[1]
|
TUOMINEN S, PEKKARINEN A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory[J]. Remote Sensing of Environment, 2005, 94(2): 256-268. |
[2]
|
CASTILLO-SANTIAGO M A, RICKER M, DE JONG B H J. Estimation of tropical forest structure from SPOT-5 satellite images[J]. International Journal of Remote Sensing, 2010, 31(10): 2767-2782. |
[3]
|
DORREN L K A, MAIER B, SEIJMONSBERGEN A C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification[J]. Forest Ecology and Management, 2003, 183(1-3): 31-46. |
[4]
|
FRANKLIN S E, WULDER M A, GERYLO G R. Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia[J]. International Journal of Remote Sensing, 2001, 22(13): 2627-2632. |
[5]
|
HALL R J, SKAKUN R S, ARSENAULT E J, et al. Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume[J]. Forest Ecology and Management, 2006, 225(1-3): 378-390. |
[6]
|
COBURN C A, ROBERTS A. A multiscale texture analysis procedure for improved forest stand classification[J]. International Journal of Remote Sensing, 2004, 25(20): 4287-4308. |
[7]
|
WOLTER P T, TOWNSEND P A, STURTEVANT B R. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data[J]. Remote Sensing of Environment, 2009, 113(9): 2019-2036. |
[8]
|
PU R, LANDRY S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species[J]. Remote Sensing of Environment, 2012, 124: 516-533. |
[9]
|
RODRIGUEZ-GALIANO V F, CHICA-OLMO M, ABARCA-HERNANDEZ F, et al. Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture[J]. Remote Sensing of Environment, 2012, 121: 93-107. |
[10]
|
TROTTER C M, DYMOND J R, GOULDING C J. Estimation of timber volume in a coniferous plantation forest using Landsat TM[J]. International Journal of Remote Sensing, 1997, 18(10): 2209-2223. |
[11]
|
WULDER M A, LEDREW E F, FRANKLIN S E, et al. Aerial image texture information in the estimation of northern deciduous and mixed wood forest leaf area index (LAI)[J]. Remote Sensing of Environment, 1998, 64(1): 64-76. |
[12]
|
FUCHS H, MAGDON P, KLEINN C, et al. Estimating aboveground carbon in a catchment of the Siberian forest tundra: combining satellite imagery and field inventory[J]. Remote Sensing of Environment, 2009, 113(3): 518-531. |
[13]
|
PROISY C, COUTERON P, FROMARD F. Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images[J]. Remote Sensing of Environment, 2007, 109(3): 379-392. |
[14]
|
LECKIE D G, GOUGEON F A, TINIS S, et al. Automated tree recognition in old growth conifer stands with high resolution digital imagery[J]. Remote Sensing of Environment, 2005, 94(3): 311-326. |
[15]
|
TRELTZ P, HOWARTH P. Integrating spectral, spatial, and terrain variables for forest ecosystem classification[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(3): 305-317. |
[16]
|
LECKIE D G, TINIS S, NELSON T, et al. Issues in species classification of trees in old growth conifer stands[J]. Canadian Journal of Remote Sensing, 2005, 31(2): 175-190. |
[17]
|
ARENAS-CASTRO S, JULIEN Y, JIMNEZ-MUÑOZ J C, et al. Mapping wild pear trees (Pyrus bourgaeana) in Mediterranean forest using high-resolution QuickBird satellite imagery[J]. International Journal of Remote Sensing, 2012, 34(9-10): 3376-3396. |
[18]
|
WANG Z, BOESCH R. Color- and texture-based image segmentation for improved forest delineation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3055-3062. |
[19]
|
CARLEER A, WOLFF E. Exploitation of very high resolution satellite data for tree species identification[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(1): 135-140. |
[20]
|
YU Q, GONG P, CLINTON N, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(7): 799. |
[21]
|
MALLINIS G, KOUTSIAS N, TSAKIRI-STRATI M, et al. Object-based classification using QuickBird imagery for delineating forest vegetation polygons in a Mediterranean test site[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(2): 237-250. |
[22]
|
INGRAM J C, DAWSON T P, WHITTAKER R J. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks[J]. Remote Sensing of Environment, 2005, 94(4): 491-507. |
[23]
|
LAURIN G V, LIESENBERG V, CHEN Q, et al. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 7-16. |
[24]
|
HYYPPÄ J, HYYPPÄ H, INKINEN M, et al. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes[J]. Forest Ecology and Management, 2000, 128(1-2): 109-120. |
[25]
|
HARALICK R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786-804. |
[26]
|
GEBRESLASIE M T, AHMED F B, VAN AARDT J A N. Extracting structural attributes from IKONOS imagery for Eucalyptus plantation forests in KwaZulu-Natal, South Africa, using image texture analysis and artificial neural networks[J]. International Journal of Remote Sensing, 2011, 32(22): 7677-7701. |
[27]
|
CHEN G, HAY G J, CASTILLA G, et al. A multiscale geographic object-based image analysis to estimate lidar-measured forest canopy height using Quickbird imagery[J]. International Journal of Geographical Information Science, 2010, 25(6): 877-893. |
[28]
|
LU D. The potential and challenge of remote sensing-based biomass estimation[J]. International Journal of Remote Sensing, 2006, 27(7): 1297-1328. |
[29]
|
HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973(6): 610-621. |
[30]
|
ZHENG D, RADEMACHER J, CHEN J, et al. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA[J]. Remote Sensing of Environment, 2004, 93(3): 402-411. |
[31]
|
FRANKLIN S E, HALL R J, MOSKAL L M, et al. Incorporating texture into classification of forest species composition from airborne multispectral images[J]. International Journal of Remote Sensing, 2000, 21(1): 61-79. |
[32]
|
SOLBERG S, ASTRUP R, GOBAKKEN T, et al. Estimating spruce and pine biomass with interferometric X-band SAR[J]. Remote Sensing of Environment, 2010, 114(10): 2353-2360. |
[33]
|
RAUSTE Y. Multi-temporal JERS SAR data in boreal forest biomass mapping[J]. Remote Sensing of Environment, 2005, 97(2): 263-275. |
[34]
|
FRANKLIN S E, MAUDIE A J, LAVLGNE M B. Using spatial co-occurrence texture to increase forest structure and species classification accuracy[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(7): 849-855. |
[35]
|
WANG L, SOUSA W P, GONG P, et al. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama[J]. Remote Sensing of Environment, 2004, 91(3-4): 432-440. |
[36]
|
AHMED R, SIQUEIRA P, HENSLEY S. A study of forest biomass estimates from LiDAR in the northern temperate forests of New England[J]. Remote Sensing of Environment, 2013, 130: 121-135. |
[37]
|
IOKI K, TSUYUKI S, HIRATA Y, et al. Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR[J]. Forest Ecology and Management, 2014, 328: 335-341. |
[38]
|
HYDE P, NELSON R, KIMES D, et al. Exploring LiDAR-RaDAR synergy: predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR[J]. Remote Sensing of Environment, 2007, 106(1): 28-38. |
[39]
|
LU D, BATISTELLA M. Exploring TM image texture and its relationships with biomass estimation in Rondnia, Brazilian Amazon[J]. Acta Amazonica, 2005, 35(2): 249-257. |
[40]
|
KAYITAKIRE F, HAMEL C, DEFOURNY P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery[J]. Remote Sensing of Environment, 2006, 102(3-4): 390-401. |
[41]
|
WU Y, ZHANG D R, ZHANG H K, et al. Remote sensing estimation of forest canopy density combined with texture features[J].Scientia Silvae Sinicae, 2012(2): 48-53. |
[42]
|
OZDEMIR I, KARNIELI A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5): 701-710. |
[43]
|
PASHER J, KING D J. Multivariate forest structure modelling and mapping using high resolution airborne imagery and topographic information[J]. Remote Sensing of Environment, 2010, 114(8): 1718-1732. |
[44]
|
NICHOL J E, SARKER M L R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 930-948. |
[45]
|
SARKER L R, NICHOL J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment, 2011, 115(4): 968-977. |
[46]
|
SARKER M L R, NICHOL J, AHMAD B, et al. Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 69: 146-166. |
[47]
|
SARKER M L R, NICHOL J, IZ H B, et al. Forest biomass estimation using texture measurements of high-resolution dual-polarization C-band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3371-3384. |
[48]
|
SINGH M, MALHI Y, BHAGWAT S. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing[J]. Journal of Applied Remote Sensing, 2014, 8(1): 83695. |
[49]
|
HAY G J, NIEMANN K O, MCLEAN G F. An object-specific image-texture analysis of H-resolution forest imagery[J]. Remote Sensing of Environment, 1996, 55(2): 108-122. |
[50]
|
FRANKLIN S E, MCDERMID G J. Empirical relations between digital SPOT HRV and CASI spectral response and lodgepole pine (Pinus contorta) forest stand parameters[J]. International Journal of Remote Sensing, 1993, 14(12): 2331-2348. |
[51]
|
TREITZ P, HOWARTH P. High spatial resolution remote sensing data for forest ecosystem classification: an examination of spatial scale[J]. Remote Sensing of Environment, 2000, 72(3): 268-289. |
[52]
|
CULVENOR D S. TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery[J]. Computers and Geosciences, 2002, 28(1): 33-44. |
[53]
|
POULIOT D A, KING D J, BELL F W, et al. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration[J]. Remote Sensing of Environment, 2002, 82(2-3): 322-334. |
[54]
|
GHOSH A, JOSHI P K. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26: 298-311. |
[55]
|
VIEDMA O, TORRES I, PREZ B, et al. Modeling plant species richness using reflectance and texture data derived from QuickBird in a recently burned area of Central Spain[J]. Remote Sensing of Environment, 2012, 119: 208-221. |
[56]
|
GOMEZ C, MANGEAS M, PETIT M, et al. Use of high-resolution satellite imagery in an integrated model to predict the distribution of shade coffee tree hybrid zones[J]. Remote Sensing of Environment, 2010, 114(11): 2731-2744. |
[57]
|
HUANG X, ZHANG L, WANG L. Evaluation of morphological texture features for mangrove forest mapping and species discrimination using multispectral IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 393-397. |
[58]
|
KIM M, MADDEN M, WARNER T A. Forest type mapping using object-specific texture measures from multispectral IKONOS imagery: segmentation quality and image classification issues[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75(7): 819-829. |
[59]
|
OUMA Y O, TETUKO J, TATEISHI R. Analysis of co-occurrence and discrete wavelet transform textures for differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery[J]. International Journal of Remote Sensing, 2008, 29(12): 3417-3456. |
[60]
|
JOHANSEN K, COOPS N C, GERGEL S E, et al. Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification[J]. Remote Sensing of Environment, 2007, 110(1): 29-44. |
[61]
|
VAN COILLIE F M B, VERBEKE L P C, DE WULF R R. Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium[J]. Remote Sensing of Environment, 2007, 110(4): 476-487. |
[62]
|
CHUBEY M S, FRANKLIN S E, WULDER M A. Object-based analysis of IKONOS-2 imagery for extraction of forest inventory parameters[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(4): 383-394. |
[63]
|
MARCEAU D J, HOWARTH P J, DUBOIS J M, et al. Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 513-519. |
[64]
|
FRANKLIN S E, PEDDLE D R. Classification of SPOT HRV imagery and texture features[J]. International Journal of Remote Sensing, 1990, 11(3): 551-556. |
[65]
|
PEDDLE D R, FRANKLIN S E. Image texture processing and data integration for surface pattern discrimination[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(4): 413-420. |
[66]
|
GONG P, MARCEAU D J, HOWARTH P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[J]. Remote Sensing of Environment, 1992, 40(2): 137-151. |
[67]
|
FRANKLIN S E, WULDER M A, LAVIGNE M B. Automated derivation of geographic window sizes for use in remote sensing digital image texture analysis[J]. Computers and Geosciences, 1996, 22(6): 665-673. |
[68]
|
CARR J R, DE MIRANDA F P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1945-1952. |
[69]
|
CHAN J, LAPORTE N, DEFRIES R S. Texture classification of logged forests in tropical Africa using machine-learning algorithms[J]. International Journal of Remote Sensing, 2003, 24(6): 1401-1407. |
[70]
|
WULDER M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters[J]. Progress in Physical Geography, 1998, 22(4): 449-476. |
[71]
|
LVESQUE J, KING D J. Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health[J]. Remote Sensing of Environment, 2003, 84(4): 589-602. |
[72]
|
GEBRESLASIE M T, AHMED F B, VAN AARDT J. Estimating plot-level forest structural attributes using high spectral resolution ASTER satellite data in even-aged Eucalyptus plantations in southern KwaZulu-Natal, South Africa[J]. Southern Forests, 2008, 70(3): 227-236. |
[73]
|
SHAMSODDINI A, TRINDER J C, TURNER R. Pine plantation structure mapping using WorldView-2 multispectral image[J]. International Journal of Remote Sensing, 2013, 34(11): 3986-4007. |
[74]
|
GALLARDO-CRUZ J A, MEAVE J A, GONZÁLEZ E J, et al. Predicting tropical dry forest successional attributes from space: is the key hidden in image texture?[J]. PloS One, 2012, 7(2): e30506. |
[75]
|
GÓMEZ C, WULDER M A, MONTES F, et al. Modeling forest structural parameters in the Mediterranean pines of central Spain using QuickBird-2 imagery and classification and regression tree analysis (CART)[J]. Remote Sensing, 2012, 4(1): 135-159. |
[76]
|
MORA B, WULDER M A, WHITE J C. Segment-constrained regression tree estimation of forest stand height from very high spatial resolution panchromatic imagery over a boreal environment[J]. Remote Sensing of Environment, 2010, 114(11): 2474-2484. |
[77]
|
SONG C, DICKINSON M B, SU L, et al. Estimating average tree crown size using spatial information from Ikonos and QuickBird images: across-sensor and across-site comparisons[J]. Remote Sensing of Environment, 2010, 114(5): 1099-1107. |
[78]
|
KLOBUČAR D, PERNAR R, LONČARI? S, et al. Artificial neural networks in the assessment of stand parameters from an IKONOS satellite image[J]. Croatian Journal of Forest Engineering, 2008, 29(2): 201-211. |
[79]
|
OZDEMIR I. Estimating stem volume by tree crown area and tree shadow area extracted from pan-sharpened Quickbird imagery in open Crimean juniper forests[J]. International Journal of Remote Sensing, 2008, 29(19): 5643-5655. |
[80]
|
GREENBERG J A, DOBROWSKI S Z, USTIN S L. Shadow allometry: estimating tree structural parameters using hyperspatial image analysis[J]. Remote Sensing of Environment, 2005, 97(1): 15-25. |
[81]
|
WOOD E M, PIDGEON A M, RADELOFF V C, et al. Image texture as a remotely sensed measure of vegetation structure[J]. Remote Sensing of Environment, 2012, 121: 516-526. |
[82]
|
CROW T R. Biomass and production in three contiguous forests in northern Wisconsin[J]. Ecology, 1978, 59(2): 265-273. |
[83]
|
FOODY G M. Remote sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development[J]. International Journal of Remote Sensing, 2003, 24(20): 4035-4046. |
[84]
|
FOODY G M, BOYD D S, CUTLER M E. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sensing of Environment, 2003, 85(4): 463-474. |
[85]
|
LU D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2005, 26(12): 2509-2525. |
[86]
|
MUUKKONEN P, HEISKANEN J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: a possibility to verify carbon inventories[J]. Remote Sensing of Environment, 2007, 107(4): 617-624. |
[87]
|
KUPLICH T M, CURRAN P J, ATKINSON P M. Relating SAR image texture to the biomass of regenerating tropical forests[J]. International Journal of Remote Sensing, 2005, 26(21): 4829-4854. |
[88]
|
ENGLHART S, KEUCK V, SIEGERT F. Aboveground biomass retrieval in tropical forests: the potential of combined X- and L-band SAR data use[J]. Remote Sensing of Environment, 2011, 115(5): 1260-1271. |
[89]
|
TANASE M A, PANCIERA R, LOWELL K, et al. Airborne multi-temporal L-band polarimetric SAR data for biomass estimation in semi-arid forests[J]. Remote Sensing of Environment, 2014, 145: 93-104. |
[90]
|
LUCKMAN A, BAKER J, HONZÁK M, et al. Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics[J]. Remote Sensing of Environment, 1998, 63(2): 126-139. |
[91]
|
BORTOLOT Z J, WYNNE R H. Estimating forest biomass using small footprint LiDAR data: an individual tree-based approach that incorporates training data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(6): 342-360. |
[92]
|
PATENAUDE G, HILL R A, MILNE R, et al. Quantifying forest above ground carbon content using LiDAR remote sensing[J]. Remote Sensing of Environment, 2004, 93(3): 368-380. |
[93]
|
GLEASON C J, IM J. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sensing of Environment, 2012, 125: 80-91. |
[94]
|
LAURIN G V, CHEN Q, LINDSELL J A, et al. Above ground biomass estimation in an African tropical forest with LiDAR and hyperspectral data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89: 49-58. |
[95]
|
CUTLER M, BOYD D S, FOODY G M, et al. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: an assessment of predictions between regions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70: 66-77. |
[96]
|
NELSON R F, KIMES D S, SALAS W A, et al. Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery[J]. Bioscience, 2000, 50(5): 419-431. |
[97]
|
STEININGER M K. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia[J]. International Journal of Remote Sensing, 2000, 21(6-7): 1139-1157. |
[98]
|
MUUKKONEN P, HEISKANEN J. Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data[J]. Remote Sensing of Environment, 2005, 99(4): 434-447. |
[99]
|
HYDE P, DUBAYAH R, WALKER W, et al. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy[J]. Remote Sensing of Environment. 2006, 102(1-2): 63-73. |
[100]
|
KALACSKA M, SANCHEZ-AZOFEIFA G A, RIVARD B, et al. Ecological fingerprinting of ecosystem succession: estimating secondary tropical dry forest structure and diversity using imaging spectroscopy[J]. Remote Sensing of Environment. 2007, 108(1): 82-96. |
[101]
|
ECKERT S. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(4): 810-829. |
[102]
|
WIJAYA A, KUSNADI S, GLOAGUEN R, et al. Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS[J]. Journal of Forestry Research. 2010, 21(1): 1-12. |
[103]
|
CULBERT P D, PIDGEON A M, ST-LOUIS V, et al. The impact of phenological variation on texture measures of remotely sensed imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(4): 299-309. |
[104]
|
JOHANSEN K, PHINN S. Mapping structural parameters and species composition of riparian vegetation using IKONOS and Landsat ETM+ data in Australian tropical savannahs[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(1): 71-80. |
[105]
|
BUDDENBAUM H, SCHLERF M, HILL J. Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods[J]. International Journal of Remote Sensing, 2005, 26(24): 5453-5465. |
[106]
|
RAO P N, SAI M S, SREENIVAS K, et al. Textural analysis of IRS-1D panchromatic data for land cover classification[J]. International Journal of Remote Sensing, 2002, 23(17): 3327-3345. |
[107]
|
BARALDI A, PARMIGGIANI F. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 293-304. |
[108]
|
GONG P, MARCEAU D J, HOWARTH P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[J]. Remote Sensing of Environment, 1992, 40(2): 137-151. |
[109]
|
CLAUSI D A. An analysis of co-occurrence texture statistics as a function of grey level quantization[J]. Canadian Journal of Remote Sensing, 2002, 28(1): 45-62. |
[110]
|
PUISSANT A, HIRSCH J, WEBER C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery[J]. International Journal of Remote Sensing, 2005, 26(4): 733-745. |
[111]
|
VEGA-GARCÍA C, CHUVIECO E. Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes[J]. Landscape Ecology, 2006, 21(4): 595-605. |
[112]
|
DRONOVA I, GONG P, CLINTON N E, et al. Landscape analysis of wetland plant functional types: the effects of image segmentation scale, vegetation classes and classification methods[J]. Remote Sensing of Environment, 2012, 127: 357-369. |
[113]
|
ZHANG C, XIE Z. Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery[J]. Remote Sensing of Environment, 2012, 124: 310-320. |
[114]
|
吴飏,张登荣,张汉奎,等. 结合图像纹理特征的森林郁闭度遥感估测[J]. 林业科学, 2012(2): 48-53. |
[115]
|
GRAY J, SONG C. Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors[J]. Remote Sensing of Environment, 2012, 119: 173-183. |
[116]
|
SOH L, TSATSOULIS C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 780-795. |
[117]
|
BARBIER N, COUTERON P, PROISY C, et al. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests[J]. Global Ecology and Biogeography, 2010, 19(1): 72-84. |
[118]
|
CHAMPION I, GERMAIN C, DA COSTA J P, et al. Retrieval of forest stand age from SAR image texture for varying distance and orientation values of the gray level co-occurrence matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 5-9. |
[119]
|
FRANKLIN S E, PEDDLE D R. Spectral texture for improved class discrimination in complex terrain[J]. International Journal of Remote Sensing, 1989, 10(8): 1437-1443. |
[120]
|
BARBER D G, LEDREW E F. SAR sea ice discrimination using texture statistics: a multivariate approach[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(4): 385-395. |
[121]
|
HUGHES G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63. |
[122]
|
LI G, LU D, MORAN E, et al. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70: 26-38. |
[123]
|
OZDEMIR I, NORTON D A, OZKAN U Y, et al. Estimation of tree size diversity using object oriented texture analysis and aster imagery[J]. Sensors, 2008, 8(8): 4709-4724. |