高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多特征融合和深度信念网络的植物叶片识别

刘念 阚江明

刘念, 阚江明. 基于多特征融合和深度信念网络的植物叶片识别[J]. 北京林业大学学报, 2016, 38(3): 110-119. doi: 10.13332/j.1000-1522.20150267
引用本文: 刘念, 阚江明. 基于多特征融合和深度信念网络的植物叶片识别[J]. 北京林业大学学报, 2016, 38(3): 110-119. doi: 10.13332/j.1000-1522.20150267
LIU Nian, KAN Jiang-ming. Plant leaf identification based on the multi-feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. doi: 10.13332/j.1000-1522.20150267
Citation: LIU Nian, KAN Jiang-ming. Plant leaf identification based on the multi-feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. doi: 10.13332/j.1000-1522.20150267

基于多特征融合和深度信念网络的植物叶片识别

doi: 10.13332/j.1000-1522.20150267
基金项目: 

国家自然科学基金项目(30901164)

详细信息
    作者简介:

    刘念。主要研究方向:图像处理、模式识别。Email:bjfuln@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学工学院。
    责任作者: 阚江明,博士,教授。主要研究方向:机器视觉、智能信息处理。Email: kanjm@bjfu.edu.cn 地址:同上。

    刘念。主要研究方向:图像处理、模式识别。Email:bjfuln@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学工学院。
    责任作者: 阚江明,博士,教授。主要研究方向:机器视觉、智能信息处理。Email: kanjm@bjfu.edu.cn 地址:同上。

Plant leaf identification based on the multi-feature fusion and deep belief networks method

  • 摘要: 基于叶片数字图像的植物识别是自动植物分类研究的热点。但是随着植物种类的增加,传统的分类方法由于提取的特征比较单一或者分类器结构过于简单,导致叶片识别率较低。为此,本文提出使用纹理特征结合形状特征进行识别,并且使用深度信念网络构架作为分类器。纹理特征通过局部二值模式、Gabor滤波和灰度共生矩阵方法得到。而形状特征向量由Hu氏不变量和傅里叶描述子组成。为了避免过拟合现象,使用“dropout”方法训练深度信念网络。这种基于多特征融合的深度信念网络的植物识别方法,在Flavia数据库中,对32种叶片的识别率为99.37%;在ICL数据库中,对220种叶片的识别率为93.939%。这表明相比一般的叶片识别方法,此方法鲁棒性更强,并且识别率更高。
  • [1] XIAO X Y. Study on features of plant leaf image recognition and realization of online recognition system[D]. Hefei: University of Science and Technology of China, 2011.
    [2] 肖雪洋. 植物叶片图像识别特征的研究和在线识别系统实现[D]. 合肥:中国科学技术大学, 2011.
    [3] COPE J S, CORNEY D, CLARK J Y, et al. Plant species identification using digital morphometrics: a review[J]. Expert Systems with Applications, 2012, 39(8): 7562-7573.
    [4] QI H N, SHOU T, JIN S H. Leaf characteristics-based computer-aided plant identification model[J]. Journal of Zhejiang Forestry College, 2003, 20(3):281-284.
    [5] 祁亨年, 寿韬, 金水虎. 基于叶片特征的计算机辅助植物识别模型[J]. 浙江林学院学报, 2003, 20(3): 281-284.
    [6] HOU T, YAO L H, KAN J M.Plant recognition research based on shape features of leaf[J]. Hunan Agricultural Sciences, 2009(4):123-125,129.
    [7] WANG L J, HUAI Y J, PENG Y C.Method of identification of foliage from plants based on extraction of multiple features of leaf images[J]. Journal of Beijing Forestry University, 2015, 37(1):96-104.
    [8] NETO J C, MEYER G E, JONES D D, et al. Plant species identification using elliptic fourier leaf shape analysis[J]. Computers and Electronics in Agriculture, 2006, 50(2): 121-134.
    [9] YU K, JIA L, CHEN Y Q, et al.Deep learning: yesterday, today, and tomorrow[J]. Journal of Computer Research and Development, 2013,50(9): 1799-1804.
    [10] WANG X F, HUANG D S, DU J X, et al. Classification of plant leaf images with complicated background[J]. Applied Mathematics and Computation, 2008, 205(2): 916-926.
    [11] 侯铜, 姚立红, 阚江明. 基于叶片外形特征的植物识别研究[J]. 湖南农业科学, 2009(4): 123-125,129.
    [12] YUAN B H, WANG H, REN M W. Face recognition based on completed local binary pattern[J]. Application Research of Computer, 2012, 29(4): 1557-1559.
    [13] HUANG F F, LI J W, WANG W, et al. Human face description and recognition combining wavelet analysis and LBP operator[J]. Journal of Chongqing Institute of Technology (Natural Science), 2009, 23(1): 102-108.
    [14] ANDRADE I M, MAYO S J, KIRKUP D, et al. Comparative morphology of populations of Monstera adans(Araceae) from natural forest fragments in Northeast Brazil using elliptic fourier analysis of leaf outlines[J]. Kew Bulletin, 2008, 63(2): 193-211.
    [15] SHEN L L, JI Z. Gabor wavelet selection and SVM classification for object recognition[J]. ACTC Automatic Sinici, 2009, 35(4): 350-355.
    [16] DU J X, ZHAI C M, WANG Q P. Recognition of plant leaf image based on fractal dimension features[J]. Neurocomputing, 2013, 116: 150-156.
    [17] COPE J S, REMAGNINO P, BARMAN S, et al. Plant texture classification using gabor co-occurrences [M]. Berlin Heidelberg: Springer, 2010: 669-677.
    [18] LIU L, KUANG G Y. Overview of image textural feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4): 622-635.
    [19] CHAKI J, PAREKH R, BHATTACHARYA S. Plant leaf recognition using texture and shape features with neural classifiers[J]. Pattern Recognition Letters, 2015, 58: 61-68.
    [20] KAN J M, WANG Y X, YANG X W, et al.Plant recognition method based on leaf images[J]. Science and Technology, 2010, 28(23):81-85.
    [21] 王丽君,淮永建,彭月橙. 基于叶片图像多特征融合的观叶植物种类识别[J]. 北京林业大学学报, 2015, 37(1): 96-104.
    [22] REN G Z, JIANG T. Study on GLCM-based texture extraction methods[J]. Computer Applications and Software, 2014, 31(11): 190-192,325.
    [23] DAI L R, ZHANG S L. Deep speech signal and information processing: research process and prospect[J]. Journal of Data Acquisition and Processing, 2014, 29(2): 171-179.
    [24] WU S G, BAO F S, XU E Y, et al. A leaf recognition algorithm for plant classification using probabilistic neural network[C]∥2007 IEEE international symposium on signal processing and information technology. Cairo: IEEE, 2007: 11-16.
    [25] NOVOTNY P, SUK T. Leaf recognition of woody species in central Europe[J]. Biosystems Engineering, 2013, 115(4): 444-452.
    [26] CHAI R M, CAO Z J.Face recognition algorithm based on Gabor wavelet and deep belief networks [J]. Journal of Computer Applications, 2014, 34(9): 2590-2594.
    [27] 余凯,贾磊,陈雨强,等. 深度学习的昨天, 今天和明天[J]. 计算机研究与发展, 2013,50(9): 1799-1804.
    [28] ZHENG Y, CHENG Q Q, ZHANG Y J. Deep learning and its new progress in object and behavior recognition[J]. Journal of Image and Graphics, 2014, 19(2): 175-184.
    [29] HU R, JIA W, LING H, et al. Multiscale distance matrix for fast plant leaf recognition[J]. IEEE Transactions on Image Processing, 2012, 21(11): 4667-4672.
    [30] 袁宝华, 王欢,任明武. 基于完整LBP特征的人脸识别[J]. 计算机应用研究, 2012, 29(4): 1557-1559.
    [31] 黄非非,李见为,王玮,等. 结合小波分析和LBP算子的人脸描述与识别[J]. 重庆工学院学报(自然科学版), 2009, 23(1): 102-108.
    [32] 沈琳琳,纪震. 采用精选Gabor小波和SVM分类的物体识别[J]. 自动化学报, 2009, 35(4): 350-355.
    [33] 刘丽,匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4): 622-635.
    [34] 阚江明,王怡萱,杨晓微,等. 基于叶片图像的植物识别方法[J]. 科技导报, 2010, 28(23): 81-85.
    [35] 任国贞,江涛. 基于灰度共生矩阵的纹理提取方法研究[J]. 计算机应用与软件, 2014, 31(11): 190-192,325.
    [36] 戴礼荣,张仕良. 深度语音信号与信息处理: 研究进展与展望[J]. 数据采集与处理, 2014, 29(2): 171-179.
    [37] 柴瑞敏,曹振基. 基于Gabor小波与深度信念网络的人脸识别方法[J]. 计算机应用, 2014, 34(9): 2590-2594.
    [38] HINTON G, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
    [39] 郑胤,陈权崎,章毓晋. 深度学习及其在目标和行为识别中的新进展[J]. 中国图象图形学报, 2014, 19(2): 175-184.
    [40] PALM R B. Prediction as a candidate for learning deep hierarchical models of data[D]. Kongens Lyngby: Technical University of Denmark, 2012.
    [41] BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127.
    [42] HINTON G. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1): 926.
    [43] SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. The Journal of Machine Learning Research, 2014, 15(1) :1929-1958.
    [44] SARI C, AKGUL C B, SANKUR B. Combination of gross shape features, fourier descriptors and multiscale distance matrix for leaf recognition[C]∥55th International symposium on ELMAR. Zadar: IEEE, 2013: 22-26.
    [45] KULKARNI A H, RAI H M, JAHAGIRDAR K A, et al. A leaf recognition technique for plant classification using RBPNN and Zernike moments[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2013, 2(1): 984-988.
    [46] LEI Y K, ZOU J W, DONG T, et al. Orthogonal locally discriminant spline embedding for plant leaf recognition[J]. Computer Vision and Image Understanding, 2014, 119: 116-126.
  • [1] 江涛, 王新杰.  基于卷积神经网络的高分二号影像林分类型分类 . 北京林业大学学报, 2019, 41(9): 20-29. doi: 10.13332/j.1000-1522.20180342
    [2] 刘嘉政, 王雪峰, 王甜.  基于深度学习的5种树皮纹理图像识别研究 . 北京林业大学学报, 2019, 41(4): 146-154. doi: 10.13332/j.1000-1522.20180242
    [3] 胡静, 陈志泊, 杨猛, 张荣国, 崔亚稷.  基于全卷积神经网络的植物叶片分割算法 . 北京林业大学学报, 2018, 40(11): 131-136. doi: 10.13332/j.1000-1522.20180007
    [4] 谢将剑, 李文彬, 张军国, 丁长青.  基于Chirplet语图特征和深度学习的鸟类物种识别方法 . 北京林业大学学报, 2018, 40(3): 122-127. doi: 10.13332/j.1000-1522.20180008
    [5] 于慧伶, 麻峻玮, 张怡卓.  基于双路卷积神经网络的植物叶片识别模型 . 北京林业大学学报, 2018, 40(12): 132-137. doi: 10.13332/j.1000-1522.20180182
    [6] 吴笑鑫, 高良, 闫民, 赵方.  基于多特征融合的花卉种类识别研究 . 北京林业大学学报, 2017, 39(4): 86-93. doi: 10.13332/j.1000-1522.20160367
    [7] 渠畅, 边秀艳, 姜静, 陈肃, 刘桂丰.  裂叶桦和欧洲白桦叶片形态特征及相关基因表达特性比较 . 北京林业大学学报, 2017, 39(8): 9-16. doi: 10.13332/j.1000-1522.20160200
    [8] 陈明健, 陈志泊, 杨猛, 莫琴.  叶片传统特征和距离矩阵与角点矩阵相结合的树种识别算法 . 北京林业大学学报, 2017, 39(2): 108-116. doi: 10.13332/j.1000-1522.20160351
    [9] 张帅, 淮永建.  基于分层卷积深度学习系统的植物叶片识别研究 . 北京林业大学学报, 2016, 38(9): 108-115. doi: 10.13332/j.1000-1522.20160035
    [10] 乔睿, 唐, 娉, 石进, 蒋丽雅, 李爽.  WorldView-2影像的红叶松树识别研究 . 北京林业大学学报, 2015, 37(11): 33-40. doi: 10.13332/j.1000-1522.20150112
    [11] 王丽君, 淮永建, 彭月橙.  基于叶片图像多特征融合的观叶植物种类识别 . 北京林业大学学报, 2015, 37(1): 55-69. doi: 10.13332/j.cnki.jbfu.2015.01.006
    [12] 张娟, 黄心渊.  基于图像分析的梅花品种识别研究 . 北京林业大学学报, 2012, 34(1): 96-104.
    [13] 黄儒乐, 吴江, 韩宁.  林火烟雾图像自动识别中的模式分类器选择 . 北京林业大学学报, 2012, 34(1): 92-95.
    [14] 孙伶君, 汪杭军, 祁亨年.  基于分块LBP的树种识别研究 . 北京林业大学学报, 2011, 33(4): 107-112.
    [15] 张国君, 李云, 徐兆翮, 孙鹏, 袁存权.  栽培模式对四倍体刺槐生物量和叶片营养的影响 . 北京林业大学学报, 2010, 32(5): 102-106.
    [16] 徐辉, 王忠芝, 黄心渊.  基于角点检测的叶缘锯齿快速识别 . 北京林业大学学报, 2010, 32(6): 85-89.
    [17] 周利华, 聂立水, 王百田, 邹妍.  不同氮源和pH值对比利时杜鹃叶片生理特征和营养元素的影响 . 北京林业大学学报, 2008, 30(6): 30-35.
    [18] 李文彬, 阚江明, 孙仁山.  立木枝杈点自动识别方法 . 北京林业大学学报, 2007, 29(4): 1-4.
    [19] 任云卯, 崔丽娟, 孙阁, 王蕾, 李春义, 邢韶华, 周繇, 王春梅, 张运春, 林娅, 金莹杉, 赵铁珍, 王超, 李昌晓, 张仁军, 周海宾, 张玉兰, 刘杏娥, 王戈, 梁善庆, 张颖, 林勇明, 尹增芳, 张秀新, 李云开, 吴淑芳, 闫德千, 谭健晖, 陈圆, 江泽慧, 温亚利, 翟明普, 钟章成, 徐秋芳, 张明, 张桥英, 罗建举, 张曼胤, 江泽慧, 余养伦, 刘国经, 马履一, 王莲英, 刘艳红, 王以红, 于俊林, 周荣伍, 刘青林, 杨培岭, 吴普特, 张志强, 杨远芬, 樊汝汶, 赵勃, 马钦彦, 洪滔, 黄华国, 高岚, 于文吉, 周国模, 田英杰, 杨海军, 王小青, 刘俊昌, 张晓丽, 陈学政, 邵彬, 冯浩, 安玉涛, 汪晓峰, 崔国发, 王希群, 王玉涛, 何春光, 罗鹏, 柯水发, 张本刚, 周国逸, 费本华, 殷际松, 吴承祯, 洪伟, 马润国, 魏晓华, 康峰峰, 蔡玲, 任树梅, 徐克学, 费本华, 王九中, 李敏, 高贤明, 徐昕, 何松云, 赵景刚, 刘爱青, 温亚利, 邬奇峰, 骆有庆, 吴宁, 郑万建, 胡喜生, 朱高浦, 赵弟行, 林斌, 任海青, 田平, 赵焕勋, 安树杰, 吴家森, 卢俊峰, 宋萍, 李永祥, 范海兰.  脱叶处理对牡丹秋季露地二次开花的影响 . 北京林业大学学报, 2007, 29(3): 29-34.
    [20] 马文辉, 
    王保平, 侯亚南, 李景文, 王明枝, 张一平, 殷亚方, 李梅, 杨海龙, 詹亚光, 黄国胜, 杜华强, 符韵林, 张秋英, 李慧, 龙玲, 李全发, 刘震, 宋小双, 杨晓晖, 李景文, 熊瑾, 饶良懿, 李吉跃, 徐峰, 韩海荣, 梁机, 秦瑶, 赵敏, 陆熙娴, 朱金兆, 朱金兆, 刘文耀, 李发东, 耿晓东, 李妮亚, 窦军霞, 李俊清, 吕建雄, 陈晓阳, 范文义, 王雪军, 李俊清, 尹立辉, 王洁瑛, 张克斌, 孙玉军, 唐黎明, 李云, 乔杰, 陈素文, 陈晓阳, 慈龙骏, 齐实, 于贵瑞, 赵宪文, 刘桂丰, 李黎, 秦素玲, 沈有信, 刘雪梅, 倪春, 康峰峰, 毕华兴, 欧国强, 李凤兰, 王玉成, 刘伦辉, 赵双菊, 王雪, 宋献方, 任海青, 李伟, 蒋建平, 魏建祥, 朱国平, 文瑞钧, 黎昌琼, 韦广绥, 张桂芹, 马钦彦, 李伟, 周海江, 孙涛, 丁霞, , 宋清海, 张万军, 李慧, 杨谦, 孙晓敏, 刘莹, 孙志强, 李宗然, 
    , .  杜仲全叶深度综合利用技术路线研究 . 北京林业大学学报, 2005, 27(5): 115-117.
  • 加载中
计量
  • 文章访问数:  774
  • HTML全文浏览量:  97
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-21
  • 刊出日期:  2016-03-31

基于多特征融合和深度信念网络的植物叶片识别

doi: 10.13332/j.1000-1522.20150267
    基金项目:

    国家自然科学基金项目(30901164)

    作者简介:

    刘念。主要研究方向:图像处理、模式识别。Email:bjfuln@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学工学院。
    责任作者: 阚江明,博士,教授。主要研究方向:机器视觉、智能信息处理。Email: kanjm@bjfu.edu.cn 地址:同上。

    刘念。主要研究方向:图像处理、模式识别。Email:bjfuln@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学工学院。
    责任作者: 阚江明,博士,教授。主要研究方向:机器视觉、智能信息处理。Email: kanjm@bjfu.edu.cn 地址:同上。

摘要: 基于叶片数字图像的植物识别是自动植物分类研究的热点。但是随着植物种类的增加,传统的分类方法由于提取的特征比较单一或者分类器结构过于简单,导致叶片识别率较低。为此,本文提出使用纹理特征结合形状特征进行识别,并且使用深度信念网络构架作为分类器。纹理特征通过局部二值模式、Gabor滤波和灰度共生矩阵方法得到。而形状特征向量由Hu氏不变量和傅里叶描述子组成。为了避免过拟合现象,使用“dropout”方法训练深度信念网络。这种基于多特征融合的深度信念网络的植物识别方法,在Flavia数据库中,对32种叶片的识别率为99.37%;在ICL数据库中,对220种叶片的识别率为93.939%。这表明相比一般的叶片识别方法,此方法鲁棒性更强,并且识别率更高。

English Abstract

刘念, 阚江明. 基于多特征融合和深度信念网络的植物叶片识别[J]. 北京林业大学学报, 2016, 38(3): 110-119. doi: 10.13332/j.1000-1522.20150267
引用本文: 刘念, 阚江明. 基于多特征融合和深度信念网络的植物叶片识别[J]. 北京林业大学学报, 2016, 38(3): 110-119. doi: 10.13332/j.1000-1522.20150267
LIU Nian, KAN Jiang-ming. Plant leaf identification based on the multi-feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. doi: 10.13332/j.1000-1522.20150267
Citation: LIU Nian, KAN Jiang-ming. Plant leaf identification based on the multi-feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. doi: 10.13332/j.1000-1522.20150267
参考文献 (46)

目录

    /

    返回文章
    返回