高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境因子对兴安落叶松林生态系统CO2通量的影响

李小梅 张秋良

李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2通量的影响[J]. 北京林业大学学报, 2015, 37(8): 31-39. doi: 10.13332/j.1000-1522.20150020
引用本文: 李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2通量的影响[J]. 北京林业大学学报, 2015, 37(8): 31-39. doi: 10.13332/j.1000-1522.20150020
LI Xiao-mei, ZHANG Qiu-liang. Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem[J]. Journal of Beijing Forestry University, 2015, 37(8): 31-39. doi: 10.13332/j.1000-1522.20150020
Citation: LI Xiao-mei, ZHANG Qiu-liang. Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem[J]. Journal of Beijing Forestry University, 2015, 37(8): 31-39. doi: 10.13332/j.1000-1522.20150020

环境因子对兴安落叶松林生态系统CO2通量的影响

doi: 10.13332/j.1000-1522.20150020
基金项目: 

林业公益性行业科研专项(201204101-2)、中国科学院战略性先导科技专项(XDA05050601-01-07)、内蒙古农业大学科技创新团队项目(ndpytd2013-4)

详细信息
    作者简介:

    李小梅,博士生。主要研究方向:森林经理学。Email:lxmhlyl@163.com 地址:100101 北京市朝阳区安翔北里甲11号 北京创业大厦A座东门3层。

    通讯作者:

    张秋良,教授,博士生导师。主要研究方向:森林经理和森林生态学研究。Email:18686028468@163.com 地址:010019 内蒙古呼和浩特市赛罕区新建东街275号内蒙古农业大学林学院。

Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem

  • 摘要: 采用涡度相关技术,研究了主要环境因子与兴安落叶松林生态系统CO2通量的关系。结果表明: 1)生长季,CO2通量表现出较显著的日变化特征,白天为碳吸收阶段, 12:30—13:30 CO2通量吸收出现峰值,而夜间为碳排放阶段,昼夜CO2通量变化幅度在-1.09~0.11mg/(m2·s)之间,生态系统整体表现出较强的碳汇特征;非生长季,昼夜CO2通量变化幅度在0~0.3mg/(m2·s)之间,生态系统整体表现为碳源。2)生长季光合有效辐射(PAR)与CO2通量呈对数相关(R2=0.4861),随PAR增强,生态系统碳汇能力增大,PAR是CO2通量的直接影响因子;非生长季CO2通量与PAR相关性不显著。3)在生长季,兴安落叶松林CO2通量与气温(ta)有很好的相关性,决定系数R2为0.6272,CO2通量随ta的升高而降低,ta是兴安落叶松林生态系统CO2通量的主要限制因子;非生长季的12月至次年2月份,气温的变化对CO2通量无显著作用。4)土壤温度(ts)和含水率(RH)对CO2通量的影响,主要体现在生态系统呼吸(Re)上,兴安落叶松林生态系统的土壤含水率在62%~87%之间,土壤含水率达到67%以上时,CO2通量基本上不受土壤水分大小的影响。在水分不成为CO2通量限制因子的情况下,土壤温度对兴安落叶松林生态系统CO2通量影响起主要作用,研究表明:土壤温度与CO2通量呈指数相关(生长季R2=0.2826,非生长季R2=0.2223);即在适当的温度范围内,土壤温度的升高会加速植物和微生物的代谢,从而增强森林生态系统的呼吸作用,促进CO2排放。
  • [1] FALGE E, BALDOCCHI D, TENHUNEN J, et al. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements[J]. Agricultural and Forest Meteorology, 2002, 113:53-74.
    [2] YU G R,NIU D,WANG Q F. Focal issues in the negotiation of united nations framework convention on climate change[J].Resources Science, 2001, 23(6):10-16.
    [3] FANG J Y,PU S L,ZHAO S Q.The role of the middle and high latitudes terrestrial ecosystems in the northern hemisphere[J].Phytoecologica Sinica, 2001, 26:594-602.
    [4] 于贵瑞,牛栋,王秋凤.联合国气候变化框架公约谈判中的焦点问题[J].资源科学,2001,23(6):10-16.
    [5] WU J B,ZHANG Y S,GUAN D X. Methods and progress of research on CO 2 flux of forest ecosystem[J].Journal of Northeast Forestry University, 2003, 31(6):49-51.
    [6] 方精云,朴世龙,赵淑清.CO 2 失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学学报,2001,26:594-602.
    [7] ZHOU L Y. Carbon exchange of Chinese boreal forest during its growth season and related regulation mechanisms[J].Chinese Journal of Applied Ecology, 2010,21(20):2449-2456.
    [8] 吴家兵,张玉书,关德新.森林生态系统CO 2 通量研究方法与进展[J].东北林业大学学报,2003,31(6):49-51.
    [9] YU C L,LIU D. Analysis CO 2 flux during growth season of natural broadleaved mixed forest in Xiaoxinganling Mountains[J].Chinese Journal of Agrometeorology, 2011,32(4):525-529.
    [10] 周丽艳.中国北方针叶林生长季碳交换及其调控机制[J].应用生态学报,2010,21(20):2449-2456.
    [11] WANG Y,ZHOU G S,JIA B R,et al. Comparisons of carbon flux and its controls between broad Leaved Korean pine forest and Dahurian larch forest in northeast China[J].Ecologica Sinica, 2010,30(16):4376-4388.
    [12] 于成龙,刘丹.小兴安岭天然阔叶混交林生长季 CO 2 通量特征分析[J].中国农业气象,2011,32(4): 525-529.
    [13] 王宇,周广胜,贾丙瑞,等.中国东北地区阔叶红松林与兴安落叶松林的碳通量特征及其影响因子比较[J]. 生态学报,2010,30(16):4376-4388.
    [14] LI Y,LIU J M, QIN S L,et al. Daily variation of soil respiration in three typical stands in Daxing'an mountains in summer[J]. Journal of Northeast Forestry University,2011,39(10):65-80.
    [15] 李勇,刘继明,秦世立,等.大兴安岭 3 种林分夏季土壤呼吸的日变化[J].东北林业大学学报,2011,39(10):65-80.
    [16] MENG C,WANG J,DI H T. Soil CO 2 flux in Betula platyphylla and Larix gmelini plantations and its main influence factors during growing season[J]. Journal of Northeast Forestry University,2011,39(4):56-70.
    [17] ZHAO G Y,LIU J S,WANG Y. Effects of elevated atmospheric CO 2 on carbon dynamics in soil-plant system[J]. Journal of Northeast Forestry University,2009,37(3):99-102.
    [18] 孟春,王俭,狄海廷.白桦和落叶松人工林生长季节土壤CO 2 排放通量及主要影响因素[J].东北林业大学学报,2011,39(4):56-70.
    [19] 赵光影,刘景双,王洋.CO 2 体积分数升高对土壤-植物系统碳过程的影响[J].东北林业大学学报,2009,37(3):99-102.
    [20] YANG J Y,WANG C K. Effects of soil temperature and moisture on soil surface CO 2 flux of forests in northeastern China[J]. Journal of Plant Ecology,2006,30(2):286-294.
    [21] 杨金艳,王传宽.土壤水热条件对东北森林土壤表面CO 2 通量的影响[J].植物生态学报,2006, 30(2):286-294.
    [22] ZHAO Z H.A study on carbon flux between Chinese fir plantations and atmosphere in subtropical belts[D].Changsha: Central South University of Forestry and Technology, 2011.
    [23] HUANG H, ZHANG J S, MENG P, et al. Seasonal variation and meteorological control of CO 2 flux in a hilly plantation in the mountain areas of north China[J]. Meteorologica Sinica,2011,25(2):238-248.
    [24] WANG Y,PENG Z H,JIANG Z H. Characteristics of carbon flux of Populus forest in the reaches of Yangtze river in Hunan[J]. Forestry Science, 2009,45(11):156-160.
    [25] 赵仲辉.亚热带杉木林生态系统与大气间的碳通量研究[D]. 长沙:中南林业科技大学,2011.
    [26] GENG S B. Study on the carbon flux observation over poplar plantation ecosystem of Xinping city in Henan province of China[D].Beijing: Beijing Forestry University, 2011.
    [27] ZHAO Z H,ZHANG L P,KANG W X,et al. Characteristics of CO 2 flux in a Chinese fir plantation ecosystem in Huitong County, Hunan Province[J]. Scientia Silvae Sinicae, 2011,47(11):6-12.
    [28] 王妍,彭镇华,江泽慧,等.长江滩地杨树林生态系统的碳通量特征[J].林业科学,2009,45(11):156-160.
    [29] ZHOU L Y. Study on carbon flux and its controlling mechanisms in Chinese boreal forest ecosystem[D].Beijing: Beijing Forestry University, 2011.
    [30] 耿绍波.河南西平杨树人工林生态系统碳通量及其环境响应研究[D].北京:北京林业大学,2011.
    [31] SHEN W Q. Carbon budgets of coniferous plantations in Qianyanzhou Experimental Station, Jiangxi, China[D].Beijing: Beijing Forestry University, 2006.
    [32] 赵仲辉,张利平,康文星,等.湖南会同杉木人工林生态系统CO 2 通量特征[J].林业科学,2011,47(11):6-12.
    [33] YU G R,SUN X M. The principle and method of terrestrial ecosystem flux measurements[M]. Beijing: Higher Education Press, 2006.
    [34] 周丽艳. 中国北方针叶林生态系统碳通量及其影响机制研究[D]. 北京:北京林业大学,2011.
    [35] LIU Y,HU H B,LIU Z Q. CO 2 flux characteristics of an secondary oak forest ecosystem in Non-growing seasons in Northern subtropics,China[J]. Journal of Northeast Forestry University, 2013, 41(7):22-27.
    [36] WILCZAK J M,ONCLEY S P,STAGE S A. Sonic anemometer tilt correction algorithms[J]. Boundary Layer Meteorology, 2001, 99:127-150.
    [37] LI C, HU H B. Response mechanism between carbon flux and asymmetrial environmental factors in secondaryoak forest ecosytem[J]. Jounal of Central South University of Forestry and Technology,2012,32(9):94-101.
    [38] WEBB E K, PEARMAN G, LEUNING R. Correction of flux measurements for density effects due to heat and water vapor transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(447):85-100.
    [39] YU G R, SUN X M. Flux measurement and research of terrestrial ecosystem in China[M]. Beijing:Science Press, 2008.
    [40] 沈文清.江西千烟洲人工针叶林生态系统碳收支研究[D].北京: 北京林业大学,2006.
    [41] FALGE E, BALDOCCHI D, OLSON R O,et al. Gap filling strategies for defensible annual sums of net ecosystem exchange[J]. Agricultural and Forest Meteorology, 2001,107(1):43-69.
    [42] ZHANG L M ,Gap filling and partitioning[R]. Beijing: China Flux Training Course, 2009.
    [43] 于贵瑞,孙晓敏. 陆地生态系统通量观测的原理与方法[M].北京: 高等教育出版社,2006.
    [44] FANG J Y , WANG G G, LIU G H , et al. Forest biomass of China: an estimate based on the biomass-volume relationship[J]. Ecological Applications, 1998,8:1084-1091.
    [45] 刘乙,胡海波,刘准桥.北亚热带次生栎林生态系统非生长季CO 2 通量特征[J].东北林业大学学报,2013,41(7):22-27.
    [46] 李超,胡海波.次生栎林生态系统碳通量与环境因子非对称相应机制[J].中南林业科技大学学报,2012,32(9):94-101.
    [47] 于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社,2008.
  • [1] 马菁, 郭建斌, 刘泽彬, 王彦辉, 张紫优.  六盘山华北落叶松林分蒸腾日内变化及其对环境因子的响应 . 北京林业大学学报, 2020, 42(): 1-11. doi: 10.12171/j.1000-1522.20190468
    [2] 孙振静, 赵慧颖, 朱良军, 李宗善, 张远东, 王晓春.  大兴安岭北部不同降水梯度下兴安落叶松生长对升温的响应差异 . 北京林业大学学报, 2019, 41(6): 1-14. doi: 10.13332/j.1000-1522.20190007
    [3] 罗桂生, 马履一, 贾忠奎, 吴丹妮, 迟明峰, 张淑敏, 赵贵娟.  油松人工林林隙天然更新及与环境相关性分析 . 北京林业大学学报, 2019, 41(9): 59-68. doi: 10.13332/j.1000-1522.20180416
    [4] 张俪予, 张军辉, 张蕾, 陈伟, 韩士杰.  兴安落叶松和白桦细根形态对环境变化的响应 . 北京林业大学学报, 2019, 41(6): 15-23. doi: 10.13332/j.1000-1522.20180396
    [5] 刘崴, 魏天兴, 朱清科.  水蚀风蚀交错区河北杨树干液流密度特征及其对环境因子的响应 . 北京林业大学学报, 2018, 40(5): 73-81. doi: 10.13332/j.1000-1522.20180003
    [6] 姜立春, 潘莹, 李耀翔.  兴安落叶松枝条特征联立方程组模型及树冠形状模拟 . 北京林业大学学报, 2016, 38(6): 1-7. doi: 10.13332/j.1000-1522.20150339
    [7] 欧光龙, 胥辉, 王俊峰, 肖义发, 陈科屹, 郑海妹.  思茅松天然林林分生物量混合效应模型构建 . 北京林业大学学报, 2015, 37(3): 101-110. doi: 10.13332/j.1000-1522.20140316
    [8] 赵冰清, 王云琦, 王彬, 王玉杰, 张会兰.  环境因子对重庆缙云山林地土壤呼吸动态特征的作用 . 北京林业大学学报, 2014, 36(3): 83-89. doi: 10.13332/j.cnki.jbfu.2014.03.012
    [9] 李新宇, 李延明, 孙林, 许蕊1, 赵松婷, 郭佳.  银杏蒸腾耗水与环境因子的关系研究 . 北京林业大学学报, 2014, 36(4): 23-29. doi: 10.13332/j.cnki.jbfu.2014.04.008
    [10] 林健, 刘文波, 孟昭军, 严善春.  落叶松单萜类挥发物微胶囊缓释剂对落叶松毛虫寄主选择行为的影响 . 北京林业大学学报, 2014, 36(3): 42-47. doi: 10.13332/j.cnki.jbfu.2014.03.006
    [11] 王秀伟, 毛子军.  输导组织结构对液流速度和树干CO2 释放通量的影响 . 北京林业大学学报, 2013, 35(4): 9-15.
    [12] 楚旭, 邸雪颖, 杨光.  林火对兴安落叶松根生物量及碳氮养分浓度的影响 . 北京林业大学学报, 2013, 35(2): 10-16.
    [13] 池波, 蔡体久, 满秀玲, 李奕.  大兴安岭北部兴安落叶松树干液流规律及影响因子分析 . 北京林业大学学报, 2013, 35(4): 21-26.
    [14] 周海宾, 江京辉, 王学顺, 任海青.  兴安落叶松目测等级锯材抗拉强度的宽度尺寸效应 . 北京林业大学学报, 2012, 34(1): 127-130.
    [15] 夏磊, 赵志新, 汤玲, 李小乐, 刘磊, 李名扬.  重庆地区加拿利海枣夏季光合日变化与主要环境因子的关系 . 北京林业大学学报, 2011, 33(4): 75-80.
    [16] 姚玉刚, 张一平, 于贵瑞, 宋清海, 谭正洪, 赵俊斌.  热带森林植被冠层CO2储存项的估算方法研究 . 北京林业大学学报, 2011, 33(1): 23-29.
    [17] 丁友芳, 张晓霞, 史玲玲, 张蕴薇, 杨富裕, 刘玉军.  葛根净光合速率日变化及其与环境因子的关系 . 北京林业大学学报, 2010, 32(5): 132-137.
    [18] 王连春, 翟明普, 刘道平, 周志峰, .  酸枣树干液流速率与环境因子的关系 . 北京林业大学学报, 2009, 31(6): 134-138.
    [19] 高程达, 孙向阳, 张林, 李志刚, 阿拉塔, .  北温带干旱地区土壤-大气界面CO2通量的变化特征 . 北京林业大学学报, 2009, 31(6): 32-38.
    [20] 董百丽, 王淼, 姜萍, 姬兰柱.  长白山北坡水甲虫多样性与环境因子的关系 . 北京林业大学学报, 2008, 30(1): 74-78.
  • 加载中
计量
  • 文章访问数:  665
  • HTML全文浏览量:  48
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-22
  • 修回日期:  2015-01-22
  • 刊出日期:  2015-08-31

环境因子对兴安落叶松林生态系统CO2通量的影响

doi: 10.13332/j.1000-1522.20150020
    基金项目:

    林业公益性行业科研专项(201204101-2)、中国科学院战略性先导科技专项(XDA05050601-01-07)、内蒙古农业大学科技创新团队项目(ndpytd2013-4)

    作者简介:

    李小梅,博士生。主要研究方向:森林经理学。Email:lxmhlyl@163.com 地址:100101 北京市朝阳区安翔北里甲11号 北京创业大厦A座东门3层。

    通讯作者: 张秋良,教授,博士生导师。主要研究方向:森林经理和森林生态学研究。Email:18686028468@163.com 地址:010019 内蒙古呼和浩特市赛罕区新建东街275号内蒙古农业大学林学院。

摘要: 采用涡度相关技术,研究了主要环境因子与兴安落叶松林生态系统CO2通量的关系。结果表明: 1)生长季,CO2通量表现出较显著的日变化特征,白天为碳吸收阶段, 12:30—13:30 CO2通量吸收出现峰值,而夜间为碳排放阶段,昼夜CO2通量变化幅度在-1.09~0.11mg/(m2·s)之间,生态系统整体表现出较强的碳汇特征;非生长季,昼夜CO2通量变化幅度在0~0.3mg/(m2·s)之间,生态系统整体表现为碳源。2)生长季光合有效辐射(PAR)与CO2通量呈对数相关(R2=0.4861),随PAR增强,生态系统碳汇能力增大,PAR是CO2通量的直接影响因子;非生长季CO2通量与PAR相关性不显著。3)在生长季,兴安落叶松林CO2通量与气温(ta)有很好的相关性,决定系数R2为0.6272,CO2通量随ta的升高而降低,ta是兴安落叶松林生态系统CO2通量的主要限制因子;非生长季的12月至次年2月份,气温的变化对CO2通量无显著作用。4)土壤温度(ts)和含水率(RH)对CO2通量的影响,主要体现在生态系统呼吸(Re)上,兴安落叶松林生态系统的土壤含水率在62%~87%之间,土壤含水率达到67%以上时,CO2通量基本上不受土壤水分大小的影响。在水分不成为CO2通量限制因子的情况下,土壤温度对兴安落叶松林生态系统CO2通量影响起主要作用,研究表明:土壤温度与CO2通量呈指数相关(生长季R2=0.2826,非生长季R2=0.2223);即在适当的温度范围内,土壤温度的升高会加速植物和微生物的代谢,从而增强森林生态系统的呼吸作用,促进CO2排放。

English Abstract

李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2通量的影响[J]. 北京林业大学学报, 2015, 37(8): 31-39. doi: 10.13332/j.1000-1522.20150020
引用本文: 李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2通量的影响[J]. 北京林业大学学报, 2015, 37(8): 31-39. doi: 10.13332/j.1000-1522.20150020
LI Xiao-mei, ZHANG Qiu-liang. Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem[J]. Journal of Beijing Forestry University, 2015, 37(8): 31-39. doi: 10.13332/j.1000-1522.20150020
Citation: LI Xiao-mei, ZHANG Qiu-liang. Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem[J]. Journal of Beijing Forestry University, 2015, 37(8): 31-39. doi: 10.13332/j.1000-1522.20150020
参考文献 (47)

目录

    /

    返回文章
    返回