高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间模型的白河林业局天然红松分布

王烁 李凤日 赵颖慧 甄贞

王烁, 李凤日, 赵颖慧, 甄贞. 基于空间模型的白河林业局天然红松分布[J]. 北京林业大学学报, 2015, 37(10): 73-85. doi: 10.13332/j.1000-1522.20150105
引用本文: 王烁, 李凤日, 赵颖慧, 甄贞. 基于空间模型的白河林业局天然红松分布[J]. 北京林业大学学报, 2015, 37(10): 73-85. doi: 10.13332/j.1000-1522.20150105
WANG Shuo, LI Feng-ri, ZHAO Ying-hui, ZHEN-zhen.. Distribution of natural Korean pines in Baihe Forestry Bureau based on spatial models.[J]. Journal of Beijing Forestry University, 2015, 37(10): 73-85. doi: 10.13332/j.1000-1522.20150105
Citation: WANG Shuo, LI Feng-ri, ZHAO Ying-hui, ZHEN-zhen.. Distribution of natural Korean pines in Baihe Forestry Bureau based on spatial models.[J]. Journal of Beijing Forestry University, 2015, 37(10): 73-85. doi: 10.13332/j.1000-1522.20150105

基于空间模型的白河林业局天然红松分布

doi: 10.13332/j.1000-1522.20150105
基金项目: 

中央高校基本科研业务费专项(DL13EA05--03)。

详细信息
    作者简介:

    王烁,主要研究方向:森林经理学。Email:wangshuo1504@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。 责任作者: 甄贞,博士,讲师。主要研究方向:空间统计模型及林业遥感。Email: zhzhen@syr.edu 地址:同上。

    王烁,主要研究方向:森林经理学。Email:wangshuo1504@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。 责任作者: 甄贞,博士,讲师。主要研究方向:空间统计模型及林业遥感。Email: zhzhen@syr.edu 地址:同上。

Distribution of natural Korean pines in Baihe Forestry Bureau based on spatial models.

  • 摘要: 根据长白山地区白河林业局的772块固定标准地调查数据,分别建立以最小二乘法为基础的全局模型(Logistic和Poisson)和以地理加权回归模型(GWR)为基础的局域模型(GWLR和GWPR)来预估该局天然红松的分布情况。结果表明:天然红松分布受坡度和小班内树木平均胸径的影响最为显著,主要分布在东部和西南部地区,在北部的部分地区也有分布,但数量相对较少。通过比较全局模型和局域模型的AIC值和模型残差的空间相关性指数发现:GWR模型的AIC值明显小于全局模型,并且能够产生更为理想的模型残差,即模型残差的空间相关性明显减小,因此,GWR模型可以有效解决样地间空间异质性问题,有利于提高红松分布的预测精度。本研究将为大区域森林经营中的天然红松分布及其株数估测提供理论依据。
  • [1] 韩进轩.东北红松林分布区气候因素的主分量分析[J].生态学杂志,1986,5(5): 27-30.
    [2] HAN J X. Principal components analysis of climatic factors of Pinus koraiensis distribution region in North-eastern China[J]. Journal of Ecology,1986,5(5): 27-30.
    [3] 马建路,庄丽文,陈动,等.红松的地理分布[J].东北林业大学学报,1992,20(5):40-48.
    [4] MA J L, ZHUANG L W, CHEN D, et al. The geographical distribution of Korean pine[J]. Journal of Northeast Forestry University,1992,20(5):40-48.
    [5] 曹铭昌,周广胜,翁恩生.广义模型及分类回归树在物种分布模拟中的应用与比较[J].生态学报,2005,25(8):2031-2040.
    [6] CAO M C, ZHOU G S, WENG E S. Application and comparison of generalized models and classification and regression tree in simulating tree species distribution[J]. Acta Ecologica Sinica,2005,25(8):2031-2040.
    [7] 布仁仓,常禹,胡远满,等.小兴安岭针叶树种在不同尺度上对环境因子的敏感性分析[J].植物生态学报,2008,32(1):80-87.
    [8] BU R C, CHANG Y, HU Y M, et al. Sensitivity of coniferous trees to environmental factors at different scales in the Small Xing' An mountains, Cnina[J]. Journal of Plant Ecology,2008,32(1):80-87.
    [9] 郭福涛,胡海清,马志海,等.不同模型对拟合大兴安岭林火发生与气象因素关系的适用性[J].应用生态学报,2010,21(1):159-164.
    [10] GUO F T, HU H Q, MA Z H, et al. Spatial point process for spatial distribution pattern of lightning-caused forest fires in Daxing' an Mountains[J]. Acta Ecologica Sinica,2010,21(1):159-164.
    [11] 刘畅,李凤日,甄贞,等.空间误差模型在黑龙江省森林碳储量空间分布的应用[J].应用生态学报,2014,25(10):2779-2786.
    [12] LIU C, LI F R, ZHEN Z, et al. Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model[J]. Chinese Journal of Applied Ecology,2014,25(10):2779-2786.
    [13] 覃文忠.地理加权回归基本理论与应用研究[D].上海: 同济大学,2007.
    [14] QIN W Z. The Basic Theoretics and Application Research on Geographically Weighted Regression[D]. Shanghai: Tongji University,2007.
    [15] 刘畅,李凤日,贾炜玮,等.基于局域统计量的黑龙江省多尺度森林碳储量空间分布变化[J].应用生态学报,2014,25(9):2493-2500.
    [16] LIU C, LI F R, JIA W W, et al. Multiple-scale analysis on spatial distribution changes of forest carbon storage in Heilongjiang Province, Northeast China based on local statistics[J]. Chinese Journal of Applied Ecology,2014,25(9):2493-2500.
    [17] BRUNSDON C, FOTHERINGHAM A S, CHARLTON M. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis,1996,28(4):281-298.
    [18] ZHEN Z, LI F R, LIU Z G, et al. Geographically local modeling of occurrence, count, and volume of down wood in Northeast China[J]. Applied Geography,2013,37:114-126.
    [19] SHI H J, ZHANG L J, LIU J G. A new spatial-attribute weighting function for geographically weighted regression[J]. Canadian Journal of Forest Research,2006,36:996-1005.
    [20] SIORDIA C, SAENZ J, TOM S E. An introduction to macro-level spatial nonstationarity: a geographically weighted regression analysis of diabetes and poverty[J]. Human Geographies,2012,6(2):5-13.
    [21] CHEN Y J, DENG W S, YANG T C, et al. Geographically weighted quantile regression: an application to U.S. Mortality data[J]. Geographical Analysis,2012,44:134-150.
    [22] 吕萍,甄辉.基于GWR模型的北京市住宅用地价格影响因素及其空间规律研究[J].经济地理,2010,30(3):472-478.
    [23] L P, ZHEN H. Affecting factors research of Beijing residential land price based on GWR model[J]. Economic Geography,2010,30(3):472-478.
    [24] 顾凤岐,赵倩.林木生长关系的GWR模型[J].东北林业大学学报,2012,40(6):129-140.
    [25] GU F Q, ZHAO Q. Geographically weighted regression model for expressing tree growth relationships[J]. Journal of Northeast Forestry University,2012,40(6):129-140.
    [26] 施明辉,赵翠薇,郭志华,等.基于SOM神经网络的白河林业局森林健康分等评价[J].生态学杂志,2011,30(6):1295-1303.
    [27] SHI M H, ZHAO C W, GUO Z H, et al. Forest health assessment based on self-organizing map neural network: a case study in Baihe Forestry Bureau, Jilin Province[J]. Chinese Journal of Ecology,2011,30(6):1295-1303.
    [28] 郭志伟.白河林业局区域森林可持续经营研究[D].哈尔滨:东北林业大学,2003.
    [29] GUO Z W. Regional forest sustainable management: a case study from the Baihe Forestry Bureau[D]. Harbin: Northeast Forestry University,2003.
    [30] 王济川,郭志刚.Logistic回归模型:方法与应用[M].北京:高等教育出版社,2001.
    [31] WANG J C, GUO Z G. Logistic regression models: methods and application[M]. Beijing: Higher Education Press,2001.
    [32] 马建路,刘德君.天然红松林群落类型与立地因子相关性的研究[J].东北林业大学学报,1994,22(5):7-13.
    [33] MA J L, LIU D J. A study on correlativity between community types for natural Korean pine forest and site factors in Xiao Xing'an mountains[J]. Journal of Northeast Forestry University,1994,22(5):7-13.
    [34] 肖兴威.影响亚热带东部森林结构的因子分析[J].东北林业大学学报,2004,32(5):19-34.
    [35] XIAO X W. Analysis on factors influencing the structure of forests in the East Subtropical Zone[J]. Journal of Northeast Forestry University,2004,32(5):19-34.
    [36] 洪滔,张艳艳.福建省阔叶林林分年龄与平均胸径、蓄积量的关系[J].北华大学学报:自然科学版,2008,9(1):69-74.
    [37] HONG T, ZHANG Y Y. Relationship between mean DBH, volume and stand age of broad-leaved wood in Fujian province[J]. Journal of Beihua University :Natural Science Edition ,2008,9(1):69-74.
    [38] 宋喜芳,李建平,胡希远,等.模型选择信息量准则AIC及其在方差分析中的应用[J].西北农林科技大学学报:自然科学版,2009,37(2):88-92.
    [39] SONG X F, LI J P, HU X Y, et al. Model selection criterion AIC and its application in ANOVA[J]. Journal of Northwest AF University: Natural Science Edition,2009,37(2):88-92.
    [40] 王春红,李凤日,贾炜玮,等.基于非线性混合模型的红松人工林枝条生长[J].应用生态学报,2013,24(7):1945-1952.
    [41] WANG C H, LI F R, JIA W W, et al. Branch growth of Korean pine plantation based on nonlinear mixed model[J]. Chinese Journal of Applied Ecology,2013,24(7):1945-1952.
    [42] 谢花林,刘黎明,李波,等.土地利用变化的多尺度空间自相关性分析[J].地理学报,2006,61(4):389-400.
    [43] XIE H L, LIU L M, LI B, et al. Spatial autocorrelation analysis of multi-scale land-use changes: a case study in Ongniud Banner, inner Mongolic[J]. Acta Geographica Sinica,2006,61(4):389-400.
    [44] BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically weighted local statistics applied to binary data[J]. Geographic Information Science,2002,2478:38-50.
  • [1] 邵明, 董宇翔, 林辰松.  基于GWR模型的成渝城市群生态系统服务时空演变及驱动因素研究 . 北京林业大学学报, 2020, 35(): 1-12. doi: 10.12171/j.1000-1522.20200217
    [2] 娄明华, 张会儒, 雷相东, 白超, 杨同辉.  天然栎类阔叶混交林林分平均高与平均胸径关系模型 . 北京林业大学学报, 2020, 42(9): 37-50. doi: 10.12171/j.1000-1522.20190463
    [3] 燕云飞, 王君杰, 姜立春.  基于混合效应模型的人工红松枝下高模型研建 . 北京林业大学学报, 2020, 42(9): 28-36. doi: 10.12171/j.1000-1522.20190366
    [4] 葛会硕, 宋跃朋, 苏雪辉, 张德强, 张晓宇.  基于Logistic和Gompertz模型的小叶杨幼苗生长组合优化模型 . 北京林业大学学报, 2020, 42(5): 59-70. doi: 10.12171/j.1000-1522.20190296
    [5] 曹梦, 潘萍, 欧阳勋志, 臧颢, 吴自荣, 杨阳, 占常燕.  基于哑变量的闽楠天然次生林单木胸径和树高生长模型研究 . 北京林业大学学报, 2019, 41(5): 88-96. doi: 10.13332/j.1000-1522.20190026
    [6] 王烁, 董利虎, 李凤日.  人工长白落叶松枝条存活模型 . 北京林业大学学报, 2018, 40(1): 57-66. doi: 10.13332/j.1000-1522.20170203
    [7] 王曼霖, 董利虎, 李凤日.  基于Possion回归混合效应模型的长白落叶松一级枝数量模拟 . 北京林业大学学报, 2017, 39(11): 45-55. doi: 10.13332/j.1000-1522.20170204
    [8] 臧颢, 雷相东, 张会儒, 李春明, 卢军.  红松树高-胸径的非线性混合效应模型研究 . 北京林业大学学报, 2016, 38(6): 8-9. doi: 10.13332/j.1000-1522.20160008
    [9] 娄明华, 张会儒, 雷相东, 卢军.  天然云冷杉针阔混交林单木胸径树高空间自回归模型研究 . 北京林业大学学报, 2016, 38(8): 1-9. doi: 10.13332/j.1000-1522.20150491
    [10] 张西, 贾黎明, 张瑜, 郑聪慧.  基于FVS的秦岭地区栓皮栎天然次生林单木模型构建 . 北京林业大学学报, 2015, 37(5): 19-29. doi: 10.13332/j.1000-1522.20140356
    [11] 欧光龙, 胥辉, 王俊峰, 肖义发, 陈科屹, 郑海妹.  思茅松天然林林分生物量混合效应模型构建 . 北京林业大学学报, 2015, 37(3): 101-110. doi: 10.13332/j.1000-1522.20140316
    [12] 王玉婷, 徐华东, 王立海, 李凤日, 孙虎.  小兴安岭天然林红松活立木腐朽率的调查研究 . 北京林业大学学报, 2015, 37(8): 97-104. doi: 10.13332/j.1000-1522.20150015
    [13] 高慧淋, 李凤日, 董利虎.  基于分段回归的人工红松冠形预估模型 . 北京林业大学学报, 2015, 37(3): 76-83. doi: 10.13332/j.1000-1522.20140324
    [14] 陈瑜, 徐程扬, 李乐, 蔡丽丽.  阔叶红松风景林单木景观质量评价与模型研究 . 北京林业大学学报, 2014, 36(5): 87-93. doi: 10.13332/j.cnki.jbfu.2014.05.006
    [15] 董利虎, 李凤日, 贾炜玮.  林木竞争对红松人工林立木生物量影响及模型研究 . 北京林业大学学报, 2013, 35(6): 14-22.
    [16]
    董利虎, 李凤日, 贾炜玮
    黑龙江省红松人工林立木生物量估算模型的研建 . 北京林业大学学报, 2012, 34(6): 16-22.
    [17] 阎伟, 宗世祥, 骆有庆, 曹川健, 李占文, 郭琪林, .  逐步回归模型在油蒿钻蛀性害虫预测中的应用 . 北京林业大学学报, 2009, 31(3): 140-144.
    [18] 曾伟生.  西藏天然云杉林兼容性材积生长率模型系统研究 . 北京林业大学学报, 2008, 30(5): 87-90.
    [19] 向玮, 雷相东, 刘刚, 徐光, 陈光法.  近天然落叶松云冷杉林单木枯损模型研究 . 北京林业大学学报, 2008, 30(6): 90-98.
    [20] 马友平, 冯仲科, 董斌, 艾训儒, .  Logistic模型参数的遗传算法求解 . 北京林业大学学报, 2008, 30(增刊1): 192-195.
  • 加载中
计量
  • 文章访问数:  473
  • HTML全文浏览量:  40
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-03
  • 刊出日期:  2015-10-31

基于空间模型的白河林业局天然红松分布

doi: 10.13332/j.1000-1522.20150105
    基金项目:

    中央高校基本科研业务费专项(DL13EA05--03)。

    作者简介:

    王烁,主要研究方向:森林经理学。Email:wangshuo1504@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。 责任作者: 甄贞,博士,讲师。主要研究方向:空间统计模型及林业遥感。Email: zhzhen@syr.edu 地址:同上。

    王烁,主要研究方向:森林经理学。Email:wangshuo1504@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。 责任作者: 甄贞,博士,讲师。主要研究方向:空间统计模型及林业遥感。Email: zhzhen@syr.edu 地址:同上。

摘要: 根据长白山地区白河林业局的772块固定标准地调查数据,分别建立以最小二乘法为基础的全局模型(Logistic和Poisson)和以地理加权回归模型(GWR)为基础的局域模型(GWLR和GWPR)来预估该局天然红松的分布情况。结果表明:天然红松分布受坡度和小班内树木平均胸径的影响最为显著,主要分布在东部和西南部地区,在北部的部分地区也有分布,但数量相对较少。通过比较全局模型和局域模型的AIC值和模型残差的空间相关性指数发现:GWR模型的AIC值明显小于全局模型,并且能够产生更为理想的模型残差,即模型残差的空间相关性明显减小,因此,GWR模型可以有效解决样地间空间异质性问题,有利于提高红松分布的预测精度。本研究将为大区域森林经营中的天然红松分布及其株数估测提供理论依据。

English Abstract

王烁, 李凤日, 赵颖慧, 甄贞. 基于空间模型的白河林业局天然红松分布[J]. 北京林业大学学报, 2015, 37(10): 73-85. doi: 10.13332/j.1000-1522.20150105
引用本文: 王烁, 李凤日, 赵颖慧, 甄贞. 基于空间模型的白河林业局天然红松分布[J]. 北京林业大学学报, 2015, 37(10): 73-85. doi: 10.13332/j.1000-1522.20150105
WANG Shuo, LI Feng-ri, ZHAO Ying-hui, ZHEN-zhen.. Distribution of natural Korean pines in Baihe Forestry Bureau based on spatial models.[J]. Journal of Beijing Forestry University, 2015, 37(10): 73-85. doi: 10.13332/j.1000-1522.20150105
Citation: WANG Shuo, LI Feng-ri, ZHAO Ying-hui, ZHEN-zhen.. Distribution of natural Korean pines in Baihe Forestry Bureau based on spatial models.[J]. Journal of Beijing Forestry University, 2015, 37(10): 73-85. doi: 10.13332/j.1000-1522.20150105
参考文献 (44)

目录

    /

    返回文章
    返回