高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学影像纹理信息在林业领域的最新应用进展

陈玲 郝文乾 高德亮

陈玲, 郝文乾, 高德亮. 光学影像纹理信息在林业领域的最新应用进展[J]. 北京林业大学学报, 2015, 37(3): 1-12. doi: 10.13332/j.1000-1522.20140304
引用本文: 陈玲, 郝文乾, 高德亮. 光学影像纹理信息在林业领域的最新应用进展[J]. 北京林业大学学报, 2015, 37(3): 1-12. doi: 10.13332/j.1000-1522.20140304
CHEN Ling, HAO Wen-qian, GAO De-liang. The latest applications of optical image texture in forestry[J]. Journal of Beijing Forestry University, 2015, 37(3): 1-12. doi: 10.13332/j.1000-1522.20140304
Citation: CHEN Ling, HAO Wen-qian, GAO De-liang. The latest applications of optical image texture in forestry[J]. Journal of Beijing Forestry University, 2015, 37(3): 1-12. doi: 10.13332/j.1000-1522.20140304

光学影像纹理信息在林业领域的最新应用进展

doi: 10.13332/j.1000-1522.20140304
基金项目: 

中央高校基本科研业务费专项(TD 2013-1)、国家自然科学基金项目(41301357)

详细信息
    作者简介:

    第一作者: 陈玲,博士,讲师。主要研究方向:林业定量遥感。 Email:chenling8247@126.com 地址:100083北京市清华东路35号北京林业大学林学院森林经理学科。

The latest applications of optical image texture in forestry

  • 摘要: 随着光学卫星影像空间分辨率的不断提高,影像纹理特征的重要性日益凸显。然而,纹理是一个非常复杂的空间属性,会随着太阳/观测角度、地形、感兴趣目标及其所处环境的不同而发生显著的变化。此外,不同纹理变量的选择及相应输入参数的设置,如窗口大小、像元间距、方向以及量化等级等都可能在一定程度上决定着影像纹理的利用价值。如何有效利用纹理量及其优化组合是一个值得深入探讨的问题。鉴于此,本文首先全面回顾了影像纹理特征在森林分类、森林结构参数反演以及森林生物量与碳储量的遥感估算等方面的最新研究与应用,并从不同角度肯定了光学影像纹理在林业遥感领域的应用潜力。此外,从纹理变量及其4大输入参数的选择和最优变量组合的判别方面,总结并剖析了当前研究领域中所存在的关键问题,权衡利弊并给出了相应的建议,为相关研究人员将影像纹理信息更有效地应用于林业领域提供参考。
  • [1] TUOMINEN S, PEKKARINEN A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory[J]. Remote Sensing of Environment, 2005, 94(2): 256-268.
    [2] CASTILLO-SANTIAGO M A, RICKER M, DE JONG B H J. Estimation of tropical forest structure from SPOT-5 satellite images[J]. International Journal of Remote Sensing, 2010, 31(10): 2767-2782.
    [3] DORREN L K A, MAIER B, SEIJMONSBERGEN A C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification[J]. Forest Ecology and Management, 2003, 183(1-3): 31-46.
    [4] FRANKLIN S E, WULDER M A, GERYLO G R. Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia[J]. International Journal of Remote Sensing, 2001, 22(13): 2627-2632.
    [5] HALL R J, SKAKUN R S, ARSENAULT E J, et al. Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume[J]. Forest Ecology and Management, 2006, 225(1-3): 378-390.
    [6] COBURN C A, ROBERTS A. A multiscale texture analysis procedure for improved forest stand classification[J]. International Journal of Remote Sensing, 2004, 25(20): 4287-4308.
    [7] WOLTER P T, TOWNSEND P A, STURTEVANT B R. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data[J]. Remote Sensing of Environment, 2009, 113(9): 2019-2036.
    [8] PU R, LANDRY S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species[J]. Remote Sensing of Environment, 2012, 124: 516-533.
    [9] RODRIGUEZ-GALIANO V F, CHICA-OLMO M, ABARCA-HERNANDEZ F, et al. Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture[J]. Remote Sensing of Environment, 2012, 121: 93-107.
    [10] TROTTER C M, DYMOND J R, GOULDING C J. Estimation of timber volume in a coniferous plantation forest using Landsat TM[J]. International Journal of Remote Sensing, 1997, 18(10): 2209-2223.
    [11] WULDER M A, LEDREW E F, FRANKLIN S E, et al. Aerial image texture information in the estimation of northern deciduous and mixed wood forest leaf area index (LAI)[J]. Remote Sensing of Environment, 1998, 64(1): 64-76.
    [12] FUCHS H, MAGDON P, KLEINN C, et al. Estimating aboveground carbon in a catchment of the Siberian forest tundra: combining satellite imagery and field inventory[J]. Remote Sensing of Environment, 2009, 113(3): 518-531.
    [13] PROISY C, COUTERON P, FROMARD F. Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images[J]. Remote Sensing of Environment, 2007, 109(3): 379-392.
    [14] LECKIE D G, GOUGEON F A, TINIS S, et al. Automated tree recognition in old growth conifer stands with high resolution digital imagery[J]. Remote Sensing of Environment, 2005, 94(3): 311-326.
    [15] TRELTZ P, HOWARTH P. Integrating spectral, spatial, and terrain variables for forest ecosystem classification[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(3): 305-317.
    [16] LECKIE D G, TINIS S, NELSON T, et al. Issues in species classification of trees in old growth conifer stands[J]. Canadian Journal of Remote Sensing, 2005, 31(2): 175-190.
    [17] ARENAS-CASTRO S, JULIEN Y, JIMNEZ-MUÑOZ J C, et al. Mapping wild pear trees (Pyrus bourgaeana) in Mediterranean forest using high-resolution QuickBird satellite imagery[J]. International Journal of Remote Sensing, 2012, 34(9-10): 3376-3396.
    [18] WANG Z, BOESCH R. Color- and texture-based image segmentation for improved forest delineation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3055-3062.
    [19] CARLEER A, WOLFF E. Exploitation of very high resolution satellite data for tree species identification[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(1): 135-140.
    [20] YU Q, GONG P, CLINTON N, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(7): 799.
    [21] MALLINIS G, KOUTSIAS N, TSAKIRI-STRATI M, et al. Object-based classification using QuickBird imagery for delineating forest vegetation polygons in a Mediterranean test site[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(2): 237-250.
    [22] INGRAM J C, DAWSON T P, WHITTAKER R J. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks[J]. Remote Sensing of Environment, 2005, 94(4): 491-507.
    [23] LAURIN G V, LIESENBERG V, CHEN Q, et al. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 7-16.
    [24] HYYPPÄ J, HYYPPÄ H, INKINEN M, et al. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes[J]. Forest Ecology and Management, 2000, 128(1-2): 109-120.
    [25] HARALICK R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786-804.
    [26] GEBRESLASIE M T, AHMED F B, VAN AARDT J A N. Extracting structural attributes from IKONOS imagery for Eucalyptus plantation forests in KwaZulu-Natal, South Africa, using image texture analysis and artificial neural networks[J]. International Journal of Remote Sensing, 2011, 32(22): 7677-7701.
    [27] CHEN G, HAY G J, CASTILLA G, et al. A multiscale geographic object-based image analysis to estimate lidar-measured forest canopy height using Quickbird imagery[J]. International Journal of Geographical Information Science, 2010, 25(6): 877-893.
    [28] LU D. The potential and challenge of remote sensing-based biomass estimation[J]. International Journal of Remote Sensing, 2006, 27(7): 1297-1328.
    [29] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973(6): 610-621.
    [30] ZHENG D, RADEMACHER J, CHEN J, et al. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA[J]. Remote Sensing of Environment, 2004, 93(3): 402-411.
    [31] FRANKLIN S E, HALL R J, MOSKAL L M, et al. Incorporating texture into classification of forest species composition from airborne multispectral images[J]. International Journal of Remote Sensing, 2000, 21(1): 61-79.
    [32] SOLBERG S, ASTRUP R, GOBAKKEN T, et al. Estimating spruce and pine biomass with interferometric X-band SAR[J]. Remote Sensing of Environment, 2010, 114(10): 2353-2360.
    [33] RAUSTE Y. Multi-temporal JERS SAR data in boreal forest biomass mapping[J]. Remote Sensing of Environment, 2005, 97(2): 263-275.
    [34] FRANKLIN S E, MAUDIE A J, LAVLGNE M B. Using spatial co-occurrence texture to increase forest structure and species classification accuracy[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(7): 849-855.
    [35] WANG L, SOUSA W P, GONG P, et al. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama[J]. Remote Sensing of Environment, 2004, 91(3-4): 432-440.
    [36] AHMED R, SIQUEIRA P, HENSLEY S. A study of forest biomass estimates from LiDAR in the northern temperate forests of New England[J]. Remote Sensing of Environment, 2013, 130: 121-135.
    [37] IOKI K, TSUYUKI S, HIRATA Y, et al. Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR[J]. Forest Ecology and Management, 2014, 328: 335-341.
    [38] HYDE P, NELSON R, KIMES D, et al. Exploring LiDAR-RaDAR synergy: predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR[J]. Remote Sensing of Environment, 2007, 106(1): 28-38.
    [39] LU D, BATISTELLA M. Exploring TM image texture and its relationships with biomass estimation in Rondnia, Brazilian Amazon[J]. Acta Amazonica, 2005, 35(2): 249-257.
    [40] KAYITAKIRE F, HAMEL C, DEFOURNY P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery[J]. Remote Sensing of Environment, 2006, 102(3-4): 390-401.
    [41] WU Y, ZHANG D R, ZHANG H K, et al. Remote sensing estimation of forest canopy density combined with texture features[J].Scientia Silvae Sinicae, 2012(2): 48-53.
    [42] OZDEMIR I, KARNIELI A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5): 701-710.
    [43] PASHER J, KING D J. Multivariate forest structure modelling and mapping using high resolution airborne imagery and topographic information[J]. Remote Sensing of Environment, 2010, 114(8): 1718-1732.
    [44] NICHOL J E, SARKER M L R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 930-948.
    [45] SARKER L R, NICHOL J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment, 2011, 115(4): 968-977.
    [46] SARKER M L R, NICHOL J, AHMAD B, et al. Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 69: 146-166.
    [47] SARKER M L R, NICHOL J, IZ H B, et al. Forest biomass estimation using texture measurements of high-resolution dual-polarization C-band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3371-3384.
    [48] SINGH M, MALHI Y, BHAGWAT S. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing[J]. Journal of Applied Remote Sensing, 2014, 8(1): 83695.
    [49] HAY G J, NIEMANN K O, MCLEAN G F. An object-specific image-texture analysis of H-resolution forest imagery[J]. Remote Sensing of Environment, 1996, 55(2): 108-122.
    [50] FRANKLIN S E, MCDERMID G J. Empirical relations between digital SPOT HRV and CASI spectral response and lodgepole pine (Pinus contorta) forest stand parameters[J]. International Journal of Remote Sensing, 1993, 14(12): 2331-2348.
    [51] TREITZ P, HOWARTH P. High spatial resolution remote sensing data for forest ecosystem classification: an examination of spatial scale[J]. Remote Sensing of Environment, 2000, 72(3): 268-289.
    [52] CULVENOR D S. TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery[J]. Computers and Geosciences, 2002, 28(1): 33-44.
    [53] POULIOT D A, KING D J, BELL F W, et al. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration[J]. Remote Sensing of Environment, 2002, 82(2-3): 322-334.
    [54] GHOSH A, JOSHI P K. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26: 298-311.
    [55] VIEDMA O, TORRES I, PREZ B, et al. Modeling plant species richness using reflectance and texture data derived from QuickBird in a recently burned area of Central Spain[J]. Remote Sensing of Environment, 2012, 119: 208-221.
    [56] GOMEZ C, MANGEAS M, PETIT M, et al. Use of high-resolution satellite imagery in an integrated model to predict the distribution of shade coffee tree hybrid zones[J]. Remote Sensing of Environment, 2010, 114(11): 2731-2744.
    [57] HUANG X, ZHANG L, WANG L. Evaluation of morphological texture features for mangrove forest mapping and species discrimination using multispectral IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 393-397.
    [58] KIM M, MADDEN M, WARNER T A. Forest type mapping using object-specific texture measures from multispectral IKONOS imagery: segmentation quality and image classification issues[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75(7): 819-829.
    [59] OUMA Y O, TETUKO J, TATEISHI R. Analysis of co-occurrence and discrete wavelet transform textures for differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery[J]. International Journal of Remote Sensing, 2008, 29(12): 3417-3456.
    [60] JOHANSEN K, COOPS N C, GERGEL S E, et al. Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification[J]. Remote Sensing of Environment, 2007, 110(1): 29-44.
    [61] VAN COILLIE F M B, VERBEKE L P C, DE WULF R R. Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium[J]. Remote Sensing of Environment, 2007, 110(4): 476-487.
    [62] CHUBEY M S, FRANKLIN S E, WULDER M A. Object-based analysis of IKONOS-2 imagery for extraction of forest inventory parameters[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(4): 383-394.
    [63] MARCEAU D J, HOWARTH P J, DUBOIS J M, et al. Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 513-519.
    [64] FRANKLIN S E, PEDDLE D R. Classification of SPOT HRV imagery and texture features[J]. International Journal of Remote Sensing, 1990, 11(3): 551-556.
    [65] PEDDLE D R, FRANKLIN S E. Image texture processing and data integration for surface pattern discrimination[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(4): 413-420.
    [66] GONG P, MARCEAU D J, HOWARTH P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[J]. Remote Sensing of Environment, 1992, 40(2): 137-151.
    [67] FRANKLIN S E, WULDER M A, LAVIGNE M B. Automated derivation of geographic window sizes for use in remote sensing digital image texture analysis[J]. Computers and Geosciences, 1996, 22(6): 665-673.
    [68] CARR J R, DE MIRANDA F P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1945-1952.
    [69] CHAN J, LAPORTE N, DEFRIES R S. Texture classification of logged forests in tropical Africa using machine-learning algorithms[J]. International Journal of Remote Sensing, 2003, 24(6): 1401-1407.
    [70] WULDER M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters[J]. Progress in Physical Geography, 1998, 22(4): 449-476.
    [71] LVESQUE J, KING D J. Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health[J]. Remote Sensing of Environment, 2003, 84(4): 589-602.
    [72] GEBRESLASIE M T, AHMED F B, VAN AARDT J. Estimating plot-level forest structural attributes using high spectral resolution ASTER satellite data in even-aged Eucalyptus plantations in southern KwaZulu-Natal, South Africa[J]. Southern Forests, 2008, 70(3): 227-236.
    [73] SHAMSODDINI A, TRINDER J C, TURNER R. Pine plantation structure mapping using WorldView-2 multispectral image[J]. International Journal of Remote Sensing, 2013, 34(11): 3986-4007.
    [74] GALLARDO-CRUZ J A, MEAVE J A, GONZÁLEZ E J, et al. Predicting tropical dry forest successional attributes from space: is the key hidden in image texture?[J]. PloS One, 2012, 7(2): e30506.
    [75] GÓMEZ C, WULDER M A, MONTES F, et al. Modeling forest structural parameters in the Mediterranean pines of central Spain using QuickBird-2 imagery and classification and regression tree analysis (CART)[J]. Remote Sensing, 2012, 4(1): 135-159.
    [76] MORA B, WULDER M A, WHITE J C. Segment-constrained regression tree estimation of forest stand height from very high spatial resolution panchromatic imagery over a boreal environment[J]. Remote Sensing of Environment, 2010, 114(11): 2474-2484.
    [77] SONG C, DICKINSON M B, SU L, et al. Estimating average tree crown size using spatial information from Ikonos and QuickBird images: across-sensor and across-site comparisons[J]. Remote Sensing of Environment, 2010, 114(5): 1099-1107.
    [78] KLOBUČAR D, PERNAR R, LONČARI? S, et al. Artificial neural networks in the assessment of stand parameters from an IKONOS satellite image[J]. Croatian Journal of Forest Engineering, 2008, 29(2): 201-211.
    [79] OZDEMIR I. Estimating stem volume by tree crown area and tree shadow area extracted from pan-sharpened Quickbird imagery in open Crimean juniper forests[J]. International Journal of Remote Sensing, 2008, 29(19): 5643-5655.
    [80] GREENBERG J A, DOBROWSKI S Z, USTIN S L. Shadow allometry: estimating tree structural parameters using hyperspatial image analysis[J]. Remote Sensing of Environment, 2005, 97(1): 15-25.
    [81] WOOD E M, PIDGEON A M, RADELOFF V C, et al. Image texture as a remotely sensed measure of vegetation structure[J]. Remote Sensing of Environment, 2012, 121: 516-526.
    [82] CROW T R. Biomass and production in three contiguous forests in northern Wisconsin[J]. Ecology, 1978, 59(2): 265-273.
    [83] FOODY G M. Remote sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development[J]. International Journal of Remote Sensing, 2003, 24(20): 4035-4046.
    [84] FOODY G M, BOYD D S, CUTLER M E. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sensing of Environment, 2003, 85(4): 463-474.
    [85] LU D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2005, 26(12): 2509-2525.
    [86] MUUKKONEN P, HEISKANEN J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: a possibility to verify carbon inventories[J]. Remote Sensing of Environment, 2007, 107(4): 617-624.
    [87] KUPLICH T M, CURRAN P J, ATKINSON P M. Relating SAR image texture to the biomass of regenerating tropical forests[J]. International Journal of Remote Sensing, 2005, 26(21): 4829-4854.
    [88] ENGLHART S, KEUCK V, SIEGERT F. Aboveground biomass retrieval in tropical forests: the potential of combined X- and L-band SAR data use[J]. Remote Sensing of Environment, 2011, 115(5): 1260-1271.
    [89] TANASE M A, PANCIERA R, LOWELL K, et al. Airborne multi-temporal L-band polarimetric SAR data for biomass estimation in semi-arid forests[J]. Remote Sensing of Environment, 2014, 145: 93-104.
    [90] LUCKMAN A, BAKER J, HONZÁK M, et al. Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics[J]. Remote Sensing of Environment, 1998, 63(2): 126-139.
    [91] BORTOLOT Z J, WYNNE R H. Estimating forest biomass using small footprint LiDAR data: an individual tree-based approach that incorporates training data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(6): 342-360.
    [92] PATENAUDE G, HILL R A, MILNE R, et al. Quantifying forest above ground carbon content using LiDAR remote sensing[J]. Remote Sensing of Environment, 2004, 93(3): 368-380.
    [93] GLEASON C J, IM J. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sensing of Environment, 2012, 125: 80-91.
    [94] LAURIN G V, CHEN Q, LINDSELL J A, et al. Above ground biomass estimation in an African tropical forest with LiDAR and hyperspectral data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89: 49-58.
    [95] CUTLER M, BOYD D S, FOODY G M, et al. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: an assessment of predictions between regions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70: 66-77.
    [96] NELSON R F, KIMES D S, SALAS W A, et al. Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery[J]. Bioscience, 2000, 50(5): 419-431.
    [97] STEININGER M K. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia[J]. International Journal of Remote Sensing, 2000, 21(6-7): 1139-1157.
    [98] MUUKKONEN P, HEISKANEN J. Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data[J]. Remote Sensing of Environment, 2005, 99(4): 434-447.
    [99] HYDE P, DUBAYAH R, WALKER W, et al. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy[J]. Remote Sensing of Environment. 2006, 102(1-2): 63-73.
    [100] KALACSKA M, SANCHEZ-AZOFEIFA G A, RIVARD B, et al. Ecological fingerprinting of ecosystem succession: estimating secondary tropical dry forest structure and diversity using imaging spectroscopy[J]. Remote Sensing of Environment. 2007, 108(1): 82-96.
    [101] ECKERT S. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(4): 810-829.
    [102] WIJAYA A, KUSNADI S, GLOAGUEN R, et al. Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS[J]. Journal of Forestry Research. 2010, 21(1): 1-12.
    [103] CULBERT P D, PIDGEON A M, ST-LOUIS V, et al. The impact of phenological variation on texture measures of remotely sensed imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(4): 299-309.
    [104] JOHANSEN K, PHINN S. Mapping structural parameters and species composition of riparian vegetation using IKONOS and Landsat ETM+ data in Australian tropical savannahs[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(1): 71-80.
    [105] BUDDENBAUM H, SCHLERF M, HILL J. Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods[J]. International Journal of Remote Sensing, 2005, 26(24): 5453-5465.
    [106] RAO P N, SAI M S, SREENIVAS K, et al. Textural analysis of IRS-1D panchromatic data for land cover classification[J]. International Journal of Remote Sensing, 2002, 23(17): 3327-3345.
    [107] BARALDI A, PARMIGGIANI F. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 293-304.
    [108] GONG P, MARCEAU D J, HOWARTH P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[J]. Remote Sensing of Environment, 1992, 40(2): 137-151.
    [109] CLAUSI D A. An analysis of co-occurrence texture statistics as a function of grey level quantization[J]. Canadian Journal of Remote Sensing, 2002, 28(1): 45-62.
    [110] PUISSANT A, HIRSCH J, WEBER C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery[J]. International Journal of Remote Sensing, 2005, 26(4): 733-745.
    [111] VEGA-GARCÍA C, CHUVIECO E. Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes[J]. Landscape Ecology, 2006, 21(4): 595-605.
    [112] DRONOVA I, GONG P, CLINTON N E, et al. Landscape analysis of wetland plant functional types: the effects of image segmentation scale, vegetation classes and classification methods[J]. Remote Sensing of Environment, 2012, 127: 357-369.
    [113] ZHANG C, XIE Z. Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery[J]. Remote Sensing of Environment, 2012, 124: 310-320.
    [114] 吴飏,张登荣,张汉奎,等. 结合图像纹理特征的森林郁闭度遥感估测[J]. 林业科学, 2012(2): 48-53.
    [115] GRAY J, SONG C. Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors[J]. Remote Sensing of Environment, 2012, 119: 173-183.
    [116] SOH L, TSATSOULIS C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 780-795.
    [117] BARBIER N, COUTERON P, PROISY C, et al. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests[J]. Global Ecology and Biogeography, 2010, 19(1): 72-84.
    [118] CHAMPION I, GERMAIN C, DA COSTA J P, et al. Retrieval of forest stand age from SAR image texture for varying distance and orientation values of the gray level co-occurrence matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 5-9.
    [119] FRANKLIN S E, PEDDLE D R. Spectral texture for improved class discrimination in complex terrain[J]. International Journal of Remote Sensing, 1989, 10(8): 1437-1443.
    [120] BARBER D G, LEDREW E F. SAR sea ice discrimination using texture statistics: a multivariate approach[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(4): 385-395.
    [121] HUGHES G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63.
    [122] LI G, LU D, MORAN E, et al. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70: 26-38.
    [123] OZDEMIR I, NORTON D A, OZKAN U Y, et al. Estimation of tree size diversity using object oriented texture analysis and aster imagery[J]. Sensors, 2008, 8(8): 4709-4724.
  • [1] 葛会硕, 宋跃朋, 苏雪辉, 张德强, 张晓宇.  基于Logistic和Gompertz模型的小叶杨幼苗生长组合优化模型 . 北京林业大学学报, 2020, 42(5): 59-70. doi: 10.12171/j.1000-1522.20190296
    [2] 李云, 张王菲, 崔鋆波, 李春梅, 姬永杰.  参数优选支持的光学与SAR数据森林地上生物量反演研究 . 北京林业大学学报, 2020, 42(): 11-19. doi: 10.12171/j.1000-1522.20190389
    [3] 吴艳双, 张晓丽.  结合多尺度纹理特征的高光谱影像面向对象树种分类 . 北京林业大学学报, 2020, 42(6): 91-101. doi: 10.12171/j.1000-1522.20190155
    [4] 李萍, 张源, 吴义强, 吕建雄, 袁光明, 左迎峰.  硅酸盐浸渍改性对杉木视觉物理量的影响 . 北京林业大学学报, 2020, 42(9): 122-129. doi: 10.12171/j.1000-1522.20200189
    [5] 黄炎子, 宋美华, 郭永恒, 王青, 王俊杰, 周祎鸣, 向秋虹, 王馨蕊, 关文彬.  文冠果不同交配组合种实性状变异及综合评价 . 北京林业大学学报, 2019, 41(1): 42-56. doi: 10.13332/j.1000-1522.20180105
    [6] 储德淼, 母军, 康柳, 赖宗元.  单板层积材的三维光学检测及其托盘的有限元仿真分析 . 北京林业大学学报, 2019, 41(9): 147-155. doi: 10.13332/j.1000-1522.20190056
    [7] 陈莹, 董灵波, 刘兆刚.  帽儿山天然次生林主要林分类型最优树种组成 . 北京林业大学学报, 2019, 41(5): 118-126. doi: 10.13332/j.1000-1522.20190013
    [8] 刘嘉政, 王雪峰, 王甜.  基于深度学习的5种树皮纹理图像识别研究 . 北京林业大学学报, 2019, 41(4): 146-154. doi: 10.13332/j.1000-1522.20180242
    [9] 汪垚, 张志玉, 倪文俭, 刘见礼, 张大凤.  基于机载LiDAR数据的林下地形提取算法比较与组合分析 . 北京林业大学学报, 2017, 39(12): 25-35. doi: 10.13332/j.1000-1522.20170300
    [10] 陈明健, 陈志泊, 杨猛, 莫琴.  叶片传统特征和距离矩阵与角点矩阵相结合的树种识别算法 . 北京林业大学学报, 2017, 39(2): 108-116. doi: 10.13332/j.1000-1522.20160351
    [11] 刘正民, 郭素娟, 徐丞, 秦天天, 孙小兵.  基于饱和D-最优设计的‘燕山早丰’施肥研究 . 北京林业大学学报, 2015, 37(1): 70-83. doi: 10.13332/j.cnki.jbfu.2015.01.016
    [12] 刘怀鹏, 安慧君, 王冰, 张秋良.  基于递归纹理特征消除的WorldView-2树种分类 . 北京林业大学学报, 2015, 37(8): 53-59. doi: 10.13332/j.1000-1522.20140311
    [13] 张凝, 冯跃文, 张晓丽, 樊江川.  结合航空影像纹理和光谱特征的单木冠幅提取 . 北京林业大学学报, 2015, 37(3): 13-19. doi: 10.13332/j.1000-1522.20140309
    [14] 吴迪, 范文义.  激光雷达协同多角度光学遥感数据反演树高 . 北京林业大学学报, 2014, 36(4): 8-15. doi: 10.13332/j.cnki.jbfu.2014.04.006
    [15] 张怡卓, 马琳, 许雷, 于慧伶.  基于小波与曲波遗传融合的木材纹理分类 . 北京林业大学学报, 2014, 36(2): 119-124.
    [16] 郭素娟吕文君邹锋谢鹏, .  不同数学方法对板栗授粉组合的评价与筛选 . 北京林业大学学报, 2013, 35(6): 42-47.
    [17] 宋莎莎, 赵广杰.  木材宏、微观细胞堆砌构造图案的分形表征 . 北京林业大学学报, 2011, 33(4): 102-106.
    [18] 章皖秋, 袁华, 徐天蜀.  遥感影像正立体化研究 . 北京林业大学学报, 2010, 32(3): 41-46.
    [19] 赵俊卉, 亢新刚, 刘燕.  长白山主要针叶树种最优树高曲线研究 . 北京林业大学学报, 2009, 31(4): 13-18.
    [20] 武三安, 胡建忠, 杜晓, 莫秋云, 陈玮, 贾黎明, 刁一伟, 李成茂, 刘晓丽, 张丽丽, 韩烈保, 张建军, 张厚江, 郭惠红, 石娟, 赵博光, 王昌俊, 申世杰, 梁波, 马履一, 李文彬, 姜笑梅, 徐文铎, 邢长山, 骆有庆, 李镇宇, 王安志, 清水晃, 宋菲, 张峻萍, 金昌杰, 苏德荣, 崔英颖, 壁谷直记, 王小平, 曾凡勇, 李海林, 李景锐, 赵林果, 石碧, 殷亚方, 沉昕, 延廣竜彦, 徐梅, 蒋艳灵, 韩瑞东, 苗毅, 陈卫平2, 韦艳葵, 胡青, 关德新, 王瀛坤, 裴铁璠, 赵永利, 严晓素, 高述民, 徐君, 李凤兰, 周军, 蒋平, 蒋平.  确定监测区域建立森林郁闭度估测方程最优样地的研究 . 北京林业大学学报, 2005, 27(6): 24-28.
  • 加载中
计量
  • 文章访问数:  412
  • HTML全文浏览量:  56
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-27
  • 修回日期:  2014-11-14
  • 刊出日期:  2015-03-31

光学影像纹理信息在林业领域的最新应用进展

doi: 10.13332/j.1000-1522.20140304
    基金项目:

    中央高校基本科研业务费专项(TD 2013-1)、国家自然科学基金项目(41301357)

    作者简介:

    第一作者: 陈玲,博士,讲师。主要研究方向:林业定量遥感。 Email:chenling8247@126.com 地址:100083北京市清华东路35号北京林业大学林学院森林经理学科。

摘要: 随着光学卫星影像空间分辨率的不断提高,影像纹理特征的重要性日益凸显。然而,纹理是一个非常复杂的空间属性,会随着太阳/观测角度、地形、感兴趣目标及其所处环境的不同而发生显著的变化。此外,不同纹理变量的选择及相应输入参数的设置,如窗口大小、像元间距、方向以及量化等级等都可能在一定程度上决定着影像纹理的利用价值。如何有效利用纹理量及其优化组合是一个值得深入探讨的问题。鉴于此,本文首先全面回顾了影像纹理特征在森林分类、森林结构参数反演以及森林生物量与碳储量的遥感估算等方面的最新研究与应用,并从不同角度肯定了光学影像纹理在林业遥感领域的应用潜力。此外,从纹理变量及其4大输入参数的选择和最优变量组合的判别方面,总结并剖析了当前研究领域中所存在的关键问题,权衡利弊并给出了相应的建议,为相关研究人员将影像纹理信息更有效地应用于林业领域提供参考。

English Abstract

陈玲, 郝文乾, 高德亮. 光学影像纹理信息在林业领域的最新应用进展[J]. 北京林业大学学报, 2015, 37(3): 1-12. doi: 10.13332/j.1000-1522.20140304
引用本文: 陈玲, 郝文乾, 高德亮. 光学影像纹理信息在林业领域的最新应用进展[J]. 北京林业大学学报, 2015, 37(3): 1-12. doi: 10.13332/j.1000-1522.20140304
CHEN Ling, HAO Wen-qian, GAO De-liang. The latest applications of optical image texture in forestry[J]. Journal of Beijing Forestry University, 2015, 37(3): 1-12. doi: 10.13332/j.1000-1522.20140304
Citation: CHEN Ling, HAO Wen-qian, GAO De-liang. The latest applications of optical image texture in forestry[J]. Journal of Beijing Forestry University, 2015, 37(3): 1-12. doi: 10.13332/j.1000-1522.20140304
参考文献 (123)

目录

    /

    返回文章
    返回