高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

思茅松天然林林分生物量混合效应模型构建

欧光龙 胥辉 王俊峰 肖义发 陈科屹 郑海妹

欧光龙, 胥辉, 王俊峰, 肖义发, 陈科屹, 郑海妹. 思茅松天然林林分生物量混合效应模型构建[J]. 北京林业大学学报, 2015, 37(3): 101-110. doi: 10.13332/j.1000-1522.20140316
引用本文: 欧光龙, 胥辉, 王俊峰, 肖义发, 陈科屹, 郑海妹. 思茅松天然林林分生物量混合效应模型构建[J]. 北京林业大学学报, 2015, 37(3): 101-110. doi: 10.13332/j.1000-1522.20140316
OU Guang-long, XU Hui, WANG Jun-feng, XIAO Yi-fa, CHEN Ke-yi, ZHENG Hai-mei. Building mixed effect models of stand biomass for Simao pine (Pinus kesiya var. langbianensis) natural forest[J]. Journal of Beijing Forestry University, 2015, 37(3): 101-110. doi: 10.13332/j.1000-1522.20140316
Citation: OU Guang-long, XU Hui, WANG Jun-feng, XIAO Yi-fa, CHEN Ke-yi, ZHENG Hai-mei. Building mixed effect models of stand biomass for Simao pine (Pinus kesiya var. langbianensis) natural forest[J]. Journal of Beijing Forestry University, 2015, 37(3): 101-110. doi: 10.13332/j.1000-1522.20140316

思茅松天然林林分生物量混合效应模型构建

doi: 10.13332/j.1000-1522.20140316
基金项目: 

国家自然科学基金项目(31160157)

详细信息
    作者简介:

    第一作者: 欧光龙,博士,实验师。主要研究方向:森林测计学。Email:olg2007621@126.com 地址: 650224云南省昆明市白龙寺300号西南林业大学西南地区生物多样性保育国家林业局重点实验室。责任作者: 胥辉,教授,博士生导师。主要研究方向:森林测计学。Email: zyxy213@126.com 地址:同上。

    第一作者: 欧光龙,博士,实验师。主要研究方向:森林测计学。Email:olg2007621@126.com 地址: 650224云南省昆明市白龙寺300号西南林业大学西南地区生物多样性保育国家林业局重点实验室。责任作者: 胥辉,教授,博士生导师。主要研究方向:森林测计学。Email: zyxy213@126.com 地址:同上。

Building mixed effect models of stand biomass for Simao pine (Pinus kesiya var. langbianensis) natural forest

  • 摘要: 本研究以云南省普洱市的思茅松天然林为对象,调查了3个位点45块样地的林分地上、根系和总生物量。以幂函数模型为基础构建林分生物量的基本模型;采用混合效应模型技术,考虑区域效应随机效应,选择基本混合效应模型,并分析模型的方差和协方差结构,分别构建3个维量的区域效应随机效应的混合效应模型;考虑林分因子、地形因子和气象因子固定效应,构建含环境因子固定效应和区域效应随机效应的林分生物量混合效应模型。所有模型均采用拟合指标和独立检验指标进行评价。结果表明:1) 从模型拟合情况看,考虑区域效应的随机效应模型均能显著提高一般回归模型的精度;在3类含环境因子固定效应模型中,含地形因子固定效应的区域混合效应模型均具有最低的AIC和BIC值,表现最好;2) 就模型独立性检验看,除地形因子固定效应的林分根系混合效应模型外,其余模型均优于一般回归模型;考虑环境因子固定效应的混合效应模型与普通区域效应混合模型相比,各个维量模型的独立性检验指标表现不一,但总体上差异不大;3) 综合考虑模型拟合和独立性检验结果,除林分根系生物量选择普通区域效应混合模型外,另2个维量均选择含地形因子固定效应和区域效应随机效应的混合效应模型。
  • [1] LUO Q B, ZENG W S, HE D B, et al. Establishment and application of compatible tree abovegound biomass models[J]. Journal of Natural Resources, 1999, 14(3):271-277.
    [2] LIETH H, WHITTAKER R H. Primary productivity of biosphere[M]. New York:Springer Verlag, 1975.
    [3] WEST P W. Tree and forest measurement[M]. 2nd ed. Berlin:Springer Verlag, 2009.
    [4] TANG S Z, ZHANG H R, XU H. Study on establish and estimate method of compatible biomass model[J]. Scientia Silvae Sinicae, 2000,36(Suppl.1):19-27.
    [5] CHOJNACKY D C. Allometric scaling theory applied to FIA biomass estimation: GTR NC-230[R]∥Washington: Forester, Forest Inventory Research, Enterprise Unit, USDA Forest Service, 2002:96-102.
    [6] TANG S Z, LANG K J, LI H K. Statistics and biology mathematics model computation (ForStat tutorial)[M]. Beijing: Science Press, 2009.
    [7] LI C M. Application of mixed effects models in forest growth model [J]. Scientia Silvae Sinicae, 2009,45(4):19-27.
    [8] JENKINS J C, CHOJNACKY D C, HEATH L S, et al. National-scale biomass estimators for United States tree species[J]. Forest Science, 2003,49: 12-35.
    [9] JENKINS J C, CHOJNACKY D C, HEATH L S, et al. Comprehensive database of diameter-based biomass regressions for North American tree species[R]. Newtown Square: Northeastern Research Station, USDA Forest Service, 2004.
    [10] FU L Y. Nonlinear mixed effects model and its application in forestry [D]. Beijing: Chinese Academy of Forestry, 2012.
    [11] TER-MIKAELIAN M T, KORZUKHIN M D. Biomass equations for sixty-five North American tree species[J]. Forest Ecology and Management, 1997,97: 1-24.
    [12] LI C M. Application of mixed effects models in forest growth models[D]. Beijing: Chinese Academy of Forestry, 2010.
    [13] ZIANIS D, MUUKKONEN P, MAKIPAA R, et al. Biomass and stem volume equations for tree species in Europe[M]. Tampere: Tammer-Paino Oy, 2005.
    [14] ZENG W S, TANG S Z, XIA Z S, et al. Using linear mixed model and dummy variable model approaches to construct generalized single-tree biomass equations in Guizhou[J]. Forest Research, 2011,24(3):285-291.
    [15] Compilation Commitiee of Yunnan Forest. Yunnan Forest[M]. Kunming: Yunnan Science and Technology Press, Beijing: China Forestry Publishing House, 1986.
    [16] MUUKKONEN P. Forest inventory-based large-scale forest biomass and carbon budget assessment: new enhanced methods and use of remote sensing for verification[D]. Helsinki: University of Helsinki, 2007.
    [17] 骆期邦, 曾伟生, 贺东北,等. 立木地上部分生物量模型的建立及其应用研究[J]. 自然资源学报, 1999, 14(3):271-277.
    [18] Southwest Forestry College, Forestry Department of Yunnan Province. Iconographia arbororum yunnanicorum[M]. Kunming:Yunnan Science and Technology Press, 1988.
    [19] 唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学研究, 2000,36(专刊1):19-27.
    [20] WU Z L, DANG C L. The biomass of Pinus kesiya var. langbianensis stands in Pu-er district,Yunnan[J]. Journal of Yunnan University:Natural Science Edition,1992,14(2):161-167.
    [21] WEN Q Z, ZHAO Y F, CHEN X M, et al. Dynamic study on the values for ecological service function of Pinus kesiya forest in China[J]. Forest Research,2010,23(5):671-677.
    [22] 唐守正,郎奎建,李海奎. 统计和生物数学模型计算(ForStat教程)[M]. 北京:科学出版社, 2009.
    [23] YUE F, YANG B. Study on carbon sink of Pinus kesiya forests[J]. Jiangsu Agricultural Sciences, 2011,39(5): 467-469.
    [24] PARRESOL B R. Additivity of nonlinear biomass equations[J]. Canadian Journal of Forest Research, 2001,31:865-878.
    [25] BI H, TUMER J, LAMBERT M J. Additive biomass equations for native eucalypt forest trees of temperate Australia[J].Trees, 2004,18(4):467-479.
    [26] LI J. Dynamics of biomass and carbon stock for young and middle aged plantation of Simao pine (Pinus kesiya var. langbianensis)[D]. Beijing : Beijing Forestry University, 2011.
    [27] 李春明. 混合效应模型在森林生长模型中的应用[J].林业科学, 2009,45(4):131-138.
    [28] DANG C L, WU Z L. Studies on the biomass for Castanopsis echidnocarpa community of monsoon evergreen broad-leaved forest[J]. Journal of Yunnan University:Natural Science Edition, 1992,14(2):95-107.
    [29] LAIRD N M, WARE J H. Random effeets models for longitudinal data [J]. Biometries,1982, 38: 963-974.
    [30] LI G X, MENG G T, FANG X J, et al. Characteristics of Alnus cremastogyne plantation community and its biomass in central Yunnan Plateau[J]. Journal of Zhejiang Forestry College, 2006,23(4):362-366.
    [31] LI H K, LEI Y C. Evaluation on biomass and carbon storage of forest vegetation in China[M]. Beijing: China Forestry Publishing House,2010.
    [32] 符利勇. 非线性混合效应模型及其在林业上的应用[D]. 北京:中国林业科学研究院,2012.
    [33] LIU Y C, JIANG Y B, CHEN H W, et al. Regression equations for individual tree of Betula alnoides plantation[J]. Journal of Fujian Forestry Science and Technology, 2008,35(2):42-46.
    [34] 李春明. 混合效应模型在森林生长模拟研究中的应用[D]. 北京:中国林业科学研究院,2010.
    [35] LI D. Study on carbon storage and allocation of the monsoonal evergreen broad-leaved forests in Xishuangbanna[D]. Menglun: Xishuangbanna Tropical Botanical Garden, Chinese Academy Sciences, 2006.
    [36] ZHANG Y J, BORDERS B E. Using a system mixed effects modeling method to estimate tree compartment biomass for intensively managed Loblolly pines-an allometric approach[J]. Forest Ecology and Management, 2004,194:145-157.
    [37] FEHRMANN L, LEHTONEN A, KLEINN C, et al. Comparison of linear and mixed-effect regression models and a K-nearest neighbour approach for estimation of single-tree biomass[J]. Canadian Journal of Forest Research, 2008, 38(1):1-9.
    [38] XU H, ZHANG H R. Study on tree biomass models[M]. Kunming:Yunnan Science and Technology Press, 2002.
    [39] PEARCE H G, ANDERSON W R, FOGARTY L G, et al. Linear mixed-effects models for estimation biomass and fuel loads in shrublands[J]. Canadian Journal of Forest Research, 2010, 40(10):2015-2026.
    [40] 曾伟生, 唐守正, 夏忠胜, 等. 利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程[J]. 林业科学研究, 2011,24(3):285-291.
    [41] FU L Y, ZENG W S, TANG S Z, et al. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales: a case study for Masson pine in Southern China [J]. Journal of Forest Science, 2012, 58(3):101-115.
    [42] FU L Y, ZENG W, ZHANG H, et al. Generic linear mixed-effects invidual-tree biomass models for Pinus massoniana in southern China[J]. Southern Forests, 2014, 76(1):47-56.
    [43] 云南森林编写委员会. 云南森林[M]. 昆明: 云南科技出版社, 北京 :中国林业出版社, 1986.
    [44] 西南林学院, 云南省林业厅.云南树木图志[M]. 昆明: 云南科技出版社, 1988.
    [45] 吴兆录,党承林.云南普洱地区思茅松林的生物量[J].云南大学学报:自然科学版,1992,14(2):161-167.
    [46] 温庆忠,赵远藩,陈晓鸣,等.中国思茅松林生态服务功能价值动态研究[J]. 林业科学研究, 2010,23(5):671-677.
    [47] 岳锋,杨斌.思茅松林碳汇功能研究[J].江苏农业科学, 2011,39(5): 467-469.
    [48] 李江.思茅松中幼林人工林生物量和碳储量动态研究[D].北京:北京林业大学, 2011.
    [49] 党承林,吴兆录. 季风常绿阔叶林短刺栲群落的生物量研究[J]. 云南大学学报:自然科学版, 1992,14(2):95-107.
    [50] 李贵祥,孟广涛,方向京,等. 滇中高原桤木人工林群落特征及生物量分析[J]. 浙江林学院学报,2006,23(4):362-366.
    [51] 李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京:中国林业出版社, 2010.
    [52] 刘云彩,姜远标,陈宏伟,等. 西南桦人工林单株生物量的回归模型[J]. 福建林业科技, 2008,35(2):42-46.
    [53] 李东. 西双版纳季风常绿阔叶林的碳贮量及其分配特征研究[D]. 勐仑: 中国科学院西双版纳热带植物园, 2006.
    [54] 胥辉,张会儒. 林木生物量模型研究[M]. 昆明:云南科技出版社, 2002.
    [55] PINHEIRO J C, BATES D M. Mixed effects models in S and S-plus[M]. New York: Springer Verlag, 2000.
  • [1] 靳晓娟, 孙玉军, 潘磊.  基于混合效应的长白落叶松一级枝条基径预估模型 . 北京林业大学学报, 2020, 35(): 1-10. doi: 10.12171/j.1000-1522.20200133
    [2] 陈晨, 王寅, 王健铭, 杨欢, 王雨辰, 徐超, 李景文, 褚建民.  科尔沁沙地植物群落物种多样性及其主要影响因素 . 北京林业大学学报, 2020, 42(5): 106-114. doi: 10.12171/j.1000-1522.20190284
    [3] 马菁, 郭建斌, 刘泽彬, 王彦辉, 张紫优.  六盘山华北落叶松林分蒸腾日内变化及其对环境因子的响应 . 北京林业大学学报, 2020, 42(): 1-11. doi: 10.12171/j.1000-1522.20190468
    [4] 乐佳兴, 田秋玲, 吴焦焦, 高岚, 张文, 刘芸.  无患子幼苗的生长和光合特性对重庆低山丘陵区不同生境的响应 . 北京林业大学学报, 2019, 41(6): 75-85. doi: 10.13332/j.1000-1522.20180424
    [5] 罗桂生, 马履一, 贾忠奎, 吴丹妮, 迟明峰, 张淑敏, 赵贵娟.  油松人工林林隙天然更新及与环境相关性分析 . 北京林业大学学报, 2019, 41(9): 59-68. doi: 10.13332/j.1000-1522.20180416
    [6] 徐奇刚, 雷相东, 国红, 李海奎, 李玉堂.  基于多层感知机的长白落叶松人工林林分生物量模型 . 北京林业大学学报, 2019, 41(5): 97-107. doi: 10.13332/j.1000-1522.20190035
    [7] 刘崴, 魏天兴, 朱清科.  水蚀风蚀交错区河北杨树干液流密度特征及其对环境因子的响应 . 北京林业大学学报, 2018, 40(5): 73-81. doi: 10.13332/j.1000-1522.20180003
    [8] 李小梅, 张秋良.  环境因子对兴安落叶松林生态系统CO2通量的影响 . 北京林业大学学报, 2015, 37(8): 31-39. doi: 10.13332/j.1000-1522.20150020
    [9] 赵冰清, 王云琦, 王彬, 王玉杰, 张会兰.  环境因子对重庆缙云山林地土壤呼吸动态特征的作用 . 北京林业大学学报, 2014, 36(3): 83-89. doi: 10.13332/j.cnki.jbfu.2014.03.012
    [10] 李新宇, 李延明, 孙林, 许蕊1, 赵松婷, 郭佳.  银杏蒸腾耗水与环境因子的关系研究 . 北京林业大学学报, 2014, 36(4): 23-29. doi: 10.13332/j.cnki.jbfu.2014.04.008
    [11] 池波, 蔡体久, 满秀玲, 李奕.  大兴安岭北部兴安落叶松树干液流规律及影响因子分析 . 北京林业大学学报, 2013, 35(4): 21-26.
    [12] 杨爱国, 张建秋, 毕庆玲, 张玉玲, 王凤林, 范鹏辉.  吉林省西部不同造林密度杨树耗水特性的研究 . 北京林业大学学报, 2011, 33(6): 142-145.
    [13] 夏磊, 赵志新, 汤玲, 李小乐, 刘磊, 李名扬.  重庆地区加拿利海枣夏季光合日变化与主要环境因子的关系 . 北京林业大学学报, 2011, 33(4): 75-80.
    [14] 孙迪, 关德新, 袁凤辉, 王安志, 金昌杰, 吴家兵.  辽西农林复合系统中杨树水分耗散规律 . 北京林业大学学报, 2010, 32(4): 114-120.
    [15] 丁友芳, 张晓霞, 史玲玲, 张蕴薇, 杨富裕, 刘玉军.  葛根净光合速率日变化及其与环境因子的关系 . 北京林业大学学报, 2010, 32(5): 132-137.
    [16] 王连春, 翟明普, 刘道平, 周志峰, .  酸枣树干液流速率与环境因子的关系 . 北京林业大学学报, 2009, 31(6): 134-138.
    [17] 董百丽, 王淼, 姜萍, 姬兰柱.  长白山北坡水甲虫多样性与环境因子的关系 . 北京林业大学学报, 2008, 30(1): 74-78.
    [18] 许景伟, 高克昌, 张志山, 邵杰, 奚如春, 金则新, 周睿, 张春晓, 李俊, 武林, 郑景明, 李黎, 周艳萍, 吴家兵, 陆平, 于海霞, 雷妮娅, 郎璞玫, 于文吉, 张建军, 孙志蓉, 宋先亮, 刘足根, 焦雯珺, 索安宁, 马玲, 吕文华, 盖颖, 陈勇, 蔡锡安, 张小由, 葛剑平, 习宝田, 赵文喆, 马履一, 纳磊, 朱教君, 韦方强, Kwei-NamLaw, 饶兴权, 李传荣, 毕华兴, 关德新, 李钧敏, 郑红娟, 赵秀海, 戴伟, 余养伦, 赵广杰, 于志明, 翟明普, 陈少良, 朱清科, 马履一, 朱艳燕, ClaudeDaneault, 王瑞刚, 袁小兰, 方家强, 崔鹏, 李俊清, 于波, 贾桂霞, 张弥, 谭会娟, 江泽慧, 杨永福, 张春雨, 张宇清, 曾小平, 夏良放, 王文全, 樊敏, 赵平, 李笑吟, 王天明, 李增鸿, 张欣荣, 李丽萍, 邓宗付, 王卫东, 刘丽娟, 袁飞, 王贺新, 贺润平, 唐晓军, 殷宁, 韩士杰, 陈雪梅, 郭孟霞, 李庆卫, 何明珠, 吴秀芹, 王旭琴, 王月海, 王娜, 熊颖, 郑敬刚, 孔俊杰, 刘鑫, 毛志宏, 吴记贵, 于贵瑞, 蒋湘宁, 江杰, 孙晓敏, 李新荣, 林靓靓, 王瑞辉, 聂立水, 王贵霞, 葛剑平, 郭超颖, 董治良.  马占相思整树蒸腾的日变化和季节变化特征 . 北京林业大学学报, 2007, 29(1): 67-73.
    [19] 贺窑青, 欧阳杰, 孙青, 曲红, 雷庆哲, 李莉, 李艳华, 熊丹, 胡海英, 王丰俊, 乔海莉, 张玲, 姚娜, 石娟, 刘美芹, 孙月琴, 李在留, 隋金玲, 周章义, 程堂仁, 郝晨, 金莹, 范丙友, 王莉, 陈佳, 段旭良, 胡晓丹, 刘丽, 孙爱东, 冯菁, 沈昕, 郑彩霞, 阎伟, 尹伟伦, 冯秀兰, 周燕, 张艳霞, 续九如, 康向阳, 陆海, 王建中, 赵亚美, 李凤兰, 武彦文, 路端正, 张香, 骆有庆, 尹伟伦, 陈发菊, 李云, 陈晓阳, 张志毅, 骆有庆, 田呈明, 郭锐, 张德权, 吴晓成, 孙爱东, 马钦彦, 安新民, 史玲玲, 沈繁宜, 阎晓磊, 武海卫, 蒋湘宁, 胡晓丹, 胡德夫, 赵蕾, 李忠秋, 王晓东, 骆有庆, 高述民, 梁华军, 卢存福, 王百田, 王华芳, 姜金仲, 郑永唐, 梁宏伟, 郝俊, 骆有庆, 严晓素, 王瑛, 郭晓萍, 王冬梅, 骈瑞琪, 刘玉军, 王建中, 王晓楠, 冯仲科, 冯晓峰, 赵兵, 王华芳, 高荣孚, 张志翔, 崔彬彬
    , 尹伟伦, 温秀凤3, 王玉兵, 吴坚, 谢磊, 于京民2, 李凯, 邹坤, 刘玉军, 张庆, 张兴杰, 丁霞, 陈卫平, 林善枝, 呼晓姝, 陶凤杰, 王民中, 杨伟光, 沈应柏, 孙建华, 李镇宇, 刘艳, 王玉春, 李凤兰, 付瑞海, 汪植, 马建海, 赵新丽, 蒋平.  基于森林资源清查资料的林分生物量相容性线性模型 . 北京林业大学学报, 2007, 29(5): 110-113.
    [20] 李黎, 张德荣, 戴松香, 马宇飞, 李雪玲, 高岩, 赵晓松, 郭明辉, 田晶会, 王小丹, 王瑞刚, 华丽, 黄荣凤, 董运斋, 曹世雄, 邵海荣, 黄华国, 贺庆棠, 陈少良, 陈少良, 张晓丽, 闫丽, 习宝田, 王四清, 陈斌如, 金幼菊, 阎海平, 贺庆棠, 关德新, 古川郁夫, 于志明, 冷平生, 李文彬, 贺康宁, 李俊清, 高攀, 高双林, 刘力源, 邹祥旺, 王百田, 任云卯, 阎海平, 杨永福, 吴家兵, 李建章, 鲍甫成, 王蕾, 李海英, 陈莉, 赵有科, 郝志勇, 程根伟, 侯智, 王金满, 侯智, 陈华君, 张卫强, 陈源泉, 金小娟, 金昌杰, 杜建军, 韩士杰, 尹婧, 李涛, 高旺盛, 翁海娇, 赵琼, 李鹤, 杨爽, 段杉.  黄土半干旱区侧柏蒸腾作用及其与环境因子的关系 . 北京林业大学学报, 2005, 27(3): 53-56.
  • 加载中
计量
  • 文章访问数:  682
  • HTML全文浏览量:  61
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-10
  • 修回日期:  2014-11-23
  • 刊出日期:  2015-03-31

思茅松天然林林分生物量混合效应模型构建

doi: 10.13332/j.1000-1522.20140316
    基金项目:

    国家自然科学基金项目(31160157)

    作者简介:

    第一作者: 欧光龙,博士,实验师。主要研究方向:森林测计学。Email:olg2007621@126.com 地址: 650224云南省昆明市白龙寺300号西南林业大学西南地区生物多样性保育国家林业局重点实验室。责任作者: 胥辉,教授,博士生导师。主要研究方向:森林测计学。Email: zyxy213@126.com 地址:同上。

    第一作者: 欧光龙,博士,实验师。主要研究方向:森林测计学。Email:olg2007621@126.com 地址: 650224云南省昆明市白龙寺300号西南林业大学西南地区生物多样性保育国家林业局重点实验室。责任作者: 胥辉,教授,博士生导师。主要研究方向:森林测计学。Email: zyxy213@126.com 地址:同上。

摘要: 本研究以云南省普洱市的思茅松天然林为对象,调查了3个位点45块样地的林分地上、根系和总生物量。以幂函数模型为基础构建林分生物量的基本模型;采用混合效应模型技术,考虑区域效应随机效应,选择基本混合效应模型,并分析模型的方差和协方差结构,分别构建3个维量的区域效应随机效应的混合效应模型;考虑林分因子、地形因子和气象因子固定效应,构建含环境因子固定效应和区域效应随机效应的林分生物量混合效应模型。所有模型均采用拟合指标和独立检验指标进行评价。结果表明:1) 从模型拟合情况看,考虑区域效应的随机效应模型均能显著提高一般回归模型的精度;在3类含环境因子固定效应模型中,含地形因子固定效应的区域混合效应模型均具有最低的AIC和BIC值,表现最好;2) 就模型独立性检验看,除地形因子固定效应的林分根系混合效应模型外,其余模型均优于一般回归模型;考虑环境因子固定效应的混合效应模型与普通区域效应混合模型相比,各个维量模型的独立性检验指标表现不一,但总体上差异不大;3) 综合考虑模型拟合和独立性检验结果,除林分根系生物量选择普通区域效应混合模型外,另2个维量均选择含地形因子固定效应和区域效应随机效应的混合效应模型。

English Abstract

欧光龙, 胥辉, 王俊峰, 肖义发, 陈科屹, 郑海妹. 思茅松天然林林分生物量混合效应模型构建[J]. 北京林业大学学报, 2015, 37(3): 101-110. doi: 10.13332/j.1000-1522.20140316
引用本文: 欧光龙, 胥辉, 王俊峰, 肖义发, 陈科屹, 郑海妹. 思茅松天然林林分生物量混合效应模型构建[J]. 北京林业大学学报, 2015, 37(3): 101-110. doi: 10.13332/j.1000-1522.20140316
OU Guang-long, XU Hui, WANG Jun-feng, XIAO Yi-fa, CHEN Ke-yi, ZHENG Hai-mei. Building mixed effect models of stand biomass for Simao pine (Pinus kesiya var. langbianensis) natural forest[J]. Journal of Beijing Forestry University, 2015, 37(3): 101-110. doi: 10.13332/j.1000-1522.20140316
Citation: OU Guang-long, XU Hui, WANG Jun-feng, XIAO Yi-fa, CHEN Ke-yi, ZHENG Hai-mei. Building mixed effect models of stand biomass for Simao pine (Pinus kesiya var. langbianensis) natural forest[J]. Journal of Beijing Forestry University, 2015, 37(3): 101-110. doi: 10.13332/j.1000-1522.20140316
参考文献 (55)

目录

    /

    返回文章
    返回