高级检索
    王凯清, 周子懿, 马尔妮. 基于糠醇改性的木材细胞壁孔隙变化对水分的影响[J]. 北京林业大学学报, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156
    引用本文: 王凯清, 周子懿, 马尔妮. 基于糠醇改性的木材细胞壁孔隙变化对水分的影响[J]. 北京林业大学学报, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156
    Wang Kaiqing, Zhou Ziyi, Ma Erni. Effects of cell wall pore changes on water of wood modified by furfuryl alcohol[J]. Journal of Beijing Forestry University, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156
    Citation: Wang Kaiqing, Zhou Ziyi, Ma Erni. Effects of cell wall pore changes on water of wood modified by furfuryl alcohol[J]. Journal of Beijing Forestry University, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156

    基于糠醇改性的木材细胞壁孔隙变化对水分的影响

    Effects of cell wall pore changes on water of wood modified by furfuryl alcohol

    • 摘要:
        目的  为进一步分析木材细胞壁与水分之间的相互作用,探究了糠醇改性前后木材细胞壁在典型水分状态下物理环境(孔隙)的变化规律和细胞壁水分的结合状态。
        方法  以速生青杨为研究对象,利用糠醇改性改变木材细胞壁水分存在的物理环境,分别利用扫描电镜、激光共聚焦显微镜、傅里叶红外光谱和氮气吸附法考察绝干状态下改性材的微观形貌、改性剂分布、官能团和孔隙结构,并利用差示扫描热孔计法和二维低场核磁共振技术分析低湿、气干、高湿和纤维饱和状态下改性前后木材细胞壁物理环境的变化规律以及细胞壁水分的结合情况。
        结果  糠醇改性后木材的质量增长率、体积增长率分别为35.1%和12.6%,并伴随细胞壁增厚现象。改性后木材细胞壁的比表面积和孔体积分别降低了29.9%、35.3%,糠醇树脂堵塞了木材细胞壁的部分孔隙。从低湿状态到纤维饱和状态,未处理材和改性材孔体积均呈现增加趋势,未处理材细胞壁孔径分布极大值从3.41 mm3/g增加到5.65 mm3/g,增加了65.7%,糠醇改性材细胞壁孔径分布极大值从2.99 mm3/g增加到4.63 mm3/g,增加了54.9%。在不同水分状态下,糠醇改性材的细胞壁孔体积均低于未处理材,并且在高湿环境下,水分对木材细胞壁孔体积影响更加明显。随着相对湿度升高,未处理材和糠醇改性材的含水率都增加,但是糠醇改性材含水率低于同等条件下的未处理材,吸湿性降低。含水率增加,未处理材和糠醇改性材细胞壁水分T1/T2值降低,水分移动性增加。糠醇改性材中两种细胞壁水分的T1/T2值远高于未处理材,进一步说明糠醇改性改变了木材细胞壁的物理环境,限域空间束缚增加使得水分子移动性降低。
        结论  经糠醇改性后,糠醇树脂进入木材细胞壁并发生原位聚合,造成在绝干、低湿、气干、高湿、纤维饱和状态下,改性材细胞壁孔体积均低于未处理材,并且在高湿度状态下,孔体积表现出更大的增长率。物理环境的变化造成木材细胞壁容纳水分的空间减少,同时,水分子受到细胞壁的物理束缚增加,移动性降低。

       

      Abstract:
        Objective  In order to further analyze the interaction between wood cell wall and water, the changes of physical environment (pores) and the binding state of water of wood cell wall before and after furfuryl alcohol modification were investigated.
        Method  The fast-growing poplar (Populus cathayana) was taken as the research object, and the physical environment of water in the wood cell wall was modified by furfuryl alcohol. The microscopic morphology, modifier distribution, functional groups and pore structure of the modified wood were characterized by scanning electron microscopy, confocal laser scanning microscope, Fourier transform infrared spectrometer and nitrogen adsorption under oven-dry state. Besides, differential scanning calorimetry thermoporosimetry and two dimensional low field nuclear magnetic resonance were used to analyze the changes of physical environment and the binding of water in the cell wall before and after modification under low humidity, air-dry, high humidity and fiber saturation state.
        Result  The mass percent gain and bulk percent gain of wood modified by furfuryl alcohol were 35.1% and 12.6%, respectively, accompanied by cell wall thickening. After modification, the specific surface area and pore volume of wood cell wall were reduced by 29.9% and 35.3%, respectively, and furfuryl alcohol resin blocked part of the pores in wood cell wall. From the low humidity state to the fiber saturation state, the pore volume of both untreated and furfuryl alcohol modified wood showed an increasing trend, and the maximum distribution of cell wall pore size of untreated wood ranged from 3.41 to 5.65 mm3/g, at an increase of 65.7%. The maximum cell wall pore size distribution of furfuryl alcohol modified wood rose from 2.99 to 4.63 mm3/g, increased by 54.9%. Under different water conditions, the pore volume of furfuryl alcohol modified wood was all lower than that of untreated wood. Moreover, at high relative humidity, the effect of water on the pore volume of wood cell walls was more pronounced. With the increase of relative humidity, the moisture content of both untreated wood and furfuryl alcohol modified wood became greater, while the moisture content of furfuryl alcohol modified wood was lower compared with that of untreated wood under the same conditions, suggesting a reduction in hygroscopicity. As the moisture content increased, the T1/T2 value of cell wall water in untreated and furfuryl alcohol modified wood decreased, and the water mobility increased. The T1/T2 values of two types of cell wall water in furfuryl alcohol modified wood were much higher than those in untreated wood, which further indicated that furfuryl alcohol modification changed the physical environment of cell wall, and the mobility of water molecules weakened with the increasing bound of confining space.
        Conclusion  After modification by furfuryl alcohol, furfuryl alcohol resin enters the cell wall of wood and polymerized in situ, resulting in lower cell wall pore volume of modified wood than that of untreated wood under oven dry, low humidity, air-dry, high humidity and fiber saturation state. Besides, in the high humidity state, the pore volume shows a greater growth rate. The variations in the physical environment give rise to a decrease in the space of wood cell walls to hold water, and at the same time, the physical binding of water molecules by the cell wall increases, leading to a decrease in mobility.

       

    /

    返回文章
    返回