高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细根异速分解的3个可能影响途径

王存国 陈正侠 马承恩 林贵刚 韩士杰

王存国, 陈正侠, 马承恩, 林贵刚, 韩士杰. 细根异速分解的3个可能影响途径[J]. 北京林业大学学报, 2016, 38(4): 123-128. doi: 10.13332/j.1000-1522.20150437
引用本文: 王存国, 陈正侠, 马承恩, 林贵刚, 韩士杰. 细根异速分解的3个可能影响途径[J]. 北京林业大学学报, 2016, 38(4): 123-128. doi: 10.13332/j.1000-1522.20150437
WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. doi: 10.13332/j.1000-1522.20150437
Citation: WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. doi: 10.13332/j.1000-1522.20150437

细根异速分解的3个可能影响途径

doi: 10.13332/j.1000-1522.20150437
基金项目: 

国家自然科学基金青年科学基金项目(31500354)、森林与土壤生态国家重点实验室开放基金课题(LFSE2015-12)、国家自然科学基金重点项目(41330530)

详细信息
    作者简介:

    王存国,博士。主要研究方向:全球变化生态学。Email: wangcunguo001@163.com 地址:110866辽宁省沈阳市沈河区东陵路120号沈阳农业大学农学院。
    责任作者: 韩士杰,博士,研究员,博士生导师。主要研究方向: 森林界面生态学。 Email : hansj@iae.ac.cn 地址:110016辽宁省 沈阳市沈河区文化路72号中国科学院沈阳应用生态研究所

    王存国,博士。主要研究方向:全球变化生态学。Email: wangcunguo001@163.com 地址:110866辽宁省沈阳市沈河区东陵路120号沈阳农业大学农学院。
    责任作者: 韩士杰,博士,研究员,博士生导师。主要研究方向: 森林界面生态学。 Email : hansj@iae.ac.cn 地址:110016辽宁省 沈阳市沈河区文化路72号中国科学院沈阳应用生态研究所

Three potential pathways influencing contrasting decomposition rates of fine roots

  • 摘要: 植物根系分解是驱动陆地生态系统碳和养分循环的关键过程之一。直径小于2 mm的根是一个复杂的异质性细根系统。位于细根系统末端的低级根(如1~3级根)或直径较小的细根(如直径小于0.5 mm的细根),执行水分和养分吸收功能,其周转迅速(0.5~2.5次/a),是植物根系向土壤输入碳和养分的主要途径。近年来对细根分解的研究表明,在细根系统中,低级根的分解速率显著慢于高级根(如3级以上的根)或直径较大的细根(如直径大于0.5 mm的细根),执行输导和储藏功能。本文综述了影响细根异速分解的3个可能途径:菌根、碳质量和氮含量,旨在增强研究者对全球变化下细根功能属性(如细根直径)如何影响生态系统碳和养分循环的理解。
  • [1] PENG S L, LIU Q. The dynamics of forest litter and its responses to global warming[J]. Acta Ecologica Sinica,2002,22(9):1534-1544.
    [2] PRESCOTT C E. Do rates of litter decomposition tell us anything we really need to know [J]. Forest Ecology and Management,2005,220(1-3):66-74.
    [3] SHAN J P, TAO D L, WANG M, et al. Fine roots turnover in a broad-leaved Korean pine forest of Changbai mountain[J]. Chinese Journal of Applied Ecology,1993,4(3):241-245.
    [4] AERTS R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems [J]. Oikos,1997,79:439-449.
    [5] CANADELL J G, LE QUERE C, RAUPACH M R, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks[J]. Proceedings of the National Academy of Sciences,2007,104(47):18866-18870.
    [6] LIN C F, GUO J F, CHEN G S, et al. Research progress in fine root decompostion in forest ecosystem[J]. Chinese Journal of Ecology,2008,27(6):1029-1036.
    [7] MA C N, KONG D L, CHEN Z X, et al. Root growth into litter layer and its impact on litter decompostion: a review[J]. Chinese Journal of Plant Ecology,2012,36(11):1197-1204.
    [8] FRESCHET G T, CORNWELL W K, WARDLE D A, et al. Linking litter decomposition of above-and below-ground organs to plant-soil feedbacks worldwide [J]. Journal of Ecology,2013,101:943-952.
    [9] PARTON W, SILVER W L, BURKE I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition [J]. Science,2007,315:361-364.
    [10] MANZONI S, JACKSON R B, TROFYMOW J A, et al. The global stoichiometry of litter nitrogen mineralization [J]. Science,2008,321:684-686.
    [11] 彭少麟,刘强. 森林凋落物动态及其对全球变暖的响应[J]. 生态学报,2002,22(9):1534-1544.
    [12] CLEMMENSEN K E, BAHR A, OVASKAINEN O, et al. Roots and associated fungi drive long-term carbon sequestration [J]. Science,2013,339:1615-1618.
    [13] VAN GROENIGEN K J, QI X, OSENBERG C W, et al. Faster decomposition under increased atmospheric CO2 limits soil carbon storage [J]. Science,2014,344:508-509.
    [14] JACKSON R B, MOONEY H A, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents [J]. Proceedings of the National Academy of Sciences,1997,94(14):7362-7366.
    [15] NADELHOFFER K J, RAICH J W. Fine root production estimates and belowground carbon allocation in forest ecosystems [J]. Ecology,1992,73(4):1139-1147.
    [16] VOGT K A, VOGT D J, PALMIOTTO P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species [J]. Plant and Soil,1996,187(2):159-219.
    [17] 单建平,陶大立,王 淼,等. 长白山阔叶红松林细根周转的研究[J]. 应用生态学报,1993,4(3):241-245.
    [18] SILVER W L, MIYA R K. Global patterns in root decomposition: comparisons of climate and litter quality effects [J]. Oecologia,2001,129(3):407-419.
    [19] WELLS C E, EISSENSTAT D M. Marked differences in survivorship among apple roots of different diameters [J]. Ecology,2001,82(3):882-892.
    [20] GUO D L, LI H, MITCHELL R J, et al. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods [J]. New Phytologist,2008a,177(2):443-56.
    [21] LI A, GUO D L, WANG Z Q, et al. Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern [J]. Functional Ecology,2010,24(1):224-232.
    [22] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs,2002,72(2):293-309.
    [23] GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytologist,2008c,180(3):673-683.
    [24] EISSENSTAT D, ACHOR D. Anatomical characteristics of roots of citrus rootstocks that vary in specific root length [J]. New Phytologist,2002,141(2):309-321.
    [25] PREGITZER K S, KUBISKE M E, YU C K, et al. Relationships among root branch order, carbon, and nitrogen in four temperate species [J]. Oecologia,1997,111(3):302-308.
    [26] XIA M X, GUO D L, PREGITZER K S. Ephemeral root modules in Fraxinus mandshurica [J]. New Phytologist,2010,188(4):1065-1074.
    [27] ADAMS T S, MCCORMACK M L, EISSENSTAT D M. Foraging strategies in trees of different root morphology: the role of root lifespan [J]. Tree Physiology,2013,33(9):940-948.
    [28] MCCORMACK M L, EISSENSTAT D M, PRASAD A M, et al. Regional scale patterns of fine root lifespan and turnover under current and future climate [J]. Global Change Biology,2013,19:1697-1708.
    [29] XIONG Y M, FAN P P, FU S L, et al. Slow decomposition and limited nitrogen release by lower order roots in eight Chinese temperate and subtropical trees [J]. Plant and Soil,2013,363(1-2):19-31.
    [30] FAN P P, GUO D L. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil [J]. Oecologia,2010,163(2):509-515.
    [31] GOEBEL M, HOBBIE S E, BULAJ B, et al. Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure [J]. Ecological Monographs,2011,81(1):89-102.
    [32] CORNELISSEN J H C, PEREZ-HARGUINDEGUY N, DIAZ S, et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents [J]. New Phytologist,1999,143(1):191-200.
    [33] YANG Y S, CHEN G S, GUO J F, et al. Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics [J]. Annals of Forest Science,2004,61(1):65-72.
    [34] HISHI T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions [J]. Journal of Forest Research,2007,12(2):126-133.
    [35] MCCLAUGHERTY C A, ABER J D, MELILLO J M. Decomposition dynamics of fine roots in forested ecosystems [J]. Oikos,1984,42(3):378-386.
    [36] FAHEY T J, HUGHES J W, PU M, et al. Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest [J]. Forest Science,1988,34(3):744-768.
    [37] LÕ, HMUS K, IVASK M. Decomposition and nitrogen dynamics of fine roots of Norway spruce (Picea abies (L.) Karst.) at different sites [J]. Plant and Soil,1995,168(1):89-94.
    [38] SUN T, MAO Z J, HAN Y Y. Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species [J]. Plant and Soil,2013,372(1):445-458.
    [39] SMITH S W, WOODIN S J, PAKEMAN R J, et al. Root traits predict decomposition across a landscape-scale grazing experiment [J]. New Phytologist,2014,203(3):851-862.
    [40] GRAAFF M A D, SIX J, JASTROW J D, et al. Variation in root architecture among switchgrass cultivars impacts root decomposition rates [J]. Soil Biology and Biochemistry,2013,58:198-206.
    [41] DE DEYN G B, CORNELISSEN J H, BARDGETT R D. Plant functional traits and soil carbon sequestration in contrasting biomes [J]. Ecology Letters,2008,11(5):516-531.
    [42] BONFANTE P, GENRE A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis [J]. Nature Communications,2010,1:1-11.
    [43] ALLEN M F. Mycorrhizal fungi: highways for water and nutrients in arid soils [J]. Vadose Zone Journal,2007,6(2):291-297.
    [44] LEHTO T, ZWIAZEK J J. Ectomycorrhizas and water relations of trees: a review [J]. Mycorrhiza,2011,21(2):71-90.
    [45] LANGLEY J A, HUNGATE B A. Mycorrhizal controls on belowground litter quality [J]. Ecology,2003,84(9):2302-2312.
    [46] GADKAR V, DAVID-SCHWARTZ R, KUNIK T, et al. Arbuscular mycorrhizal fungal colonization factors involved in host recognition [J]. Plant Physiology,2001,127(4):1493-1499.
    [47] DE DEYN G B, BIERE A, VAN DER PUTTEN W H, et al. Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L [J]. Oecologia,2009,160(3):433-442.
    [48] BRUNDRETT M C. Coevolution of roots and mycorrhizas of land plants [J]. New Phytologist,2002,154(2):275-304.
    [49] LANGLEY J A, CHAPMAN S K, HUNGATE B A. Ectomycorrhizal colonization slows root decomposition: the post mortem fungal legacy [J]. Ecology Letters,2006,9(8):955-959.
    [50] 林成芳,郭剑芬,陈光水,等. 森林细根分解研究进展[J]. 生态学杂志,2008,27(6):1029-1036.
    [51] URCELAY C, VAIERETTI M V, P REZ M, et al. Effects of arbuscular mycorrhizal colonisation on shoot and root decomposition of different plant species and species mixtures [J]. Soil Biology and Biochemistry,2011,43(2):466-468.
    [52] OKAFOR N. Estimation of the decomposition of chitin in soil by the method of carbon dioxide release [J]. Soil Science,1966,102:140-142.
    [53] TROFYMOW J, MORLEY C, COLEMAN D, et al. Mineralization of cellulose in the presence of chitin and assemblages of microflora and fauna in soil [J]. Oecologia,1983,60:103-110.
    [54] WALLANDER H, MASSICOTTE H, NYLUND J E. Seasonal variation in protein, ergosterol and chitin in flve morphotypes of Pinus sylvestris L. ectomycorrhizae in a mature Swedish forest [J]. Soil Biology and Biochemistry,1997,29:45-53.
    [55] EKBLAD A, WALLANDER H, NASHOLM T. Chitin and ergosterol combined to measure total and living fungal biomass in ectomycorrhizas [J]. New Phytologist,1998,138:143-149.
    [56] KOIDE R T, FERNANDEZ C W, PEOPLES M S. Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition[J]. New Phytologist,2011,191(2):508-514.
    [57] KOIDE R T, MALCOLM G M. N concentration controls decomposition rates of different strains of ecotomycorrhizal fungi [J]. Fungal Ecology,2009,2:197-202.
    [58] HOBBIE S E. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian Montane forest [J]. Ecosystems,2000,3(5):484-494.
    [59] HOBBIE E A, COLPAERT J V, WHITE M W, et al. Nitrogen form, availability, and mycorrhizal colonization affect biomass and nitrogen isotope patterns in Pinus sylvestris [J]. Plant and Soil,2008,310(1-2):121-136.
    [60] GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest [J]. Oecologia,2004,140(3):450-457.
    [61] HENDRICKS J J, ABER J D, NADELHOFFER K J, et al. Nitrogen controls on fine root substrate quality in temperate forest ecosystems [J]. Ecosystems,2000,3(1):57-69.
    [62] WANG W, ZHANG X Y, TAO N, et al. Effects of litter types, microsite and root diameters on litter decomposition in Pinus sylvestris plantations of northern China [J]. Plant and Soil,2014,374(1-2):677-688.
    [63] HÄ, TTENSCHWILER S, COQ S, BARANTAL S, et al. Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis [J]. New Phytologist,2011,189(4):950-965.
    [64] CARREIRO M M, SINSABAUGH R L, REPERT D A, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition [J]. Ecology,2000,81(9):2359-2365.
    [65] SINSABAUGH R L, CARREIRO M M, REPERT D A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss [J]. Biogeochemistry,2002,60(1):1-24.
    [66] MAGILL A H, ABER J D. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems [J]. Plant and Soil,1998,203(2):301-311.
    [67] BERG B, MCCLAUGHERTY C. Plant litter: decomposition, humus formation, carbon sequestration[M]. 2nd ed. Berlin: Springer-Verlag, 2008.
    [68] WALDROP M P, ZAK D R. Responses of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon[J]. Ecosystems,2006,9(6):921-933.
    [69] DIJKSTRA F A, HOBBIE S E, KNOPS J M H, et al. Nitrogen deposition and plant species interact to influence soil carbon stabilization [J]. Ecology Letters,2004,7(12):1192-1198.
    [70] MOORHEAD D L, SINSABAUGH R L. A theoretical model of litter decay and microbial interaction [J]. Ecological Monographs,2006,76(2):151-174.
    [71] LANGLEY J A, DIJKSTRA P, DRAKE B G, et al. Ectomycorrhizal colonization, biomass, and production in a regenerating scrub oak forest in response to elevated CO2 [J]. Ecosystems,2003,6(5):424-430.
    [72] NIEROP K G J. Origin of aliphatic compounds in a forest soil [J]. Organic Geochemistry,1998,29(4):1009-1016.
    [73] RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon: mechanisms for a specific stabilisation [J]. Plant and Soil,2005,269(1):341-356.
    [74] GUO D L, MITCHELL R J, WITHINGTON J M, et al. Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates [J]. Journal of Ecology,2008b,96(4):737-745.
    [75] SEASTEDT T R, MURRAY P J. Root herbivory in grassland ecosystems[M]// JOHNSON S N , MURRAY P J.Root feeders: an ecosystem perspective. Wallingford: CABI, 2008:54-67.
    [76] 马承恩,孔德良,陈正侠,等. 根系在凋落物层中的生长及其对凋落物分解的影响[J]. 植物生态学报,2012,36(11):1197-1204.
    [77] JEONG J, KIM C. Carbon and nitrogen status of decomposing roots in three adjacent coniferous plantations [J]. Annals of Forest Research,2014,57(1):109-117.
  • [1] 刘峰, 席本野, 戴腾飞, 于景麟, 李广德, 陈雨姗, 王杰, 贾黎明.  水肥耦合对毛白杨林分土壤氮、细根分布及生物量的影响 . 北京林业大学学报, 2020, 42(1): 75-83. doi: 10.12171/j.1000-1522.20190222
    [2] 王元敏, 王燕, 王思远, 高国强, 谷加存.  中国东北温带3种木质藤本植物细根解剖和形态性状研究 . 北京林业大学学报, 2020, 42(5): 42-49. doi: 10.12171/j.1000-1522.20190419
    [3] 张俪予, 张军辉, 张蕾, 陈伟, 韩士杰.  兴安落叶松和白桦细根形态对环境变化的响应 . 北京林业大学学报, 2019, 41(6): 15-23. doi: 10.13332/j.1000-1522.20180396
    [4] 向云西, 潘萍, 陈胜魁, 欧阳勋志, 宁金魁, 吴自荣, 纪仁展.  天然马尾松林土壤碳氮磷特征及其与凋落物质量的关系 . 北京林业大学学报, 2019, 41(11): 95-103. doi: 10.13332/j.1000-1522.20190029
    [5] 席本野.  杨树根系形态、分布、动态特征及其吸水特性 . 北京林业大学学报, 2019, 41(12): 37-49. doi: 10.12171/j.1000-1522.20190400
    [6] 邢磊, 薛海霞, 李清河, 高婷婷.  白刺幼苗生物量与氮含量在叶与全株间的尺度转换 . 北京林业大学学报, 2018, 40(2): 76-81. doi: 10.13332/j.1000-1522.20170338
    [7] 郭伟, 宫浩, 韩士杰, 金阳, 王译焓, 冯圆, 王存国.  氮、水交互对长白山阔叶红松林细根形态及生产量的影响 . 北京林业大学学报, 2016, 38(4): 29-35. doi: 10.13332/j.1000-1522.20150436
    [8] 闫国永, 王晓春, 邢亚娟, 韩士杰, 王庆贵.  兴安落叶松林细根解剖结构和化学组分对N沉降的响应 . 北京林业大学学报, 2016, 38(4): 36-43. doi: 10.13332/j.1000-1522.20150433
    [9] 夏延国, 董芳宇, 吕爽, 王键铭, 井家林, 李景文.  极端干旱区胡杨细根的垂直分布和季节动态 . 北京林业大学学报, 2015, 37(7): 37-44. doi: 10.13332/j.1000-1522.20150082
    [10] 楚旭, 邸雪颖, 杨光.  林火对兴安落叶松根生物量及碳氮养分浓度的影响 . 北京林业大学学报, 2013, 35(2): 10-16.
    [11] 张双燕, 费本华, 余雁, 程海涛, 王传贵.  木质素含量对木材单根纤维拉伸性能的影响 . 北京林业大学学报, 2012, 34(1): 131-134.
    [12] 骆宗诗, 向成华, 章路, 谢大军, 罗晓华.  花椒林细根空间分布特征及椒草种间地下竞争 . 北京林业大学学报, 2010, 32(2): 86-91.
    [13] 张立华, 林益明, 叶功富, 殷亮, 周海超.  不同林分类型叶片氮磷含量、氮磷比及其内吸收率 . 北京林业大学学报, 2009, 31(5): 67-72.
    [14] 马长明, 翟明普, 刘春鹏, .  单作与间作条件下核桃根系分布特征研究 . 北京林业大学学报, 2009, 31(6): 181-186.
    [15] 张海涵, 唐明, 陈辉, 杜小刚.  黄土高原5种造林树种菌根根际土壤微生物群落多样性研究 . 北京林业大学学报, 2008, 30(3): 85-90.
    [16] 刘文飞, 樊后保, .  马尾松阔叶树混交林生态系统的氮素循环特征 . 北京林业大学学报, 2008, 30(6): 52-58.
    [17] 殷亚方, 吴彩燕, 王芳, 杨平, 高黎, 郑小贤, 周永学, 张璧光, 邓小文, 袁怀文, 魏潇潇, 王费新, 张洪江, 白岗栓, 黄荣凤, 颜绍馗, 胡胜华, 毛俊娟, 张莉俊, 胡万良, 秦爱光, 李瑞, 何亚平, 刘杏娥, 樊军锋, 刘燕, 李猛, 张岩, 王正, 王小青, 罗晓芳, 费世民, 张克斌, 王胜华, 常旭, NagaoHirofumi, 王兆印, 戴思兰, 赵天忠, 乔建平, 谭学仁, 孙向阳, 王晓欢, 崔赛华, 汪思龙, 杜社妮, 范冰, 张旭, 王海燕, 江玉林, 江泽慧, 李华, KatoHideo, 孔祥文, 李昀, 张双保, 张占雄, 韩士杰, 陈放, 刘云芳, 徐嘉, 龚月桦, 高荣孚, , 陈秀明, 郭树花, , 李晓峰, 任海青, IdoHirofumi, 李媛良, 陈宗伟, 侯喜录, 丁磊, 刘秀英, 常亮, 杨培华, 李考学, 陈学平, 高建社, , 薛岩, 蒋俊明, , 张桂兰, 徐庆祥, 张代贵, 费本华, 续九如, , 刘永红, 李雪峰, 涂代伦, 王晓东, 金鑫, , , 丁国权, 张红丽.  长白山原始红松阔叶林及其次生林细根分解动态和氮元素的变化 . 北京林业大学学报, 2007, 29(6): 10-15.
    [18] 徐双民, 杨振德, 李绍才, 王玉杰, 金小娟, 时尽书, 张宇清, 谭伟, 肖生春, 高峻, 朱教君, 南海龙, 胡晓丽, 李世东, 范丙友, 吕建雄, 孙晓梅, 窦军霞, 李发东, 颜容, 张冰玉, 潘存德, 翟明普, 陈文汇, 刘俊昌, 韩海荣, 苏晓华, 张守攻, 康宏樟, 冯仲科, 三乃, 孟平, 张一平, 刘红霞, 胡诗宇, 朱清科, 宋献方, 肖洪浪, 师瑞峰, 谢益民, 李建章, 王云琦, 孙海龙, 骆秀琴, 田小青, 周春江, 马钦彦, 姜伟, 岳良松, 陆海, 杨志荣, 吴斌, 齐实, 刘昌明, 李义良, 张雁, 蔡怀, 赵双菊, 周文瑞, 蒋佳荔, 赵博光, 齐实, 李智辉, 王笑山, 何磊, 赵有科, 葛颂, 张德荣, 蒲俊文, 朱金兆, 蒋湘宁, 姚山, 齐力旺, 宋清海, 张岩, 张劲松, 伊力塔, 张永安, 于静洁, 石丽萍, 马超德, 康峰峰, 吕守芳, 褚建民, 刘元, 杨聪, 崔保山, 吴庆利, 曲良建, 刘相超, 王玉珠, 王建华, 朱林峰, 刘鑫宇, 田颖川, 胡堃, 唐常源.  梯田生物埂几种灌木根系的垂直分布特征 . 北京林业大学学报, 2006, 28(2): 34-38.
    [19] 李世东, 时尽书, 李绍才, 肖生春, 孙晓梅, 范丙友, 高峻, 胡晓丽, 杨振德, 朱教君, 窦军霞, 颜容, 吕建雄, 李发东, 潘存德, 张冰玉, 金小娟, 谭伟, 翟明普, 张宇清, 徐双民, 陈文汇, 王玉杰, 南海龙, 朱清科, 宋献方, 孟平, 康宏樟, 肖洪浪, 三乃, 苏晓华, 谢益民, 张守攻, 骆秀琴, 张一平, 李建章, 王云琦, 孙海龙, 冯仲科, 周春江, 田小青, 韩海荣, 胡诗宇, 刘俊昌, 师瑞峰, 刘红霞, 赵博光, 陆海, 张雁, 李智辉, 蒋佳荔, 齐实, 刘昌明, 王笑山, 赵双菊, 杨志荣, 岳良松, 周文瑞, 马钦彦, 吴斌, 蔡怀, 李义良, 齐实, 姜伟, 张永安, 何磊, 张劲松, 伊力塔, 姚山, 蒋湘宁, 张岩, 赵有科, 葛颂, 于静洁, 蒲俊文, 张德荣, 朱金兆, 齐力旺, 宋清海, 褚建民, 曲良建, 康峰峰, 马超德, 吕守芳, 刘元, 吴庆利, 杨聪, 崔保山, 石丽萍, 朱林峰, 刘鑫宇, 王玉珠, 王建华, 刘相超, 田颖川, 胡堃, 唐常源.  独 花 兰 菌 根 的 初 步 研 究 . 北京林业大学学报, 2006, 28(2): 112-117.
    [20] 旷远文, 杨丽韫, 李贤军, 刘海军, 程万里, 王发国, 罗辑, 徐秋芳, 王鸿斌, 李艳华, 郝朝运, 陈永亮, 宋瑞清, 张占宽, 张志, 吴娟, 王安志, 毕华兴, 赵廷宁, 卜崇峰, 明军, 马忠明, 张真, 马洁, 姜培坤, 程根伟, 郭卫东, 李文华, 刘国彬, 骆有庆, 陈天全, 刘建梅, 朱金兆, 习宝田, 张启翔, 温达志, 张璧光, 叶华谷, 谭秀英, 刘一星, 曹子龙, 冀瑞卿, 李伟, 李文军, 刘鹏, 陈玉福, 温俊宝, 邢福武, 郑翠玲, 沈泉, 裴铁, 朱清科, 康向阳, 孔祥波, 敏朗, 程放, 李笑吟, 周国逸, 兰彦平, 金昌杰, 孙保平, 则元京, 马其侠, 何祖慰, 张宇清, 沈佐锐, 刘世忠, 李延军, 张志明, 金幼菊, 丁国栋, 陈红锋, 张德强, 冯继华, 姚爱静, 曹刚, 陶万强, 魏铁.  长白山原始阔叶红松林细根分布及其周转的研究 . 北京林业大学学报, 2005, 27(2): 1-5.
  • 加载中
计量
  • 文章访问数:  594
  • HTML全文浏览量:  76
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-30
  • 刊出日期:  2016-04-30

细根异速分解的3个可能影响途径

doi: 10.13332/j.1000-1522.20150437
    基金项目:

    国家自然科学基金青年科学基金项目(31500354)、森林与土壤生态国家重点实验室开放基金课题(LFSE2015-12)、国家自然科学基金重点项目(41330530)

    作者简介:

    王存国,博士。主要研究方向:全球变化生态学。Email: wangcunguo001@163.com 地址:110866辽宁省沈阳市沈河区东陵路120号沈阳农业大学农学院。
    责任作者: 韩士杰,博士,研究员,博士生导师。主要研究方向: 森林界面生态学。 Email : hansj@iae.ac.cn 地址:110016辽宁省 沈阳市沈河区文化路72号中国科学院沈阳应用生态研究所

    王存国,博士。主要研究方向:全球变化生态学。Email: wangcunguo001@163.com 地址:110866辽宁省沈阳市沈河区东陵路120号沈阳农业大学农学院。
    责任作者: 韩士杰,博士,研究员,博士生导师。主要研究方向: 森林界面生态学。 Email : hansj@iae.ac.cn 地址:110016辽宁省 沈阳市沈河区文化路72号中国科学院沈阳应用生态研究所

摘要: 植物根系分解是驱动陆地生态系统碳和养分循环的关键过程之一。直径小于2 mm的根是一个复杂的异质性细根系统。位于细根系统末端的低级根(如1~3级根)或直径较小的细根(如直径小于0.5 mm的细根),执行水分和养分吸收功能,其周转迅速(0.5~2.5次/a),是植物根系向土壤输入碳和养分的主要途径。近年来对细根分解的研究表明,在细根系统中,低级根的分解速率显著慢于高级根(如3级以上的根)或直径较大的细根(如直径大于0.5 mm的细根),执行输导和储藏功能。本文综述了影响细根异速分解的3个可能途径:菌根、碳质量和氮含量,旨在增强研究者对全球变化下细根功能属性(如细根直径)如何影响生态系统碳和养分循环的理解。

English Abstract

王存国, 陈正侠, 马承恩, 林贵刚, 韩士杰. 细根异速分解的3个可能影响途径[J]. 北京林业大学学报, 2016, 38(4): 123-128. doi: 10.13332/j.1000-1522.20150437
引用本文: 王存国, 陈正侠, 马承恩, 林贵刚, 韩士杰. 细根异速分解的3个可能影响途径[J]. 北京林业大学学报, 2016, 38(4): 123-128. doi: 10.13332/j.1000-1522.20150437
WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. doi: 10.13332/j.1000-1522.20150437
Citation: WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. doi: 10.13332/j.1000-1522.20150437
参考文献 (77)

目录

    /

    返回文章
    返回