高级检索
    许文旭, 毕华兴, 王亚娟. 晋西黄土区流域景观格局对径流及其组分的影响[J]. 北京林业大学学报, 2023, 45(10): 118-126. DOI: 10.12171/j.1000-1522.20230037
    引用本文: 许文旭, 毕华兴, 王亚娟. 晋西黄土区流域景观格局对径流及其组分的影响[J]. 北京林业大学学报, 2023, 45(10): 118-126. DOI: 10.12171/j.1000-1522.20230037
    Xu Wenxu, Bi Huaxing, Wang Yajuan. Effects of watershed landscape pattern on runoff and its components in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 118-126. DOI: 10.12171/j.1000-1522.20230037
    Citation: Xu Wenxu, Bi Huaxing, Wang Yajuan. Effects of watershed landscape pattern on runoff and its components in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 118-126. DOI: 10.12171/j.1000-1522.20230037

    晋西黄土区流域景观格局对径流及其组分的影响

    Effects of watershed landscape pattern on runoff and its components in the loess region of western Shanxi Province, northern China

    • 摘要:
      目的 在气候变化与人类活动共同作用影响下黄土高原地表植被覆盖情况发生了显著的变化,探究不同流域景观格局对水文过程和水分循环要素分配的影响,为优化流域植被空间配置与加强水资源管理提供理论依据。
      方法 以蔡家川小流域主沟道及其内部4个子流域为研究对象,通过遥感影像解译土地利用现状,并基于2016—2019年5个小流域场次暴雨径流数据,采用偏最小二乘回归和皮尔逊相关分析,探究流域景观格局变化对径流组分的影响。
      结果 (1)不同土地利用方式对径流形成的作用不同,相较农地(旱地),乔木林地、灌木林地、草地和果园的增加将减少流域产流。(2)流域径流总量与斑块密度、边缘密度和香农多样性指数呈显著正相关(P < 0.05),与聚集指数、蔓延度指数和斑块凝聚度指数呈显著负相关(P < 0.05),景观破碎程度减小或连通度与聚集度的提高,对流域径流总量具有明显削减作用。(3)不同土地利用方式的面积占比、斑块和景观水平的景观格局指数,均与流域基流指数间未见显著相关性,景观格局对流域基流影响较小。
      结论 景观格局变化对流域径流总量具有较强调控作用,但对径流中的基流影响较弱。研究成果可为流域景观格局优化与水资源综合管理等提供有益参考。

       

      Abstract:
      Objective Under the combined effects of climate change and human activities, the surface vegetation coverage of the Loess Plateau has undergone significant changes. In order to provide a theoretical basis for optimizing spatial allocation of watershed vegetation and strengthening water resource management, we explored the impact of different watershed landscape patterns on the hydrological process and the distribution of water cycleelements.
      Method This study took the main channel of the Caijiachuan Small Watershed and its four sub-watersheds as the research object, the land use status was interpreted through remote sensing images, and based on the rainstorm runoff data of five small watersheds from 2016 to 2019, using partial least squares regression and Pearson correlation analysis methods to explore the effects of watershed landscape composition and pattern changes on runoff components.
      Result (1) Different land-use patterns had different effects on runoff formation. Compared with farmland (dry land), the increase of arbor forest land, shrubland, grassland and orchard reduced watershed runoff. (2) The total watershed runoff was significantly positively correlated with patch density, edge density and Shannon diversity index (P < 0.05), and was significantly negatively correlated with aggregation index, sprawl index and the patch cohesion index (P < 0.05). The reduction of landscape fragmentation or the improvement of connectivity and aggregation had a significant reduction effect on the total runoff of the watershed. (3) There was no significant correlation between the area proportion of different land use patterns, the landscape pattern index of patch and landscape level and the basin base flow index. The impact of landscape pattern on the watershed base flow was small.
      Conclusion The change of landscape pattern has a strong regulating effect on the total runoff of the watershed, but the influence on the base flow is weak. The research result can provide useful references for the optimization of watershed landscape pattern and integrated management of water resources.

       

    /

    返回文章
    返回