高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针叶树GID1同源基因分离鉴定与功能预测

张运城 周长虹 钮世辉 李伟

张运城, 周长虹, 钮世辉, 李伟. 针叶树GID1同源基因分离鉴定与功能预测[J]. 北京林业大学学报, 2015, 37(5): 40-48. doi: 10.13332/j.1000-1522.20140255
引用本文: 张运城, 周长虹, 钮世辉, 李伟. 针叶树GID1同源基因分离鉴定与功能预测[J]. 北京林业大学学报, 2015, 37(5): 40-48. doi: 10.13332/j.1000-1522.20140255
ZHANG Yun-cheng, ZHOU Chang-hong, NIU Shi-hui, LI Wei. Isolation and identification of GID1 orthologous gene in conifers and its function prediction.[J]. Journal of Beijing Forestry University, 2015, 37(5): 40-48. doi: 10.13332/j.1000-1522.20140255
Citation: ZHANG Yun-cheng, ZHOU Chang-hong, NIU Shi-hui, LI Wei. Isolation and identification of GID1 orthologous gene in conifers and its function prediction.[J]. Journal of Beijing Forestry University, 2015, 37(5): 40-48. doi: 10.13332/j.1000-1522.20140255

针叶树GID1同源基因分离鉴定与功能预测

doi: 10.13332/j.1000-1522.20140255
基金项目: 

国家自然科学基金项目(31370657)、“948”国家林业局引进项目(2012-4-40)。

详细信息
    作者简介:

    张运城。主要研究方向:林木生物技术。Email:zyc104@126.com 地址:100083北京市清华东路35号北京林业大学生物科学与技术学院。责任作者: 李伟,副教授。主要研究方向:针叶树遗传改良。Email:bjfuliwei@bjfu.edu.cn 地址:同上。

    张运城。主要研究方向:林木生物技术。Email:zyc104@126.com 地址:100083北京市清华东路35号北京林业大学生物科学与技术学院。责任作者: 李伟,副教授。主要研究方向:针叶树遗传改良。Email:bjfuliwei@bjfu.edu.cn 地址:同上。

Isolation and identification of GID1 orthologous gene in conifers and its function prediction.

  • 摘要: GID1作为赤霉素(GA)受体蛋白,是GA信号通路的重要组成部分,其编码基因GID1在被子植物中已经被广泛克隆,但在针叶树种中的研究十分滞后。为了分离针叶树GA受体GID1基因并推测其功能,本研究以拟南芥GID1s序列为探针,在油松高质量参考转录组内筛选并鉴别出了油松GID1直系同源基因;基于该基因序列同源克隆了樟子松、白皮松、赤松GID1基因,通过BLAST获得了日本落叶松、火炬松、白云杉与挪威云杉的GID1-like基因;对针叶树GID1基因进行序列保守性、蛋白结构和组织表达活性分析。结果表明:针叶树种很可能只含有一个GID1基因,该基因在针叶树中具有很高的保守性;虽然与被子植物GID1之间的序列一致性较低,但其保持GA亲和活性所必需的氨基酸残基十分保守,与其下游DELLA蛋白相互作用的功能域与结构同样十分保守,推测其在针叶树GA信号转导中具有受体功能;表达分析显示GID1在挪威云杉不同组织和油松雌雄球花不同发育阶段间表达较为稳定,表明GID1可能广泛参与这些组织的发育过程,针叶树GA信号调控通路中GA受体的转录调控可能并不是核心调控机制。研究结果为GID1基因在针叶树生长发育过程中的分子调控机制研究奠定了基础。
  • [1] LI Z X,NIU S H,GAO Q,et al.Cytological study of gibberellin regulated xylem development[J].Journal of Beijing Forestry University, 2014,36(2):68-73.
    [2] MUTASA-GOTTGENS E,HEDDEN P.Gibberellin as a factor in floral regulatory networks[J].Journal of Experimental Botany,2009,60(7):1979-1989.
    [3] SHENG C X.The current researches on developmental phase transitions and floral induction in conifers[J].Journal of Beijing Forestry University, 1986,8(1):110-123.
    [4] PIMENTA L M,KNOP N,LANGE T.Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L.[J].Journal of Experimental Botany,2012,63(7): 2681-2691.
    [5] OGAWA M,HANADA A,YAMAUCHI Y,et al.Gibberellin biosynthesis and response during Arabidopsis seed germination [J].Plant Cell,2003,15(7): 1591-1604.
    [6] JIANG L,ZHOU X,WANG Z R,et al.Relationship between the formation of male or female strobili and the levels of GAs,ABA,CTKs in Masson pine[J].Journal of Nanjing Forestry University:Natural Science Edition,1998,22(3):61-65.
    [7] GABRIELE S,RIZZA A,MARTONE J,et al.The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1 [J].The Plant Journal,2010,61( 2): 312-323.
    [8] JIN L,GE H,CHEN S W,et al.Cloning and expression analysis of two grape GID(gibberellin insensitive dwarf)genes[J].Journal of China Agricultural University,2013,18(4):64-70.
    [9] 李哲馨,钮世辉,高琼,等.赤霉素调控木质部发育的细胞学研究[J].北京林业大学学报,2014,36(2):68-73.
    [10] DONG J,YIN M H,YANG F,et al.Cloning and expression profiling of gibberellin insensitive dwarf GID1 homologous genes from cotton[J] .Acta Agronomica Sinica,2009,35(10):1822 -1830.
    [11] LI X L,GUO X P,SHEN Y Y,et al.Preliminary identification of GAs-deficient short male catkin mutant and expression analysis of CmGID1 in Castanea mollissima[J].Acta Horticulturae Sinica, 2011,38(7):1251-1258.
    [12] 盛楚兴.针叶树的阶段转变及成花诱导研究现状[J].北京林业大学学报,1986,8(1):110-123.
    [13] PHARIS R P,WEBBER J E,ROSS S D.The promotion of flowering in forest trees by gibberellin A4/7 and cultural treatments: a review of the possible mechanisms[J].Forest Ecology and Management,1987,19(1):65-84.
    [14] 江玲,周燮,王章荣,等.马尾松雌雄球花的形成与赤霉素和脱落酸及细胞分裂素的关系[J].南京林业大学学报:自然科学版,1998,22 (3):61-65.
    [15] ALMQVIST C.Timing of GA4/7 application and the flowering of Pinus sylvestris grafts in the greenhouse[J].Tree Physiology, 2003,23(6):413-418.
    [16] SHEARER R C,STOEHR M U,WEBBER J E,et al.Seed cone production enhanced by injecting 38-year-old Larix occidentalis Nutt. with GA4/7[J].New Forests,1999,18(3):289-300.
    [17] UEGUCHI-TANAKA M,ASHIKARI M,NAKAJIMA M,et al.Gibberellin insensitive dwarf 1 encodes a soluble receptor for gibberellin[J]. Nature,2005,437:693-698.
    [18] UEGUCHI-TANAKA M,NAKAJIMA M,MOTOYUKI A,et al.Gibberellin receptor and its role in gibberellin signaling in plants[J]. Annual Review of Plant Biology,2007,58:183-198.
    [19] NAKAJIMA M,SHIMADA A,TAKASHI1 Y,et al.Identification and characterization of Arabidopsis gibberellin receptors[J]. The Plant Journal,2006,46(5):880-889.
    [20] EDGAR R C.Muscle: a multiple sequence alignment method with reduced time and space complexity[J].BMC Bioinformatics,2004,5(1):113.
    [21] EDGAR R C.Muscle: multiple sequence alignment with high accuracy and high throughput[J].Nucleic Acids Research,2004,32(5):1792-1797.
    [22] ARNOLD K,BORDOLI L,KOPP J,et al.The swiss-model workspace: a web-based environment for protein structure homology modeling[J]. Bioinformatics,2006,22(2):195-201.
    [23] KIM D,SALZBERG S L.Tophat-fusion: an algorithm for discovery of novel fusion transcripts[J].Genome Biology,2011, 12(8):R72.
    [24] TRAPNELL C,PACHTER L,SALZBERG S L.Tophat: discovering splice junctions with RNA-Seq[J].Bioinformatics,2009,25(9):1105-1111.
    [25] HIRANO K,NAKAJIMA M,ASANO K,et al.The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens[J].The Plant Cell,2007,19(10):3058-3079.
    [26] HIRANO K,UEGUCHI-TANAKA M,MATSUOKA M.GID1-mediated gibberellin signaling in plants[J].Trends in Plant Science,2008,13(4):192-199.
    [27] UEGUCHI-TANAKA M,NAKAJIMA M,KATOH E,et al.Molecular interactions of a soluble gibberellin receptor, GID1,with a rice DELLA protein,SLR1,and gibberellin[J].The Plant Cell,2007,19(7):2140-2155.
    [28] SHIMADA A,UEGUCHI-TANAKA M,NAKATSU T,et al.Structural basis for gibberellin recognition by its receptor GID1[J].Nature,2008,456:250-253.
    [29] MURASE K,HIRANO Y,SUN T P,et al.Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J].Nature,2008,456:459-464.
    [30] SHENG C,WANG S.Effect of applied growth regulators and cultural treatments on flowering and shoot growth of Pinus tabulaeformis[J].Canadian Journal of Forest Research,1990,20(6):679-685.
    [31] ZHAO P,FAN J,ZHANG S,et al.Effects of gibberellins A4/7,6-benzylaminopurine and chlormequat chloride on the number of male and female strobili and immature cones in Chinese pine(Pinus tabuliformis)with foliar sprays[J].Journal of Forestry Research,2011,22(3):353-359.
    [32] WANG Y,DENG D.Molecular basis and evolutionary pattern of GA-GID1-DELLA regulatory module[J].Mol Genet Genomics,2014,289(1):1-9.
    [33] 金良,葛晖,陈尚武,等.2个葡萄GID(gibberellin insensitive dwarf)基因的克隆与表达[J].中国农业大学学报,2013,18(4):64-70.
    [34] 董静,尹梦回,杨帆,等.棉花赤霉素不敏感矮化GID1同源基因的克隆和表达分析[J].作物学报,2009,35(10):1822-1830.
    [35] 李兴亮,郭献平,沈元月,等.板栗赤霉素缺陷型短雄花序芽变的初步鉴定及CmGID1基因的表达分析[J].园艺学报,2011,38(7):1251-1258.
    [36] FERNANDEZ H,FRAGA M,BERNARD P,et al.Quantification of GA1,GA3,GA4,GA7, GA9,and GA20 in vegetative and male cone buds from juvenile and mature trees of Pinus radiata[J].Plant Growth Regulation,2003, 40(3):185-188.
  • [1] 邓文红, 赵欣蕊, 张俊琦, 郭惠红.  沙蒿水浸提液化感物质的分离与鉴定 . 北京林业大学学报, 2019, 41(9): 156-163. doi: 10.13332/j.1000-1522.20190086
    [2] 杨钧贺, 刘畅, 钮世辉, 李伟.  茎部形成层赤霉素在植物生长发育中的调控作用 . 北京林业大学学报, 2019, 41(7): 68-74. doi: 10.13332/j.1000-1522.20190107
    [3] 黄笛, 孙明, 袁存权, 程堂仁, 王佳, 张启翔.  春黄菊族部分植物CYC2d同源基因的分离与功能初步分析 . 北京林业大学学报, 2017, 39(4): 63-71. doi: 10.13332/j.1000-1522.20170003
    [4] 余佳霖, 张卫国, 田昆, 松卫红, 李秋平, 杨荣, 张贇.  普达措国家公园海拔上限3个针叶树种径向生长对气候变化的响应 . 北京林业大学学报, 2017, 39(1): 43-51. doi: 10.13332/j.1000-1522.20160184
    [5] 雷恒久, 苏淑钗, 马履一, 马仲.  平欧杂交榛CBF/DREB1转录因子ChaCBF1基因的克隆与功能分析 . 北京林业大学学报, 2016, 38(10): 69-79. doi: 10.13332/j.1000-1522.20150528
    [6] 张非亚, 杜运鹏, 刘瑞峰, 袁晓娜, 张冬梅, 贾桂霞.  月季NBS-LRR-RGAs的分离与鉴定 . 北京林业大学学报, 2016, 38(11): 89-96. doi: 10.13332/j.1000-1522.20160092
    [7] 唐贤礼, 张月, 张盾, 夏新莉, 尹伟伦.  毛果杨基因PtNRT2.7的功能初步鉴定与分析 . 北京林业大学学报, 2016, 38(8): 18-27. doi: 10.13332/j.1000-1522.20160041
    [8] 欧阳芳群, 蒋明, 王军辉, 贾子瑞, 张宋智, 许娜, 刘林英, 李悦.  补光对欧洲云杉苗木生长的生理影响研究 . 北京林业大学学报, 2016, 38(1): 50-58. doi: 10.13332/j.1000--1522.20150009
    [9] 于玲, 钟原, 王莹, 成仿云.  低温和赤霉素对紫斑牡丹种子萌发和幼苗生长的影响 . 北京林业大学学报, 2015, 37(4): 120-126. doi: DOI:10.13332/j.1000-1522.20140240
    [10] 陈海燕, 刘凯, 余敏, 王娟, 赵磊, 刘盛全.  外源激素IAA和GA3对马尾松应压木形成的影响 . 北京林业大学学报, 2015, 37(5): 134-139. doi: 10.13332/j.1000-1522.20140405
    [11] 李哲馨, 钮世辉, 高琼, 李伟.  赤霉素调控木质部发育的细胞学研究 . 北京林业大学学报, 2014, 36(2): 68-73.
    [12] 李金克, 邓文红, 陈少良.  GPC-HPLC-LC/MS 测定植物组织中的赤霉素 . 北京林业大学学报, 2014, 36(6): 171-178. doi: 10.13332/j.cnki.jbfu.2014.06.027
    [13] 高琼, 钮世辉, 李伟, 陈晓阳.  低温胁迫对赤霉素代谢的调控研究 . 北京林业大学学报, 2014, 36(6): 135-141. doi: 10.13332/j.cnki.jbfu.2014.06.025
    [14] 钮世辉, 李伟, 陈晓阳.  赤霉素对根尖径向生长的调节作用研究 . 北京林业大学学报, 2013, 35(3): 71-76.
    [15] 张林, 高健, 侯成林.  分离自安徽南部竹黄相关真菌的分子鉴定及多样性分析 . 北京林业大学学报, 2009, 31(6): 19-26.
    [16] 赵俊卉, 亢新刚, 刘燕.  长白山主要针叶树种最优树高曲线研究 . 北京林业大学学报, 2009, 31(4): 13-18.
    [17] 计红芳, 瑞清, 杨谦, .  绒白乳菇发酵液抑菌活性成分的分离纯化及其结构鉴定 . 北京林业大学学报, 2008, 30(1): 92-95.
    [18] 胡陶, 李潞滨, 杨凯, 唐征, 刘振静, 庄彩云, 彭镇华.  中国兰属植物菌根真菌的分离与鉴定 . 北京林业大学学报, 2008, 30(3): 132-135.
    [19] 胡淑萍, 余新晓, 孙庆艳, 王小平, 秦永胜, 陈俊崎, .  北京山区优势针叶树种侧柏适地性研究 . 北京林业大学学报, 2008, 30(supp.2): 112-116.
    [20] 盖颖, 王盛萍, 李云成, 王岩, 贺庆棠, 张金凤, 罗菊春, 冶民生, 蒋佳荔, 侯旭, 谢响明, 何磊, 张文娟, 张学俭, 高鹏, 李绍才, 朱妍, 孙宇瑞, 李永慈, 柳新伟, 李吉跃, 何静, 马道坤, 吴玉英, 吕建雄, 冯仲科, 成仿云, 崔保山, 康向阳, 张志强, 王文棋, 廖学品, 关文彬, 昌明, 孙海龙, 申卫军, 陆佩玲, 张华丽, 唐守正, 张桂莲, 关毓秀, 路婷, 赵广杰, 于晓南, 何权, 王军辉, 石碧, 静洁, 孙阁, 史剑波, 李小飞, 吴斌, 张平冬, 蒋湘宁, 杨志荣, 赵燕东, 蒲俊文, 孙晓霞, 彭少麟, 陈永国, 马克明, 张满良, 汪燕, 王尚德, 胡文忠, 余新晓, 刘国华, 林威, 汪西林.  赤霉素和生根粉对牡丹促成栽培影响的初步研究 . 北京林业大学学报, 2006, 28(1): 84-87.
  • 加载中
计量
  • 文章访问数:  765
  • HTML全文浏览量:  132
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-21

针叶树GID1同源基因分离鉴定与功能预测

doi: 10.13332/j.1000-1522.20140255
    基金项目:

    国家自然科学基金项目(31370657)、“948”国家林业局引进项目(2012-4-40)。

    作者简介:

    张运城。主要研究方向:林木生物技术。Email:zyc104@126.com 地址:100083北京市清华东路35号北京林业大学生物科学与技术学院。责任作者: 李伟,副教授。主要研究方向:针叶树遗传改良。Email:bjfuliwei@bjfu.edu.cn 地址:同上。

    张运城。主要研究方向:林木生物技术。Email:zyc104@126.com 地址:100083北京市清华东路35号北京林业大学生物科学与技术学院。责任作者: 李伟,副教授。主要研究方向:针叶树遗传改良。Email:bjfuliwei@bjfu.edu.cn 地址:同上。

摘要: GID1作为赤霉素(GA)受体蛋白,是GA信号通路的重要组成部分,其编码基因GID1在被子植物中已经被广泛克隆,但在针叶树种中的研究十分滞后。为了分离针叶树GA受体GID1基因并推测其功能,本研究以拟南芥GID1s序列为探针,在油松高质量参考转录组内筛选并鉴别出了油松GID1直系同源基因;基于该基因序列同源克隆了樟子松、白皮松、赤松GID1基因,通过BLAST获得了日本落叶松、火炬松、白云杉与挪威云杉的GID1-like基因;对针叶树GID1基因进行序列保守性、蛋白结构和组织表达活性分析。结果表明:针叶树种很可能只含有一个GID1基因,该基因在针叶树中具有很高的保守性;虽然与被子植物GID1之间的序列一致性较低,但其保持GA亲和活性所必需的氨基酸残基十分保守,与其下游DELLA蛋白相互作用的功能域与结构同样十分保守,推测其在针叶树GA信号转导中具有受体功能;表达分析显示GID1在挪威云杉不同组织和油松雌雄球花不同发育阶段间表达较为稳定,表明GID1可能广泛参与这些组织的发育过程,针叶树GA信号调控通路中GA受体的转录调控可能并不是核心调控机制。研究结果为GID1基因在针叶树生长发育过程中的分子调控机制研究奠定了基础。

English Abstract

张运城, 周长虹, 钮世辉, 李伟. 针叶树GID1同源基因分离鉴定与功能预测[J]. 北京林业大学学报, 2015, 37(5): 40-48. doi: 10.13332/j.1000-1522.20140255
引用本文: 张运城, 周长虹, 钮世辉, 李伟. 针叶树GID1同源基因分离鉴定与功能预测[J]. 北京林业大学学报, 2015, 37(5): 40-48. doi: 10.13332/j.1000-1522.20140255
ZHANG Yun-cheng, ZHOU Chang-hong, NIU Shi-hui, LI Wei. Isolation and identification of GID1 orthologous gene in conifers and its function prediction.[J]. Journal of Beijing Forestry University, 2015, 37(5): 40-48. doi: 10.13332/j.1000-1522.20140255
Citation: ZHANG Yun-cheng, ZHOU Chang-hong, NIU Shi-hui, LI Wei. Isolation and identification of GID1 orthologous gene in conifers and its function prediction.[J]. Journal of Beijing Forestry University, 2015, 37(5): 40-48. doi: 10.13332/j.1000-1522.20140255
参考文献 (36)

目录

    /

    返回文章
    返回