Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content
-
摘要:
目的 弄清水曲柳人工林林分空间结构特征与土壤养分含量的关系,揭示影响土壤养分的林分空间结构因子,得出基于改善土壤养分的林分空间结构优化措施,为水曲柳人工林的精准经营及其土壤的有效管理提供科学依据。 方法 以黑龙江省帽儿山地区4种林分密度和2种混交比例的水曲柳人工林为对象,运用相关分析与通径分析法得出混交比、林分密度、角尺度、大小比数、开敞度和竞争指数等林分结构因子与土壤养分含量的关系。 结果 水落3∶3混交林表层土壤养分含量显著高于4种密度纯林,其有机碳、全氮、全磷、全钾、有效磷和速效钾含量较同密度水曲柳纯林分别提高27.3%、31.8%、18.2%、7.3%、15.2%和6.4%;不同林分密度水曲柳纯林间土壤养分含量差异显著(P < 0.05),土壤养分随林分密度的增大而降低;最小密度纯林较最大密度纯林表层土壤有机碳、全氮、全磷、全钾、有效磷和速效钾含量分别提高42.7%、35.4%、19.8%、8.9%、41.3%和28.4%;土壤养分含量随角尺度、大小比数和开敞度的增大而增加,随竞争指数的增大而降低;林分密度和竞争指数对多数土壤养分含量具有直接负作用,角尺度、大小比数和开敞度与多数土壤养分含量正相关,各结构特征因子间相互作用直接或间接的影响土壤养分含量。 结论 水曲柳落叶松混交林较水曲柳纯林、低密度纯林较高密度纯林土壤养分含量高。水曲柳人工林经营过程中应多营造混交林,以保持合理林分密度为总基调,降低林木间竞争指数。在调整角尺度,使林木趋于随机分布的基础上,根据大小比数伐除处于劣势的林木,增大开敞度。逐渐改变林木生长空间不合理的状态,改善林地营养条件。 Abstract:Objective This study clarified the relationship between stand spatial structure characteristics and soil nutrient content in Fraxinus mandshurica plantation, revealed the factors of stand spatial structure affecting soil nutrient, and obtained the optimal measures of stand spatial structure based on improving soil nutrients, providing scientific basis for precise management and effective soil management of Fraxinus mandshurica plantation. Method Fraxinus mandshurica plantation with 4 kinds of stand density and 2 kinds of mixed proportion was taken as the object in Maoershan region of Heilongjiang Province of northeastern China. Correlation analysis and path analysis were used to find out the relationship between soil nutrient content and stand structure factors, such as mix ratio, stand density, angular scale, size ratio, opening degree and competition index. Result The surface soil nutrient content of mixed forest was significantly higher than that of the four density pure forests, and the contents of organic carbon, total nitrogen, total phosphorus, total potassium, available phosphorus and available potassium were increased by 27.3%, 31.8%, 18.2%, 7.3%, 15.2% and 6.4%, respectively. There were significant differences in soil nutrient contents among different densities of pure plantations (P < 0.05), and soil nutrient contents decreased with stand density increasing. The contents of surface soil organic carbon, total nitrogen, total phosphorus, total potassium, available phosphorus and available potassium of the minimum density pure plantation were increased by 42.7%, 35.4%, 19.8%, 8.9%, 41.3% and 28.4% compared with those of the maximum density pure plantationt, respectively. The soil nutrient content increased with the increasing of angle scale, size ratio and openness, but decreased with the increasing of competition index. Stand density and competition index had direct negative effects on most soil nutrient contents, and angular scale, size ratio and openness were positively correlated with most soil nutrient contents. The interaction of structural characteristic factors directly or indirectly affected soil nutrient content. Conclusion The soil nutrient content of mixed Fraxinus mandshurica plantations is higher than that of pure Fraxinus mandshurica plantations. The soil nutrient contents of low density of pure plantations are higher than that of high density of pure Fraxinus mandshurica plantations. In the process of management of Fraxinus mandshurica plantation, more mixed forests should be built to keep reasonable stand density as the general keynote and reduce the competition index among trees. On the basis of adjusting the angle scale to make the trees tend to random distribution, the inferior trees should be cut down according to the size ratio to increase the opening degree, gradually change the state of unreasonable growth space of forest trees and then improve the nutrient condition of forest land. -
Key words:
- Fraxinus mandshurica /
- stand spatial structure /
- soil nutrient /
- path analysis
-
表 1 水曲柳人工林样地信息
Table 1. Information of Fraxinus mandshurica plantation sample plots
林分类型
Stand type样地号
Sample plot No.现存密度
Present density/
(tree·hm−2)DBH/cm 平均树高
Mean tree height/m角尺度
Uniform angle大小比数
Neighborhood
comparison开敞度
Open degree竞争指数
Competition
index水曲柳纯林
Fraxinus mandshurica
pure forest1 2 040 12.39 14.39 0.458 0.497 0.144 0.679 2 2 120 12.19 14.68 0.476 0.481 0.145 0.622 3 1 560 12.34 14.65 0.439 0.490 0.171 0.526 4 1 733 13.35 14.02 0.473 0.503 0.171 0.753 5 1 706 13.27 15.45 0.476 0.464 0.159 0.541 6 1 520 13.77 14.83 0.464 0.504 0.173 0.567 7 1 480 13.56 14.58 0.466 0.510 0.158 0.607 8 1 620 13.96 14.97 0.475 0.490 0.159 0.584 9 1 500 13.69 14.93 0.457 0.476 0.167 0.538 10 1 200 14.18 15.07 0.461 0.511 0.176 0.563 11 1 120 14.99 15.61 0.443 0.470 0.182 0.589 12 893 15.42 15.78 0.481 0.544 0.172 0.501 水落混交林
Fluvial mixed forest13 1 882 14.52 15.50 0.508 0.507 0.135 0.826 14 2 000 15.02 15.27 0.500 0.491 0.151 0.540 15 1 523 13.80 14.86 0.481 0.500 0.159 0.540 16 1 500 16.28 15.61 0.576 0.553 0.141 0.702 17 1 727 15.74 15.98 0.474 0.486 0.159 0.559 18 1 437 16.39 16.89 0.462 0.505 0.150 0.495 注:样地号13 ~ 15混交比例为1行∶1行;样地号16 ~ 18混交比例为3行∶3行。 Notes: sample plot No. 13 − 15 refer to mixing ratio of 1 line∶1 line; sample plot No. 16 − 18 refer to mixing ratio of 3 lines∶3 lines. 表 2 不同林分密度与混交比例水曲柳人工林土壤养分含量
Table 2. Soil nutrient contents of Fraxinus mandshurica plantation with different stand densities and mixed ratios
林分类型
Stand type土层
Soil layer/cm有机碳
Organic C/(g·kg−1)全氮
Total N/(g·kg−1)全磷
Total P/(g·kg−1)全钾
Total K/(g·kg−1)有效磷
Available P/(mg·kg−1)速效钾
Available K/(mg·kg−1)Ⅰ 0 ~ 10 42.37 ± 0.96c 3.67 ± 0.05d 0.93 ± 0.11d 4.86 ± 0.33d 13.68 ± 2.41d 206.03 ± 18.67d 10 ~ 20 15.04 ± 1.45c 1.61 ± 0.12c 0.51 ± 0.10c 4.62 ± 0.19c 8.11 ± 0.85d 132.95 ± 18.41d 20 ~ 30 13.59 ± 0.82d 1.28 ± 0.07d 0.32 ± 0.07c 4.33 ± 0.19d 6.13 ± 1.06d 109.27 ± 12.04d Ⅱ 0 ~ 10 59.96 ± 4.10b 5.19 ± 0.21c 0.93 ± 0.13d 5.16 ± 0.60c 16.34 ± 1.97d 262.11 ± 27.61c 10 ~ 20 16.98 ± 1.48c 1.79 ± 0.11c 0.78 ± 0.16b 4.93 ± 0.39b 9.27 ± 0.94d 147.11 ± 29.28c 20 ~ 30 14.75 ± 1.42c 1.57 ± 0.09d 0.58 ± 0.02c 4.69 ± 0.27b 7.01 ± 0.66d 129.66 ± 26.37c Ⅲ 0 ~ 10 62.27 ± 3.30b 5.61 ± 0.38b 0.99 ± 0.14c 5.22 ± 0.44c 19.78 ± 1.33c 300.57 ± 38.08bc 10 ~ 20 26.41 ± 1.29b 2.34 ± 0.04b 0.79 ± 0.10b 4.94 ± 0.17b 14.23 ± 1.59c 165.87 ± 22.78b 20 ~ 30 22.02 ± 0.98b 1.77 ± 0.05bc 0.63 ± 0.04bc 4.66 ± 0.52c 10.77 ± 1.78c 131.78 ± 19.94c Ⅳ 0 ~ 10 73.97 ± 6.07b 5.68 ± 0.07b 1.16 ± 0.09a 5.34 ± 0.45b 23.33 ± 1.57a 287.91 ± 57.89c 10 ~ 20 28.91 ± 1.35b 2.77 ± 0.08b 0.86 ± 0.14b 4.86 ± 0.53b 19.04 ± 1.60b 200.83 ± 58.27a 20 ~ 30 24.3 ± 1.38b 2.19 ± 0.09b 0.84 ± 0.11a 4.83 ± 0.32a 16.53 ± 1.15a 153.13 ± 29.58a 混交1∶1
Mixed ratio of 1∶10 ~ 10 80.92 ± 7.18a 5.96 ± 0.11a 1.11 ± 0.16b 5.63 ± 0.33a 20.57 ± 2.19b 315.03 ± 43.79b 10 ~ 20 30.49 ± 0.77b 3.03 ± 0.06b 0.93 ± 0.14a 5.21 ± 0.14a 16.84 ± 1.48c 182.21 ± 45.33b 20 ~ 30 25.63 ± 0.60a 2.39 ± 0.06b 0.66 ± 0.08b 4.58 ± 0.07d 15.01 ± 1.85b 141.61 ± 19.45b 混交3∶3
Mixed ratio of 3∶30 ~ 10 85.61 ± 5.29a 8.23 ± 0.16a 1.21 ± 0.13a 5.46 ± 0.43b 23.33 ± 3.19a 321.08 ± 69.08a 10 ~ 20 59.20 ± 6.08a 5.79 ± 0.31a 1.10 ± 0.20a 5.16 ± 0.32a 20.01 ± 1.25a 206.68 ± 21.46a 20 ~ 30 32.26 ± 1.51a 3.73 ± 0.13a 0.89 ± 0.34a 4.84 ± 0.15a 17.46 ± 2.07a 157.43 ± 33.49a 注:Ⅰ ~ Ⅳ分别指密度Ⅰ、密度Ⅱ、密度Ⅲ、密度Ⅳ。不同字母表示同一土层不同林型间土壤养分指标差异显著(P < 0.05)。Notes: Ⅰ−Ⅳ refer to density Ⅰ, density Ⅱ, density Ⅲ and density Ⅳ, respectively. different letters indicate significant differences in soil nutrient indexes among different forest types in the same soil layer (P < 0.05). 表 3 水曲柳人工林不同空间结构特征下的土壤养分含量
Table 3. Soil nutrient contents under different spatial structure characteristics of Fraxinus mandshurica plantation
空间结构指标
Spatial structure index土层
Soil layer/cm有机碳
Organic
C/(g·kg−1)全氮
Total
N/(g·kg−1)全磷
Total
P/(g·kg−1)全钾
Total
K/(g·kg−1)有效磷
Available
P/(mg·kg−1)速效钾
Available
K/(mg·kg−1)角尺度
Uniform angle低 Low 0 ~ 10 54.95 ± 13.81b 4.63 ± 0.98c 0.97 ± 0.19a 4.97 ± 0.37b 16.65 ± 4.02a 240.80 ± 58.79c 10 ~ 20 20.87 ± 6.72b 2.06 ± 0.52a 0.68 ± 0.07c 4.77 ± 0.35a 11.42 ± 3.95b 147.39 ± 50.69b 20 ~ 30 17.86 ± 5.24b 1.63 ± 0.34a 0.56 ± 0.11a 4.42 ± 0.29b 9.01 ± 4.34a 114.62 ± 17.67b 中 Middle 0 ~ 10 58.12 ± 12.56a 4.91 ± 0.81b 0.99 ± 0.12a 5.16 ± 0.44b 16.94 ± 3.32a 255.32 ± 53.41b 10 ~ 20 21.53 ± 6.08b 2.08 ± 0.47a 0.69 ± 0.10b 4.85 ± 0.42a 11.81 ± 3.69a 148.73 ± 21.41b 20 ~ 30 18.54 ± 4.92a 1.66 ± 0.37a 0.60 ± 0.03a 4.57 ± 0.21a 9.43 ± 3.07a 119.32 ± 9.75b 高 High 0 ~ 10 65.87 ± 6.90a 5.58 ± 0.40a 1.01 ± 0.14a 5.29 ± 0.58a 19.19 ± 2.31a 296.34 ± 22.26a 10 ~ 20 23.11 ± 5.96a 2.24 ± 0.44a 0.93 ± 0.11a 4.91 ± 0.31a 13.11 ± 3.92a 174.99 ± 17.97a 20 ~ 30 19.59 ± 4.40a 1.82 ± 0.29a 0.63 ± 0.08a 4.70 ± 0.41a 10.74 ± 4.02a 150.29 ± 20.04a 大小比
Neighborhood comparison低 Low 0 ~ 10 52.47 ± 10.30b 4.54 ± 0.89b 0.91 ± 0.14b 4.89 ± 0.27b 16.17 ± 3.72c 227.66 ± 26.64b 10 ~ 20 18.70 ± 4.17c 1.88 ± 0.29b 0.65 ± 0.07b 4.79 ± 0.34a 9.71 ± 1.82b 132.52 ± 29.58a 20 ~ 30 16.37 ± 3.20c 1.51 ± 0.20b 0.54 ± 0.10b 4.36 ± 0.16b 9.02 ± 3.49b 112.98 ± 12.62a 中 Middle 0 ~ 10 58.10 ± 12.34b 4.94 ± 0.83b 0.94 ± 0.09b 5.03 ± 0.49a 16.57 ± 2.78b 251.59 ± 57.85b 10 ~ 20 20.96 ± 6.71b 2.05 ± 0.49b 0.71 ± 0.08b 4.81 ± 0.42a 11.69 ± 3.83a 151.38 ± 19.02a 20 ~ 30 18.06 ± 5.40b 1.65 ± 0.34b 0.60 ± 0.04b 4.56 ± 0.25a 7.39 ± 1.14c 126.32 ± 23.87a 高 High 0 ~ 10 68.35 ± 8.08a 5.63 ± 0.39a 1.11 ± 0.14a 5.51 ± 0.43a 20.03 ± 2.31a 313.21 ± 17.50a 10 ~ 20 25.84 ± 5.41a 2.45 ± 0.43a 0.93 ± 0.10a 4.93 ± 0.34a 14.93 ± 3.64a 187.20 ± 30.98a 20 ~ 30 21.57 ± 4.24a 1.95 ± 0.31a 0.64 ± 0.08a 4.78 ± 0.39a 12.77 ± 4.04a 144.94 ± 18.36a 开敞度
Open degree低 Low 0 ~ 10 52.83 ± 11.18b 4.71 ± 1.11b 0.90 ± 0.06b 4.95 ± 0.26a 17.07 ± 3.68a 228.59 ± 26.03c 10 ~ 20 18.47 ± 4.35b 1.85 ± 0.30a 0.68 ± 0.08c 4.73 ± 0.40a 11.69 ± 3.73a 141.95 ± 25.58a 20 ~ 30 16.01 ± 3.47b 1.55 ± 0.27b 0.60 ± 0.04a 4.42 ± 0.19a 7.21 ± 1.21c 126.48 ± 21.90a 中Middle 0 ~ 10 55.86 ± 8.81b 4.86 ± 0.75b 0.96 ± 0.15b 5.02 ± 0.50a 16.10 ± 2.96a 266.01 ± 65.03b 10 ~ 20 21.07 ± 6.34b 1.99 ± 0.38a 0.71 ± 0.13b 4.88 ± 0.28a 9.68 ± 1.91b 155.76 ± 30.54a 20 ~ 30 18.05 ± 4.62a 1.53 ± 0.19b 0.54 ± 0.10b 4.61 ± 0.46a 9.02 ± 3.11b 121.86 ± 25.52a 高 High 0 ~ 10 70.23 ± 8.59a 5.53 ± 0.27a 1.11 ± 0.14a 5.47 ± 0.47a 19.62 ± 2.70a 297.88 ± 32.91a 10 ~ 20 25.98 ± 5.45a 2.53 ± 0.44a 0.89 ± 0.13a 4.92 ± 0.39a 14.95 ± 3.64a 173.41 ± 41.83a 20 ~ 30 21.93 ± 4.43a 2.03 ± 0.31a 0.63 ± 0.08a 4.66 ± 0.24a 12.95 ± 4.05a 135.91 ± 19.64a 竞争指数
Competition index低Low 0 ~ 10 66.81 ± 8.75a 5.44 ± 0.27a 1.03 ± 0.10a 5.37 ± 0.35a 17.15 ± 3.94a 276.93 ± 62.96a 10 ~ 20 25.09 ± 5.15a 2.42 ± 0.42a 0.89 ± 0.13a 4.96 ± 0.39a 12.21 ± 4.26a 165.13 ± 46.28a 20 ~ 30 21.21 ± 4.20a 1.90 ± 0.31a 0.63 ± 0.08a 4.67 ± 0.42a 10.01 ± 4.22a 135.44 ± 27.70a 中 Middle 0 ~ 10 58.54 ± 12.26b 4.97 ± 0.83b 0.98 ± 0.18a 5.34 ± 0.52b 19.07 ± 2.58a 267.43 ± 41.09a 10 ~ 20 21.51 ± 6.61a 2.08 ± 0.51b 0.73 ± 0.14b 4.82 ± 0.23a 13.76 ± 3.50a 155.92 ± 30.62a 20 ~ 30 18.21 ± 5.28a 1.68 ± 0.36a 0.58 ± 0.02a 4.55 ± 0.24a 11.14 ± 4.00a 128.35 ± 21.48a 高 High 0 ~ 10 53.57 ± 11.86c 4.71 ± 1.11b 0.95 ± 0.16a 4.72 ± 0.20b 16.55 ± 3.28a 248.11 ± 49.89a 10 ~ 20 18.91 ± 5.44b 1.89 ± 0.33b 0.66 ± 0.08c 4.53 ± 0.42a 10.35 ± 3.09a 150.06 ± 25.95a 20 ~ 30 16.56 ± 3.88b 1.52 ± 0.25b 0.57 ± 0.12a 4.47 ± 0.28a 8.04 ± 2.67b 120.46 ± 16.65a 注:不同字母表示同一土层同一空间结构指标不同层级间土壤养分指标差异显著(P < 0.05)。 Note: different letters indicate that the soil nutrient index of the same soil layer, the same spatial structure index, and the soil nutrient index of different levels are significantly different. (P < 0.05). 表 4 林分空间结构特征因子与土壤养分间的直接与间接通径系数
Table 4. The direct and indirect path coefficients of spatial structure characteristic factors to soil nutrients
土壤养分
Soil nutrient因子
Factor相关系数
Correlation
coefficient直接通径系数
Direct path coefficient间接通径系数
Indirect path coefficientX1 X2 X3 X4 X5 有机碳
Organic CX1 −0.055 −0.195* 0.000 0.013 −0.156 0.041 0.243 X2 0.425* −0.163* 0.016 0.000 0.207 0.045 0.321 X3 0.491* 0.339* 0.090 −0.100 0.000 0.014 0.147 X4 0.723** 0.014 0.613 −0.010 −0.025 0.000 0.131 X5 −0.747** −0.422* −0.331 0.003 0.007 −0.004 0.000 全氮
Total NX1 −0.070 −0.218* 0.000 0.007 −0.124 0.027 0.239 X2 0.446* −0.082 0.017 0.000 0.165 0.029 0.316 X3 0.475* 0.270* 0.101 −0.050 0.000 0.009 0.145 X4 0.649** 0.535* −0.058 −0.033 −0.002 0.000 0.208 X5 −0.793** −0.669** 0.031 0.011 0.001 −0.167 0.000 全磷
Total PX1 −0.069 −0.497* 0.000 0.028 −0.033 0.190 0.243 X2 0.263* −0.351* 0.040 0.000 0.044 0.209 0.321 X3 0.300* 0.072 0.229 −0.214 0.000 0.066 0.148 X4 0.487* −0.164 0.390 0.171 0.095 0.000 −0.005 X5 −0.224* 0.017 −0.211 −0.055 −0.026 0.051 0.000 全钾
Total KX1 −0.583* −0.638** 0.000 0.006 −0.084 0.000 0.133 X2 0.256 −0.081 0.051 0.000 0.112 0.000 0.175 X3 0.507* 0.182* 0.294 −0.050 0.000 0.000 0.081 X4 0.172 0.001 0.346 0.048 −0.034 0.000 −0.188 X5 −0.360* −0.321* 0.231 −0.045 −0.198 0.000 0.000 有效磷
Available PX1 −0.121 −0.250* 0.000 −0.012 −0.045 0.011 0.175 X2 0.471* 0.149 0.020 0.000 0.060 0.012 0.231 X3 0.414* 0.097 0.115 0.091 0.000 0.004 0.106 X4 −0.055 −0.195* 0.000 0.013 −0.156 0.041 0.243 X5 0.425* −0.163* 0.016 0.000 0.207 0.045 0.321 速效钾
Available KX1 0.491* 0.339* 0.090 −0.100 0.000 0.014 0.147 X2 0.723** 0.014 0.613 −0.010 −0.025 0.000 0.131 X3 −0.747** −0.422* −0.331 0.003 0.007 −0.004 0.000 X4 −0.070 −0.218* 0.000 0.007 −0.124 0.027 0.239 X5 0.446* −0.082 0.017 0.000 0.165 0.029 0.316 注:X1为林分密度;X2为角尺度;X3为大小比数;X4为开敞度;X5为hegyi竞争指数。* 表示显著(P < 0.05), ** 表示极显著(P < 0.01)。Notes: X1 is stand density; X2 is uniform angle; X3 is neighborhood comparison; X4 is open degree; X5 is competition index. * means significant (P < 0.05), ** means very significant (P < 0.01). -
[1] 樊丙玉. 天然次生阔叶林林分空间结构与土壤理化性质研究[D]. 合肥: 安徽农业大学, 2012.Fan B Y. A study on the stand spatial structure and soil physicochemical properties of natural secondary broad-leaved forest[D]. Hefei: Anhui Agricultural University, 2012. [2] 曹小玉, 李际平, 委霞. 中亚热带典型林分空间结构对土壤养分含量的影响[J]. 林业科学, 2020, 56(1): 20−28.Cao X Y, Li J P, Wei X. Effects of spatial structure on soil nutrient content in typical forests in the contral-subtropics of China[J]. Scientia Silvae Sinicae, 2020, 56(1): 20−28. [3] 曹小玉, 赵文菲, 李际平, 等. 中亚热带几种典型森林土壤养分含量分析及综合评价[J]. 生态学报, 2022, 42(9): 3525−3535.Cao X Y, Zhao W F, Li J P, et al. A comprehensive evaluation of soil nutrients in main typical forests in central-subtropical China[J]. Acta Ecologica Sinica, 2022, 42(9): 3525−3535. [4] Zhang Y H, Xu X L, Li Z W, et al. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China[J]. Science of the Total Environment, 2019, 650(2): 2657−2665. [5] 朱兆良. 中国土壤氮素研究[J]. 土壤学报, 2008, 45(5): 778−783. doi: 10.3321/j.issn:0564-3929.2008.05.003Zhu Z L. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5): 778−783. doi: 10.3321/j.issn:0564-3929.2008.05.003 [6] 张岗岗, 王得祥, 柴宗政, 等. 秦岭中段华北落叶松人工林空间结构的二元分布特征[J]. 西北农林科技大学学报(自然科学版), 2014, 42(9): 33−40.Zhang G G, Wang D X, Chai Z Z, et al. Bivariate distribution of spatial structure in Larix principisrupprechtii plantation in the middle section of Qinling Mountains[J]. Journal of Northwest A & F University(Natural Science Edition), 2014, 42(9): 33−40. [7] 向博文, 曾思齐, 甘世书, 等. 湖南次生栎林空间结构优化[J]. 中南林业科技大学学报, 2019, 39(8): 33−40.Xiang B W, Zeng S Q, Gan S S, et al. Spatial structure optimization of Quercus in Hunan[J]. Journal of Central South University of Forestry & Technology, 2019, 39(8): 33−40. [8] 宋语涵, 张晨, 蔡体久, 等. 基于Voronoi图的阔叶红松林空间结构特征分析[J]. 北京林业大学学报, 2021, 43(1): 20−26.Song Y H, Zhang C, Cai T J, et al. Quantitative analysis of spatial structural characteristics of broadleaved Korean pine forest based on Voronoi diagram[J]. Journal of Beijing Forestry University, 2021, 43(1): 20−26. [9] Baskent E Z, Keles S. Spatial forest lanning: a review[J]. Ecological Modelling, 2005, 188(2−4): 145−173. doi: 10.1016/j.ecolmodel.2005.01.059 [10] 张彩彩, 李际平, 曹小玉, 等. 基于加权Voronoi图的杉木生态公益林空间结构分析[J]. 中南林业科技大学学报, 2015, 35(4): 19−26.Zhang C C, Li J P, Cao X Y, et al. Analysis on spatial structure of Cunninghamia lanceolata non-commercial forest based on weighted Voronoi diagram[J]. Journal of Central South University of Forestry & Technology, 2015, 35(4): 19−26. [11] 赵春燕, 李际平, 李建军. 基于Voronoi图和Delaunay三角网的林分空间结构量化分析[J]. 林业科学, 2010, 46(6): 78−84.Zhao C Y, Li J P, Li J J. Quantiative analysis of forest stand spatial structure based on Voronoi diagram & Delaunay triangulated network[J]. Scientia Silvae Sinicae, 2010, 46(6): 78−84. [12] 吕康婷, 张二山, 李思颖, 等. 黄山松人工林林分空间结构对林下植物多样性的影响[J/OL]. 浙江农林大学学报, 2022, 39(6): 1−10.Lü K T, Zhang E S, Li S Y, et al. Effects of stand spatial structure on understory plant diversity in Pinus taiwanensis plantation[J/OL]. Journal of Zhejiang A & F University, 2022, 39(6): 1−10. [13] 弓文艳. 辽东大伙房水库防护林林分结构及其水土保持功能研究[D]. 北京: 北京林业大学, 2019.Gong W Y. Study on forest structure and soil & water conservation function of shelterbelt around Liaodong Dahuofang Reservoir[D]. Beijing: Beijing Forestry University, 2019. [14] 陈立新, 哈雪梅, 段文标, 等. 红松人工林优势木竞争指数影响因子[J]. 生态学报, 2022, 42(5): 1777−1787.Chen L X, Ha X M, Duan W B, et al. Analysis on influencing factors of competitive index of dominant trees on Pinus koraiensis plantation[J]. Acta Ecologica Sinica, 2022, 42(5): 1777−1787. [15] 孙宇, 李际平, 曹小玉, 等. 基于通径分析的杉木林空间结构与土壤养分关系研究[J]. 中南林业科技大学学报, 2020, 40(7): 41−47.Sun Y, Li J P, Cao X Y, et al. Research on the relationship between spatial structure and soil nutrients of Cunninghamia lanceolata forest based on path analysis method[J]. Journal of Central South University of Forestry & Technology, 2020, 40(7): 41−47. [16] 魏曦. 晋西黄土区典型人工林分结构与水土保持功能耦合关系研究[D]. 北京: 北京林业大学, 2018.Wei X. Coupling relationships between artificial stand structure and soil and water conservation Function in the loess region of western Shanxi[D]. Beijing: Beijing Forestry University, 2018. [17] 冯健, 王骞春, 陆爱君, 等. 辽东山区落叶松−水曲柳混交林植物多样性和土壤特性研究[J]. 西北农林科技大学学报(自然科学版), 2021, 49(6): 27−37.Feng J, Wang Q C, Lu A J, et al. Plant diversity and soil characteristics of larch-manchurian ash mixed stand in eastern Liaoning[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(6): 27−37. [18] 张象君, 王庆成, 王石磊, 等. 小兴安岭落叶松人工纯林近自然化改造对林下植物多样性的影响[J]. 林业科学, 2011, 47(1): 6−14. doi: 10.11707/j.1001-7488.20110102Zhang X J, Wang Q C, Wang S L, et al. Effect of the CLOSE-to-Nature transformation of Larix gmelinii pure stands on plant diversity of understory vegetation in Xiaoxing’an Mountains of China[J]. Scientia Silvae Sinicae, 2011, 47(1): 6−14. doi: 10.11707/j.1001-7488.20110102 [19] Jie L, Hai L D, Ai G D, et al. Effect of stand density and soil layer on soil nutrients of a 37-year-old Cunninghamia lanceolata plantation in Naxi, Sichuan Province, China[J]. Sustainability, 2019, 11(19): 5410. doi: 10.3390/su11195410 [20] 郑勤莹. 帽儿山不同坡位水曲柳和红松径向生长及其对气候变化的响应[D]. 哈尔滨: 东北林业大学, 2021.Zheng Q Y. Radial growth of Fraxinus mandshurica and Pinus koraiensis on different slopes of Maoershan and their response to climate change[D]. Harbin: Northeast Forestry University, 2021. [21] 马学发, 卫月华, 梁凤和, 等. 不同造林密度水曲柳人工林大径材培育首次间伐临界胸径的确定[J]. 东北林业大学学报, 2020, 48(8): 1−5. doi: 10.3969/j.issn.1000-5382.2020.08.001Ma X F, Wei Y H, Liang F H, et al. Critical DBH of the first thinning in the cultivation of large-diameter tree in 20-year-old stands of Fraxinus mandshurica[J]. Journal of Central South University of Forestry & Technology, 2020, 48(8): 1−5. doi: 10.3969/j.issn.1000-5382.2020.08.001 [22] 吴慧, 王树力. 天然次生林转变成长白落叶松人工林后土壤养分的变化[J]. 东北林业大学学报, 2020, 48(4): 54−58. doi: 10.3969/j.issn.1000-5382.2020.04.010Wu H, Wang S L. Change of soil nutrients after converting natural secondary forest into Larix olgensis plantations[J]. Journal of Northeast Forestry University, 2020, 48(4): 54−58. doi: 10.3969/j.issn.1000-5382.2020.04.010 [23] 谢伊, 杨华. 长白山天然云冷杉针阔混交林主要树种胸径生长与林分空间结构的关系[J]. 北京林业大学学报, 2022, 44(9): 1−11.Xie Y, Yang H. Relationship between stand spatial structure and DBH increment of principal species in natural spruce-fir mixed forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(9): 1−11. [24] 王龙凤, 赵丽宏, 肖伟伟, 等. 阔叶树种混交对红松人工林土壤养分的影响[J]. 东北林业大学学报, 2022, 50(4): 27-31 + 54.Wang L F, Zhao L H, Xiao W W, et al. Effects of mixed broad-leaved tree species on soil nutrients in Pinus koraiensis plantation[J]. Journal of Northeast Forestry University, 2022, 50(4): 27−31, 54. [25] 惠刚盈, Klaus V G, Matthias A. 角尺度: 一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1): 37−42.Hui G Y, Klaus V G, Matthias A. The neighbourhood pattern-a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 37−42. [26] 惠刚盈, Klaus V G, 胡艳波. 林分空间结构参数角尺度的标准角选择[J]. 林业科学研究, 2004, 17(6): 687−692.Hui G Y, Klaus V G, Hu Y B. The optimum standard angle of the uniform angle index[J]. Forest Research, 2004, 17(6): 687−692. [27] 惠刚盈, Klaus V G, Matthias Albert. 一个新的林分空间结构参数: 大小比数[J]. 林业科学研究, 1999, 12(1): 4−9.Hui G Y, Klaus V G, Matthias A. A new parameter for stand spatial structure neighbourhood comparison[J]. Forest Research, 1999, 12(1): 4−9. [28] 胡艳波. 基于结构化森林经营的天然异龄林空间优化经营模型研究[D]. 北京: 中国林业科学研究院, 2010.Hu Y B. Structure-based spatial optimization management model for natural uneven-aged forest[D]. Beijing: Chinese Scademy of Forestry, 2010. [29] 汤孟平, 陈永刚, 施拥军, 等. 基于 Voronoi 图的群落优势树种种内种间竞争[J]. 生态学报, 2007, 27(11): 4707−4716.Tang M P, Chen Y G, Shi Y J, et al. Intraspecific and Interspecific competition analysis of community dominant plant populations based on Voronoi diagram[J]. Acta Ecologica Sinica, 2007, 27(11): 4707−4716. [30] 薛玲玉, 李清殿, 李金花, 等. 刺槐油松混交比对土壤质量的影响[J]. 中国水土保持科学, 2019, 17(2): 87−93.Xue L Y, Li Q D, Li J H, et al. Effect of different mixed proportion on soil quantity in mixed Robinia pseudoacacia and Pinus tabulaeformis plantations[J]. Science of Soil and Water Conservation, 2019, 17(2): 87−93. [31] 张彦东, 白尚斌, 王政权, 等. 落叶松根际土壤磷的有效性研究[J]. 应用生态学报, 2001, 12(1): 31−34. doi: 10.3321/j.issn:1001-9332.2001.01.007Zhang Y D, Bai S B, Wang Z Q, et al. Soil P availability in larch rhizosphere[J]. Chinese Journal of Applied Ecology, 2001, 12(1): 31−34. doi: 10.3321/j.issn:1001-9332.2001.01.007 [32] 李海瑜, 杨振景, 王树力. 水曲柳人工林与天然林间土壤磷吸附解吸特性差异[J]. 东北林业大学学报, 2021, 49(3): 93−98. doi: 10.3969/j.issn.1000-5382.2021.03.016Li H Y, Yang Z J, Wang S L. Comparison of soil phosphorus adsorption and desorption characteristics in planted and natural Fraxinus mandshurica forests[J]. Journal of Northeast Forestry University, 2021, 49(3): 93−98. doi: 10.3969/j.issn.1000-5382.2021.03.016 [33] 万福绪, 杨东. 苏北海堤杉木杨树混交林林木生长及土壤肥力研究[J]. 南京林业大学学报(自然科学版), 2006, 30(2): 43−46.Wan F X, Yang D. Studies on trees growth and soil fertility characters of mixed stand of Chinese fir and poplar[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(2): 43−46. [34] 杨嘉麒, 邓海燕, 张港隆, 等. 4种混交比例对桉树−红椎人工混交林生长和土壤养分的影响[J]. 中南林业科技大学学报, 2021, 41(11): 90−97.Yang J Q, Deng H Y, Zhang G L, et al. Effects of four mixed ratios on the growth and soil nutrient of E ucalyptus-castanopsis hustrix mixed plantations[J]. Journal of Central South University of Forestry & Technology, 2021, 41(11): 90−97. [35] 兰道云, 毕华兴, 赵丹阳, 等. 晋西黄土区不同密度油松人工林保育土壤功能评价[J]. 水土保持学报, 2022, 36(2): 189−196.Lan D Y, Bi H X, Zhao D Y, et al. Evaluation on soil conservation function of P inus tabulaeformis plantation with different densities in the loess area of western Shanxi Province[J]. Journal of Soil and Water Conservation, 2022, 36(2): 189−196. [36] Prescott C E. The influence of the forest canopy on nutrient cycling[J]. Tree physiol, 2002, 22(15/16): 1193−1200. [37] 刘慧敏, 韩海荣, 程小琴, 等. 不同密度调控强度对华北落叶松人工林土壤质量的影响[J]. 北京林业大学学报, 2021, 43(6): 50−59.Liu H M, Han H R, Cheng X Q, et al. Effects of different density regulation intensities on soil quality in L arix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(6): 50−59. [38] 邢海涛, 陆元昌, 刘宪钊, 等. 基于近自然改造的马尾松林分竞争强度研究[J]. 北京林业大学学报, 2016, 38(9): 42−54.Xing H T, Lu Y C, Liu X Z, et al. Competition intensity of P inus massoniana stand based on close-to-nature management[J]. Journal of Beijing Forestry University, 2016, 38(9): 42−54. [39] 庞一凡. 福寿林场四种典型林分空间结构与土壤养分含量及其关联度[D]. 长沙: 中南林业科技大学, 2022.Pang Y F. Soil fertility analysis and comprehensive evaluation of four typical stands in Fushou Forest Farm[D]. Changsha: Central South University of Forestry and Technology, 2022. [40] 杨霞. 基于结构方程模型的林分结构与水土保持功能关系研究[D]. 北京: 北京林业大学, 2020.Yang X. Coupling relationships between stand structure and soil and water conservation functionin based on structural equation model[D]. Beijing: Beijing Forestry University, 2020. -

计量
- 文章访问数: 20
- HTML全文浏览量: 7
- PDF下载量: 13
- 被引次数: 0