞定位;(3)根据转录组数据分析PtNF-YC1在油松不同组织中的表达特性;(4)PtNF-YC1异源转化拟南芥,分别比较长日照和短日照条件下转基因拟南芥不同株系的开花时间,并对长日照下各株系进行转录组测序,筛选响应PtNF-YC1调控开花的相关基因;(5)通过Y2H和BiFC验证PtNF-YC1与候选蛋白之间互作。
        结果  PtNF-YC1基因的开放阅读框为897 bp,编码299个氨基酸,含有典型NF-YC保守结构域,与AtNF-YC3/4/9具有较高同源性。亚细胞定位结果显示,PtNF-YC1定位在细胞核和细胞质。PtNF-YC1在针叶、营养芽、雌雄花芽和根中都能表达,但在雄球花中表达丰度最高。PtNF-YC1异源转化拟南芥可推迟其短日照下开花时间。Y2H和BiFC证明PtNF-YC1与PtCOL5存在相互作用。
        结论  PtNF-YC1可调控成花时间,是油松光周期途径诱导球花发育的候选基因。

       

      Abstract:
        Objective  The research on the regulation of NF-Y nuclear factor on cone development in conifers has not been reported yet. Through the cloning, expression characteristics and functional analysis of PtNF-YC1 gene of Pinus tabuliformis, it provides a basis for the functional study of conifer NF-Y gene family in the reproductive development of conifers.
        Method  (1) The relationship between PtNF-YC1 and Arabidopsis thaliana NF-YC subfamily proteins was analyzed by phylogenetic tree. (2) Tobacco was transiently transformed to detect the subcellular localization of PtNF-YC1. (3) The expression characteristics of PtNF-YC1 in different tissues of P. tabuliformis were analyzed based on transcriptome data. (4) PtNF-YC1 was heterologously transformed into Arabidopsis thaliana , and the flowering time of different transgenic Arabidopsis thaliana lines under long-day and short-day was compared. The transcriptome sequencing of each transgenic line under long-day was performed to screen the genes related to PtNF-YC1 regulating flowering. (5) The protein interaction between PtNF-YC1 and candidate proteins was verified by Y2H and BiFC.
        Result  The open reading frame of PtNF-YC1 was 897 bp, which encoded 299 amino acids, had a typical NF-YC conserved domain, and a close relationship with the homologous genes of AtNF-YC3/4/9. The subcellular localization showed that PtNF-YC1 was localized in the nucleus and cytoplasm. The analysis of expression patterns in different tissues showed that PtNF-YC1 could be expressed in needles, vegetative buds, male and female cones and roots, but the expression abundance was the highest in male cones and stems. PtNF-YC1 heterologous transformation of Arabidopsis thaliana delayed flowering under short day. It was proved that PtNF-YC1 interacted with PtCOL5 through Y2H and BiFC.
        Conclusion  PtNF-YC1 has the function of regulating flowering time and is a candidate gene for inducing cone development through photoperiodic pathway of P. tabuliformis.

       

    /

    返回文章
    返回