[1]
|
GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future [J]. Biogeochemistry, 2004, 70: 153-226. |
[2]
|
MO J M, XUE J H, FANG Y T. Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China [J]. Acta Ecologica Sinica, 2004, 24(7): 1413-1420. |
[3]
|
LIU Y, WU Y X, HAN S J, et al. Litterfall decomposition in four forest types in Changbai Mountains of China [J]. Chinese Journal of Ecology, 2009, 28(3): 400-404. |
[4]
|
FREY S D, OLLINGER S, NADELHOFFER K J, et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests [J]. Biogeochemistry, 2014, 121: 305-316. |
[5]
|
CHEN J L, JIN G Z, ZHAO F X. Litter decomposition and nutrient dynamics at different succession stages of typical mixed broadleaved Korean pine forest in Xiaoxing'an Mountains, China [J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2209-2216. |
[6]
|
HÖGBERG P. Environmental science: nitrogen impacts on forest carbon [J]. Nature, 2007, 447: 781-782. |
[7]
|
CHAPIN F S, ZAVALETA E S, EVINER V T, et al. Consequences of changing biodiversity [J]. Nature, 2000, 405: 234-242. |
[8]
|
GUO R H. Effect of nitrogen addition, elevated temperature and changed precipitation on main tree species leaf litter decomposition in broad-leaved Korean pine mixed forest [D]. Shenyang: Graduate University of Chinese Academy of Science, 2012. |
[9]
|
TU L H, HU H L, HU T X, et al. Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China[J]. Chinese Journal of Plant Ecology, 2012, 36(2): 99-108. |
[10]
|
HOFMANN A, HEIM A, GIOACCHINI P, et al. Mineral fertilization did not affect decay of old lignin and SOC in a C-13-labeled arable soil over 36 years [J]. Biogeosciences, 2009, 6: 1139-1148. |
[11]
|
OLSON J S. Energy storage and the balance of producers and decomposition in ecological systems [J]. Ecology, 1963, 44: 322-331. |
[12]
|
PANDEY R R, SHARMA G, TRIPATHI S K, et al. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India [J]. Forest Ecology and Management, 2007, 240: 96-104. |
[13]
|
SAYER E J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems [J]. Biological Reviews, 2006, 81: 1-31. |
[14]
|
BERG B, MATZNER E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems [J]. Environmental Reviews, 1997, 5: 1-25. |
[15]
|
HOBBIE S E. Nitrogen effects on decomposition: a five year experiment in eight temperate sites [J]. Ecology, 2008, 89: 2633-2644. |
[16]
|
POWERS J S, SALUTE S. Macro- and micronutrient effects on decomposition of leaf litter from two tropical tree species: inferences from a short-term laboratory incubation [J]. Plant and Soil, 2011, 346: 245-257. |
[17]
|
KNORR M, FREY S D, CURTIS P S. Nitrogen additions and litter decomposition: a meta-analysis [J]. Ecology, 2005, 86: 3252-3257. |
[18]
|
HINES J, REYES M, MOZDER T J, et al. Genotypic trait variation modifies effects of climate warming and nitrogen deposition on litter mass loss and microbial respiration [J]. Global Change Biology, 2014, 20: 3780-3789. |
[19]
|
JIANG X, CAO L, ZHANG R, et al. Effects of nitrogen addition and litter properties on litter decomposition and enzyme activities of individual fungi [J]. Applied Soil Ecology, 2014, 80: 108-115. |
[20]
|
BERG B. Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands [J]. Canadian Journal of Forest Research, 2000, 30(1): 122-135. |
[21]
|
VORARˇKOVÁ J, DOBIÁOVÁ P, NAJDR J, et al. Chemical composition of litter affects the growth and enzyme production by the saprotrophic basidiomycete Hypholoma fasciculare [J]. Fungal Ecology, 2011, 4(6): 417-426. |
[22]
|
AMEND A S, MATULICH K L, MARTINY J B H. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities[J]. Frontiers in Microbiology, 2015, 6: 109. |
[23]
|
TRINDER C J, JOHNSON D, ARTZ R R E. Litter type, but not plant cover, regulates initial litter decomposition and fungal community structure in a recolonising cutover peatland [J]. Soil Biology Biochemistry, 2009, 41: 651-655. |
[24]
|
SJÖBER G, KNICKER H, NILSSON S I, et al. Impact of long-term N fertilization on the structural composition of spruce litter and mor humus [J]. Soil Biology Biochemistry, 2004, 36: 609-618. |
[25]
|
莫江明, 薛璟花, 方运霆. 鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J]. 生态学报, 2004, 24(7): 1413-1420. |
[26]
|
LIU J, FANG X, DENG Q, et al. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems [J]. Scientific Reports, 2015, 5: 7952. |
[27]
|
VIVANCO L, AUSTIN A T. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina [J]. Global Change Biology, 2011, 17: 1963-1974. |
[28]
|
CORNELL S E, JICKELS T D, CAPE J N, et al. Organic nitrogen deposition on land and coastal environments: a review of methods and data [J]. Atmospheric Environment, 2003, 37: 2173-2191. |
[29]
|
L>Ü C, TIAN H. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data [J]. Journal of Geophysical Research, 2007, 112: D22S05. (2007-08-11)[2014-12-20]. http:∥onlinelibrary.wiley.com/ doi: 10.1029/2006JD007990. |
[30]
|
EMMETT B A, BOXMAN A W, BREDEMEIER M, et al. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the N ITREX ecosystem-scale experiments[J]. Ecosystems, 1998, 1: 352-360. |
[31]
|
JIN G, ZHAO F, LIU L, et al. The production and spatial heterogeneity of litterfall in the mixed broadleaved-Korean pine forest of Xiaoxing'an mountains, China [J]. Journal of Korean Forest Society, 2008, 97(2): 165-170. |
[32]
|
LIU P, HUANG J H, SUN J O. Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem [J]. Oecologia, 2010, 162:771-780. |
[33]
|
KNOPS J M H, NAEEM S, REICH P B. The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition [J]. Global Change Biology, 2007, 13: 1960-1971. |
[34]
|
ZHANG P, TIANA X, HE X, et al. Effect of litter quality on its decomposition in broadleaf and coniferous forest [J]. European Journal of Soil Biology, 2008, 44: 392-399. |
[35]
|
ABER J D, MELILLO J M. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content [J]. Canadian Journal of Botany, 1982, 60: 2263-2269. |
[36]
|
O'CONNELL A M, MENDHAM D S. Impact of N and P fertilizer application on nutrient cycling in jarrah (Eucalyptus marginata) forests of south western Australia [J]. Biology and Fertility of Soils, 2004, 40: 136-143. |
[37]
|
刘颖, 武耀祥, 韩士杰, 等. 长白山四种森林类型凋落物分解动态[J]. 生态学杂志, 2009, 28(3): 400-404. |
[38]
|
陈金玲, 金光泽, 赵凤霞.小兴安岭典型阔叶红松林不同演替阶段凋落物分解及养分变化[J]. 应用生态学报, 2010, 21(9): 2209-2216. |
[39]
|
郭瑞红. 施氮、增温和降水变化对阔叶红松林主要树种叶凋落物分解的影响[D]. 沈阳:中国科学院研究生院, 2012. |
[40]
|
BARBHUIYA A R, ARUNACHALAM A, NATH P C, et al. Leaf litter decomposition of dominant tree species of Namdapha National Park, Arunachal Pradesh, northeast India [J]. Journal of Forest Research, 2008, 13: 25-34. |
[41]
|
涂利华, 胡红玲, 胡庭兴, 等. 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应[J]. 植物生态学报, 2012, 36(2): 99-108. |
[42]
|
GUO L B, SIMS R E H. Litter decomposition and nutrient release via litter decomposition in New Zealand eucalypt short rotation forests [J]. Agriculture, Ecosystems and Environment, 1999, 75: 133-140. |
[43]
|
NADELHOFFER K J, COLMAN B P, CURRIE W S, et al. Decadal-scale fates of 15N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA) [J]. Forest Ecology and Management, 2004, 196: 89-107. |
[44]
|
MICKS P, DOWNS M R, MAGILL A H, et al. Decomposing litter as a sink for 15N-enriched additions to an oak forest and a red pine plantation [J]. Forest Ecology and Management, 2004, 196: 71-87. |