高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮在凋落物-土壤界面连续体转移研究进展

郑俊强 韩士杰

郑俊强, 韩士杰. 氮在凋落物-土壤界面连续体转移研究进展[J]. 北京林业大学学报, 2016, 38(4): 116-122. doi: 10.13332/j.1000-1522.20150438
引用本文: 郑俊强, 韩士杰. 氮在凋落物-土壤界面连续体转移研究进展[J]. 北京林业大学学报, 2016, 38(4): 116-122. doi: 10.13332/j.1000-1522.20150438
ZHENG Jun-qiang, HAN Shi-jie. Nitrogen transfer in the litter-soil interface continuum of the temperate forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 116-122. doi: 10.13332/j.1000-1522.20150438
Citation: ZHENG Jun-qiang, HAN Shi-jie. Nitrogen transfer in the litter-soil interface continuum of the temperate forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 116-122. doi: 10.13332/j.1000-1522.20150438

氮在凋落物-土壤界面连续体转移研究进展

doi: 10.13332/j.1000-1522.20150438
基金项目: 

“973”国家重点基础研究发展计划项目(2011CB403202、2014CB954400)、国家自然科学基金项目(41173087、41330530)

详细信息
    作者简介:

    郑俊强,博士,副研究员。主要研究方向:森林土壤生态。Email: zhjq79@yahoo.com 地址: 110016辽宁省沈阳市沈河区文化路72号中国科学院沈阳应用生态研究所。
    责任作者: 韩士杰,研究员,博士生导师。主要研究方向:森林生态。Email: hansj@iae.ac.cn 地址:同上。

    郑俊强,博士,副研究员。主要研究方向:森林土壤生态。Email: zhjq79@yahoo.com 地址: 110016辽宁省沈阳市沈河区文化路72号中国科学院沈阳应用生态研究所。
    责任作者: 韩士杰,研究员,博士生导师。主要研究方向:森林生态。Email: hansj@iae.ac.cn 地址:同上。

Nitrogen transfer in the litter-soil interface continuum of the temperate forest

  • 摘要: 凋落物-土壤界面连续体是森林生态系统的最重要部分,也是氮素生物地球化学循环最活跃的场所。土壤氮元素的生物地球化学循环广义上可分为转运和转化2个环节,真菌和细菌分别在这2个环节上扮演重要角色。降雨、氮沉降和温度等变化能够改变森林生态系统的氮生物地球化学循环过程,在全球变化加剧背景下,深入了解凋落物-土壤界面连续体内氮的转运和转化过程和机制尤为重要。本文综述了凋落物-土壤界面连续体的研究现状,通过应用N示踪、分子生物学测序和N-DNA-SIP分子探针技术,研究氮转运和转化的微生物群落及其过程的可行性,并提出今后森林生态系统凋落物-土壤界面连续体的氮循环模式,强调了真菌的转运和细菌的转化过程在氮固持中的贡献,有助于森林生态系统氮固持力和机制系统认知,为开展温带森林生态系统管理和氮排放控制提供了思路。
  • [1] WU J D, WANG S L, ZHANG J M. A numerical simulation of the impacts of climate change on water and thermal resources in northeast china [J]. Resources Science, 2000, 22(6): 36-42.
    [2] KANDELER E, LUXHØ, I J, TSCHERKO D, et al. Xylanase, invertase and protease at the soil-litter interface of a loamy sand [J]. Soil Biology and Biochemistry, 1999, 31:1171-1179.
    [3] L C Q, TIAN H Q, HUANG Y. Ecological effects of increased nitrogen deposition in terrestrial ecosystems [J]. Chinese Journal of Plant Ecology, 2007, 31(2): 205-218.
    [4] CHIGINEVA N I, ALEKSANDROVA A V, MARHAN S, et al. The importance of mycelial connection at the soil-litter interface for nutrient translocation, enzyme activity and litter decomposition [J]. Applied Soil Ecology, 2011, 51(1):35-41.
    [5] CHEN S S, LIU H Y, GUO D L. Litter stocks and chemical quality of natural birch forests along temperature and precipitation gradients in eastern Inner Mongolia, China [J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1007-1015.
    [6] FANG H J, YU G R, CHENG S L, et al. Nitrogen-15 signals of leaf-litter-soil continuum as a possible indicator of ecosystem nitrogen saturation by forest succession and N loads [J]. Biogeochemistry, 2011, 102: 251-263.
    [7] MORITSUKA N, YANAI J, MORI K, et al. Biotic and abiotic processes of nitrogen immobilization in the soil-residue interface [J]. Soil Biology and Biochemistry, 2004, 36: 1141-1148.
    [8] ABER J D, MELILLO J M. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content [J]. Canadian Journal of Botany, 1982, 60: 2263-2269.
    [9] MCCLAUGHERTY C A, PASTOR J, ABER J D. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality [J]. Ecology, 1985, 66: 266-275.
    [10] BERG B, MCCLAUGHERTY C. Nitrogen and phosphorus release from decomposing litter in relation to the disappearance of lignin [J]. Canadian Journal of Botany, 1989, 67: 1148-1156.
    [11] LINDAHL B, STENLID J, FINLAY R. Effects of resource availability on mycelial interactions and 32P-transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms [J]. FEMS Microbiology Ecology, 2001, 38: 43-52.
    [12] FREY S D, SIX J, ELLIOTT E T. Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface [J]. Soil Biology &, Biochemistry, 2003, 35(7): 1001-1004.
    [13] LI A, FAHEY T J. Nitrogen translocation to fresh litter in Northern Hardwood Forest [J]. Ecosystems, 2013, 16: 521-528.
    [14] VITOUSEK P M, ABER J A, HOWARTH R W. Human alteration of the global nitrogen cycle: sources and consequences [J]. Ecological Applications, 1997, 73: 737-750.
    [15] GALLOWAY J N, TOWNSEND A R, ERISMA J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions [J]. Science, 2008, 320:889-892.
    [16] STERNER R W, ELSER J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere [M]. Princeton: Princeton University Press, 2002.
    [17] FINZI A C, COLE J J, DONEY S C, et al. Research frontiers in the analysis of coupled biogeochemical cycles [J]. Frontiers in Ecology and the Environment, 2011, 9: 74-80.
    [18] TOWNSEND A R, BRASWELL B H, HOLLAND E A, et al. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen [J]. Ecological Applications, 1996, 6: 806-814.
    [19] ABER J, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems [J]. BioScience, 1998, 48: 921-934.
    [20] 吴金栋, 王石立, 张建敏.未来气候变化对中国东北地区水热条件影响的数值模拟研究[J]. 资源科学, 2000, 22(6): 36-42.
    [21] PERSSON E. Structure and function of northern Coniferous forests: an ecosystem study [M]. Stockholm: Swedish Natural Science Research Council,1980.
    [22] VITOUSEK P M, HÄ, TTENSCHWILER S, OLANDER L, et al. Nitrogen and nature [J]. AMBIO, 2002, 31: 97-101.
    [23] 吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应[J]. 植物生态学报, 2007, 02: 205-218.
    [24] HART S C, FIRESTONE M K. Forest floor-mineral soil interactions in the internal nitrogen cycle of an old-growth forest [J]. Biogeochemistry, 1991, 12: 103-127.
    [25] BERG B, MCCLAUGHERTY C. Plant litter: decomposition, humus formation, carbon sequestration [M]. Berlin: Springer, 2003.
    [26] 陈莎莎,刘鸿雁,郭大立. 内蒙古东部天然白桦林的凋落物性质和储量及其随温度和降水梯度的变化格局[J]. 植物生态学报, 2010, 34(9): 1007-1015.
    [27] YADAV V, MALANSON G. Progress in soil organic matter research: litter decomposition, modelling, monitoring and sequestration [J]. Progress of Physical Geography, 2007, 31: 131-154.
    [28] BALL B A, CARRILLO Y, MOLINA M. The influence of litter composition across the litter-soil interface on mass loss, nitrogen dynamics and the decomposer community [J]. Soil Biology and Biochemistry, 2014, 69: 71-82.
    [29] RAYNER A D M, BODDY L. Fungal decomposition of wood: its biology and ecology [M]. Chichester: Wiley-Interscience Publication, 1988.
    [30] BODDY L. Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments [J]. Mycologia, 1999, 91: 13-32.
    [31] TLALKA M, WATKINSON S C, DARRAH P R, et al. Continuous imaging of amino-acid translocation in intact mycelia of Phanerochaete velutina reveals rapid, pulsatile fluxes [J]. New Phytologist, 2002, 153: 173-84.
    [32] TLALKA M, HENSMAN D, DARRAH P R, et al. Noncircadian oscillations in amino acid transport have complementary proflles in assimilatory and foraging hyphae of Phanerochaete velutina[J]. New Phytologist, 2003, 158: 325-35.
    [33] TLALKA M, BEBBER D, DARRAH P R, et al. Mycelial networks: nutrient uptake, translocation and role in ecosystems[C]∥BODDY L, FRANKLAND J, VAN WEST P, et al. Ecology of saprotrophic basidiomycetes. London: Academic Press, 2008:43-62.
    [34] BOBERG J B, FINLAY R D, STENLID J, et al. Fungal C translocation restricts N-mineralization in heterogeneous environments [J]. Functional Ecology, 2009, 24: 454-459.
    [35] SADAKA N, PONGE J F. Fungal colonization of phyllosphere and litter of Quercus rotundifolia Lam. in a holm oak forest (High Atlas, Morocco) [J]. Biology and Fertility of Soils, 2003, 39: 30-36.
    [36] OSONO T. Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter [J]. Canadian Journal of Microbiology, 2006, 52(8): 701-716.
    [37] VORÍ, Š, KOVÁ, J, BALDRIAN P. Fungal community on decomposing leaf litter undergoes rapid successional changes [J]. The ISME Journal, 2013, 7: 477-486.
    [38] NÄ, SHOLM T, KIELLAND K, GANETEG U. Uptake of organic nitrogen by plants [J]. New Phytologist, 2009, 182: 31-48.
    [39] RINEAU F, ROTH D, SHAH F, et al. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry [J]. Environmental Microbiology, 2012, 14: 1477-1487.
    [40] ZHU W, EHRENFELD J G. The effects of mycorrhizal roots on litter decomposition, soil biota, and nutrients in a spodosolic soil [J]. Plant and Soil, 1996, 179: 109-118.
    [41] HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413: 297-299.
    [42] HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. PNAS, 2010, 107: 13754-13759.
    [43] NUCCIO E E, HODGE A, PETT-RIDGE J, et al. An arbuscular mycorrhizal fungus signiflcantly modifles the soil bacterial community and nitrogen cycling during litter decomposition [J]. Environmental Microbiology, 2013, 15(6): 1870-1881.
    [44] LINDAHL B D, IHRMARK K, BOBERG J, et al. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest [J]. New Phytologist, 2007, 173: 611-620.
    [45] WARDLE D A, BONNER K I, NICHOLSON K S. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function [J]. Oikos, 1997, 79: 247-258.
    [46] HOORENS B, COOMES D, AERTS R. Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species [J]. Oecologia, 2010, 162: 479-489.
    [47] GARTNER T B, CARDON Z G. Decomposition dynamics in mixed-species leaf litter [J]. Oikos, 2004, 104: 230-246.
    [48] MADRITCH M D, CARDINALE B J. Impacts of tree species diversity on litter decomposition in the northern temperate forest of Wisconsin, USA: a multi-site experiment along a latitudinal gradient [J]. Plant and Soil, 2007, 292: 147-159.
    [49] JONSSON M, WARDLE D A. Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence [J]. Oikos, 2008, 117: 674-1682.
    [50] PEREZ H N, BLUNDO C M, GURVICH D E, et al. More than the sum of its parts: assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry [J]. Plant and Soil, 2008, 303: 151-159.
    [51] HÄ, TTENSCHWILER S, TIUNOV A V, SCHEU S. Biodiversity and litter decomposition in terrestrial ecosystems [J]. Annual Review of Ecology Evolution System, 2005, 36: 191-218.
    [52] SCHIMEL J P, HÄ, TTENSCHWILER S. Nitrogen transfer between decomposing leaves of different N status [J]. Soil Biology and Biochemistry, 2007, 39: 1428-1436.
    [53] CURRIE W S, ABER J D. Modeling leaching as a decomposition process in humid Montane forests [J]. Ecology, 1997, 78(6): 1844-1860.
    [54] TIUNOV A V. Particle size alters litter diversity effects on decomposition [J]. Soil Biology &, Biochemistry, 2009, 41: 176-178.
    [55] ROSEMOND A D, SWAN C M, KOMINOSKI J S, et al. Non-additive effects of litter mixing are suppressed in a nutrient-enriched stream [J]. Oikos, 2010, 119: 326-336.
    [56] LIN G G, MAO R, ZHAO L, et al. Litter decomposition of a pine plantation is affected by species evenness and soil nitrogen availability [J]. Plant and Soil, 2013, 373: 649-657.
    [57] LAGANIÈ, RE J, PARÈ, D, BRADLEY R L. How does a tree species influence litter decomposition: separating the relative contribution of litter quality, litter mixing, and forest floor conditions [J]. Canadian Journal of Forest Research, 2010, 40: 465-475.
    [58] ZELLER B, COLIN-BELGRAND M, DAMBRINE E, et al. Decomposition of 15N-labelled beech litter and fate of nitrogen derived from litter in a beech forest [J]. Oecologia, 2000, 123: 550-559.
    [59] FAHEY T J, YAVITT J B, SHERMAN R E, et al. Transport of carbon and nitrogen between litter and soil organic matter in a northern hardwood forest [J]. Ecosystems, 2011, 14:326-340.
    [60] ZELLER B, COLIN-BELGRAND M, DAMBRINE E, et al. Fate of nitrogen released from 15N-labeled litter in European beech forests [J]. Tree Physiology, 2001, 21:153-162.
    [61] BERG B, MATZNER E. Effect of nitrogen deposition on decomposition of plant litter and soil organic matter in forest systems [J]. Environment Review, 1997, 5:1-25.
    [62] MEIWES K J, MEESENBURG H, EICHHORN J, et al. Chapter 4: changes in C and N contents of soils under beech forests over a period of 35 years[M]∥BRUMME R, KHANNA P K. Functioning and management of European beech ecosystems. Berlin: Springer, 2009: 49-63.
    [63] BUÈ, E M, COURTY P E, MIGNOT D, et al. Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community [J]. Soil Biology and Biochemistry, 2007, 39: 1947-1955 .
    [64] KOIDE R, SHARDA J N, HERR J R, et al. Ectomycorrhizal fungi and the biotrophy-saprotrophy continuum[J]. New Phytologist, 2008, 178: 230-233.
    [65] BÖDEKER I T M, NYGREN C M R, TAYLOR A F S, et al. Class Ⅱ peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi [J]. The ISME Journal, 2009, 3: 1387-1395.
    [66] AGERER R. Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance [J]. Mycorrhiza, 2001, 11: 107-114.
    [67] BALDRIAN P, KOLARÍ, K M,Š, TURSOVÁ, M, et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition [J]. ISME Journal, 2012, 6: 248-258.
    [68] MCGUIRE A M, CUTHBERT B J, MA Z,et al. The roles of the A and C Sites in the manganese-specific activation of MntR [J]. Biochemistry, 2013, 52: 701-713.
    [69] LIU X, CHEN C R, WANG W J, et al. Vertical distribution of soil denitrifying communities in a wet sclerophyll forest under long-term repeated burning [J]. Microbial Ecology, 2015, 70(4): 993-1003.
    [70] BOYLE S A, YARWOOD R R, BOTTOMLEY P J, et al. Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon [J]. Soil Biology and Biochemistry, 2008, 40: 443-451.
    [71] BUCKLEY D H, HUANGYUTITHAM V, HSU S F, et al. 15N2-DNA-stable isotope probing of diazotrophic methanotrophs in soil [J]. Soil Biology &, Biochemistry, 2008, 40: 1272-1283.
    [72] ESPÃ, NA M, RASCHE F, KANDELER E, et al. Identiflcation of active bacteria involved in decomposition of complex maize and soybean residues in a tropical vertisol using 15N-DNA stable isotope probing [J]. Pedobiologia, 2011, 54: 187-193.
    [73] ANDEER P, STRAND S E, STAHL D A. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol [J]. Applied and Environmental Microbiology, 2012, 78(1): 163-169.
    [74] CADISCH G, ESPANA M, CAUSEY R, et al. Technical considerations for the use of 15N-DNA stable-isotope probing for functional microbial activity in soils [J]. Rapid Communications in Mass Spectrometry, 2005, 19: 1424-1428.
    [75] HE J Z, SHEN J P, ZHANG L M, et a1. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia oxidizing archaea of a Chinese upland red soil under long-term fertilization practices [J]. Environmental Microbiology, 2007, 9(9): 2364-2374.
    [76] JIA Z J, CONRAD R. Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7): 1658-1671.
    [77] ZHANG J B, CAI Z C, ZHU T B, et al. Mechanisms for the retention of inorganic N in acidic forest soils of southern China [J]. Scientific Reports, 2013, 3: 23-42.
    [78] TEMPLER P H, MACK M C, CHAPIN F S, et al. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies [J]. Ecology, 2012, 93: 1816-1829.
    [79] CRAINE J M, ELMORE A J, AIDAR M P M, et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability [J]. New Phytologist, 2009, 183: 980-992.
  • [1] 刘冬萍, 林魏巍, 熊典广, 牛春林, 叶晓芸, 田呈明.  景观复杂性和林分因素对两种土壤条件下杨树腐烂病发生的混合影响 . 北京林业大学学报, 2019, 41(12): 128-138. doi: 10.12171/j.1000-1522.20190435
    [2] 吴燕, 胡琦鹏, 白永超, 陈露, 唐仲秋, 侯智霞.  笃斯越桔伴生植物矿质元素与土壤肥力因子的多元分析 . 北京林业大学学报, 2019, 41(10): 37-48. doi: 10.13332/j.1000-1522.20180420
    [3] 吴鹏, 崔迎春, 赵文君, 舒德远, 侯贻菊, 丁访军, 杨文斌.  喀斯特森林植被自然恢复过程中土壤化学计量特征 . 北京林业大学学报, 2019, 41(3): 80-92. doi: 10.13332/j.1000-1522.20180136
    [4] 向云西, 潘萍, 陈胜魁, 欧阳勋志, 宁金魁, 吴自荣, 纪仁展.  天然马尾松林土壤碳氮磷特征及其与凋落物质量的关系 . 北京林业大学学报, 2019, 41(11): 95-103. doi: 10.13332/j.1000-1522.20190029
    [5] 任悦, 高广磊, 丁国栋, 张英, 朴起亨, 郭米山, 曹红雨.  沙地樟子松人工林叶片—枯落物—土壤有机碳含量特征 . 北京林业大学学报, 2018, 40(7): 36-44. doi: 10.13332/j.1000-1522.20180138
    [6] 韩士杰, 袁志友, 方运霆, 王智平.  中国北方森林和草地生态系统碳氮耦合循环与碳源汇效应研究 . 北京林业大学学报, 2016, 38(12): 128-130. doi: 10.13332/j.1000-1522.20160384
    [7] 李萍萍, 薛彬, 孙德智.  施用城市污泥堆肥对土壤理化性质及白三叶生长的影响 . 北京林业大学学报, 2013, 35(1): 127-131.
    [8] 张林, 高健, 侯成林.  分离自安徽南部竹黄相关真菌的分子鉴定及多样性分析 . 北京林业大学学报, 2009, 31(6): 19-26.
    [9] 徐秋芳, 姜培坤, 王奇赞, 陆贻通.  绿肥对集约经营毛竹林土壤微生物特性的影响 . 北京林业大学学报, 2009, 31(6): 43-48.
    [10] 白立舜, 冯仲科, 李亚东, 聂敏莉, 隋宏大, .  基于PDA的森林资源调查系统研究与实现 . 北京林业大学学报, 2008, 30(增刊1): 138-142.
    [11] 高志亮, 余新晓, 岳永杰, 边振, 杨本琴, 曹波, 秦永胜.  北京市松山自然保护区森林健康评价研究 . 北京林业大学学报, 2008, 30(supp.2): 127-131.
    [12] 张颖, 侯元兆, 魏小真, 颜萍, 袁功英, 冯仲科.  北京森林绿色核算研究 . 北京林业大学学报, 2008, 30(增刊1): 232-237.
    [13] 杨新兵, 余新晓, 鲁绍伟, 李永慈.  基于土壤水动力学的树木根系吸水模型构建(Ⅰ)——单株 . 北京林业大学学报, 2008, 30(supp.2): 197-200.
    [14] 杨新兵, 余新晓, 鲁绍伟, 李永慈, .  基于土壤水动力学的树木根系吸水模型构建(Ⅱ)——林分 . 北京林业大学学报, 2008, 30(supp.2): 201-205.
    [15] 周艳萍, 金则新, 高克昌, 邵杰, 张春晓, 奚如春, 索安宁, 孙志蓉, 焦雯珺, 武林, 陆平, 于海霞, 于文吉, 张志山, 李黎, 张建军, 许景伟, 马玲, 吴家兵, 吕文华, 雷妮娅, 周睿, 郑景明, 刘足根, 李俊, 郎璞玫, 宋先亮, 韦方强, 葛剑平, 陈少良, 赵秀海, 朱清科, 毕华兴, 于志明, 李传荣, 盖颖, 赵广杰, 戴伟, 赵文喆, 关德新, 郑红娟, 陈勇, Kwei-NamLaw, 饶兴权, 蔡锡安, 纳磊, 余养伦, 朱教君, 李钧敏, 翟明普, 张小由, 马履一, 习宝田, 李笑吟, 马履一, 谭会娟, 赵平, 王天明, 张弥, 樊敏, 朱艳燕, ClaudeDaneault, 王瑞刚, 于波, 夏良放, 贾桂霞, 崔鹏, 李俊清, 曾小平, 张春雨, 张宇清, 方家强, 江泽慧, 王文全, 袁小兰, 李增鸿, 杨永福, 何明珠, 李丽萍, 王卫东, 殷宁, 吴秀芹, 李庆卫, 张欣荣, 袁飞, 刘丽娟, 郭孟霞, 王贺新, 唐晓军, 陈雪梅, 贺润平, 邓宗付, 韩士杰, 毛志宏, 王娜, 熊颖, 蒋湘宁, 郑敬刚, 王旭琴, 吴记贵, 孔俊杰, 刘鑫, 王月海, 于贵瑞, 江杰, 王瑞辉, 林靓靓, 王贵霞, 聂立水, 孙晓敏, 葛剑平, 李新荣, 郭超颖, 董治良, .  北京百花山森林群落的结构多样性研究 . 北京林业大学学报, 2007, 29(1): 7-11.
    [16] 金莹杉, 王蕾, 邢韶华, 任云卯, 张玉兰, 张秀新, 尹增芳, 李云开, 梁善庆, 王超, 李昌晓, 王春梅, 林娅, 周繇, 林勇明, 孙阁, 刘杏娥, 周海宾, 赵铁珍, 张仁军, 张运春, 陈圆, 吴淑芳, 谭健晖, 张颖, 闫德千, 王戈, 李春义, 崔丽娟, 罗建举, 于俊林, 吴普特, 马履一, 徐秋芳, 刘青林, 樊汝汶, 王以红, 刘艳红, 张桥英, 翟明普, 杨培岭, 杨远芬, 黄华国, 赵勃, 高岚, 张志强, 温亚利, 江泽慧, 张曼胤, 张明, 江泽慧, 王莲英, 马钦彦, 余养伦, 洪滔, 钟章成, 周荣伍, 刘国经, 王小青, 周国模, 张本刚, 罗鹏, 刘俊昌, 于文吉, 张晓丽, 陈学政, 周国逸, 费本华, 安玉涛, 杨海军, 柯水发, 崔国发, 汪晓峰, 王希群, 王玉涛, 冯浩, 殷际松, 何春光, 吴承祯, 田英杰, 邵彬, 马润国, 赵景刚, 骆有庆, 何松云, 李敏, 徐昕, 温亚利, 王九中, 邬奇峰, 徐克学, 高贤明, 洪伟, 魏晓华, 刘爱青, 康峰峰, 任树梅, 蔡玲, 费本华, 安树杰, 吴家森, 吴宁, 朱高浦, 郑万建, 林斌, 任海青, 赵弟行, 田平, 赵焕勋, 胡喜生, 卢俊峰, 李永祥, 宋萍, 范海兰.  从森林绿色核算看我国林业政策的优化 . 北京林业大学学报, 2007, 29(3): 164-170.
    [17] 孙月琴, 胡海英, 范丙友, 欧阳杰, 熊丹, 金莹, 郝晨, 石娟, 王莉, 刘美芹, 张玲, 胡晓丹, 隋金玲, 李艳华, 姚娜, 孙青, 王丰俊, 雷庆哲, 贺窑青, 刘丽, 周章义, 曲红, 陈佳, 乔海莉, 李在留, 程堂仁, 段旭良, 李莉, 尹伟伦, 赵亚美, 陈发菊, 周燕, 陈晓阳, 李云, 张德权, 尹伟伦, 张志毅, 王建中, 路端正, 骆有庆, 田呈明, 郭锐, 陆海, 沈昕, 张艳霞, 阎伟, 冯秀兰, 骆有庆, 李凤兰, 武彦文, 郑彩霞, 续九如, 张香, 康向阳, 孙爱东, 冯菁, 胡晓丹, 阎晓磊, 郝俊, 胡德夫, 梁宏伟, 骆有庆, 骆有庆, 马钦彦, 王晓东, 安新民, 郑永唐, 武海卫, 卢存福, 姜金仲, 沈繁宜, 梁华军, 高述民, 吴晓成, 孙爱东, 李忠秋, 王华芳, 蒋湘宁, 史玲玲, 王百田, 赵蕾, 郭晓萍, 邹坤, 谢磊, 张志翔, 严晓素, 李凯, 尹伟伦, 王华芳, 王晓楠, 王玉兵, 吴坚, 王瑛, 高荣孚, 冯仲科, 骈瑞琪, 冯晓峰, 王冬梅, 赵兵, 温秀凤3, 于京民2, 刘玉军, 崔彬彬
    , 王建中, 刘艳, 林善枝, 王玉春, 孙建华, 丁霞, 张庆, 沈应柏, 李凤兰, 王民中, 陶凤杰, 呼晓姝, 李镇宇, 杨伟光, 陈卫平, 张兴杰, 刘玉军, 汪植, 蒋平, 付瑞海, 马建海, 赵新丽.  新疆天然胡杨林土壤微生物多样性的研究 . 北京林业大学学报, 2007, 29(5): 127-131.
    [18] 徐文铎, 王云琦, 李雪峰, 齐春辉, 李雪萍, 赵燕东, 
    ZHAOGuang-jie, 谭炳香, 温俊宝, 张灿, 常德龙, 李贤军, 段爱国, 冯夏莲, 郑凌凌, 李吉跃, 王玉涛, 张求慧, 刘金福, 刘常富, 匡文慧, 鲁绍伟, 程占红, 吴斌, 邹大林, 张路平, 翟洪波, 何兴元, 韩士杰, 何友均, 温俊宝, 李增元, LUOWen-sheng, 张树文, 洪伟, 韩烈保, 吴庆利, 何承忠, 宋湛谦, 李吉跃, 赵广杰, 王玉杰, 白陈祥, 余新晓, 何正权, 朱天辉, 张建国, 吴斌, 张志毅, 童书振, ]陈玮, ]魏晓霞, 黄文豪, 梁小红, 张养贞, FurunoTakeshi, 刘凤芹, 林秦文, 何静, 郭忠玲, 匡秋明, 姜伟, 陈发菊, 骆有庆, 骆有庆, 李俊清, 陈尔学, RENQian, 庞勇, 郑兴波, 崔国发, 赵桂玲, 梁宏伟, 张振明, 曾会明, 许志春, 许志春, 李颖, 胡伟华, 张璧光, 安新民, 张军, PaulWolfgang, 雷渊才, 李凤兰, 刘君, 宋国正, 杨凯, 曹川健, 郑杰, 侯伟, 赵广亮, 李福海, 姚永刚, 田桂芳, 董建生, 李考学, 张全来, 张有慧, 李永波, 赫万成, 李长明, 张世玺.  真菌对泡桐木材化学成分及其结构的影响 . 北京林业大学学报, 2006, 28(3): 145-149.
    [19] 匡文慧, 齐春辉, 
    ZHAOGuang-jie, 常德龙, 张求慧, 张灿, 徐文铎, 温俊宝, 谭炳香, 郑凌凌, 程占红, 李雪萍, 鲁绍伟, 刘常富, 王云琦, 李雪峰, 李贤军, 邹大林, 段爱国, 刘金福, 王玉涛, 冯夏莲, 李吉跃, 赵燕东, 吴斌, 韩士杰, 白陈祥, 宋湛谦, 李吉跃, 张树文, 韩烈保, 何正权, 余新晓, 温俊宝, 赵广杰, 洪伟, LUOWen-sheng, 张建国, 王玉杰, 何承忠, 张路平, 吴庆利, 吴斌, 何友均, 朱天辉, 何兴元, 李增元, 翟洪波, FurunoTakeshi, 陈尔学, 骆有庆, 骆有庆, 林秦文, 梁小红, ]陈玮, 匡秋明, 黄文豪, 童书振, 张志毅, 李俊清, 郭忠玲, 张养贞, 刘凤芹, ]魏晓霞, 陈发菊, 姜伟, 何静, 张璧光, 许志春, 赵桂玲, RENQian, 许志春, 张军, 胡伟华, 曾会明, 崔国发, 庞勇, 安新民, 郑兴波, 张振明, 李颖, 梁宏伟, 李凤兰, 侯伟, PaulWolfgang, 李福海, 刘君, 杨凯, 曹川健, 郑杰, 宋国正, 雷渊才, 赵广亮, 田桂芳, 张有慧, 董建生, 李考学, 姚永刚, 张全来, 李永波, 赫万成, 李长明, 张世玺.  土壤水分传感器实用性能对比研究 . 北京林业大学学报, 2006, 28(3): 158-160.
    [20] 董运斋, 华丽, 王小丹, 邵海荣, 贺庆棠, 张德荣, 曹世雄, 赵晓松, 郭明辉, 王瑞刚, 戴松香, 李黎, 高岩, 田晶会, 李雪玲, 黄荣凤, 黄华国, 马宇飞, 李俊清, 阎海平, 习宝田, 张晓丽, 闫丽, 古川郁夫, 贺庆棠, 陈少良, 王四清, 陈斌如, 冷平生, 关德新, 李文彬, 金幼菊, 贺康宁, 于志明, 陈少良, 高双林, 李海英, 阎海平, 杨永福, 李建章, 高攀, 鲍甫成, 陈莉, 任云卯, 王百田, 王蕾, 邹祥旺, 吴家兵, 刘力源, 陈华君, 张卫强, 侯智, 王金满, 赵有科, 程根伟, 侯智, 金小娟, 金昌杰, 陈源泉, 郝志勇, 高旺盛, 李涛, 翁海娇, 杜建军, 韩士杰, 尹婧, 赵琼, 李鹤, 杨爽, 段杉.  北京地区空气负离子浓度时空变化特征的研究 . 北京林业大学学报, 2005, 27(3): 35-39.
  • 加载中
计量
  • 文章访问数:  529
  • HTML全文浏览量:  46
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-30
  • 刊出日期:  2016-04-30

氮在凋落物-土壤界面连续体转移研究进展

doi: 10.13332/j.1000-1522.20150438
    基金项目:

    “973”国家重点基础研究发展计划项目(2011CB403202、2014CB954400)、国家自然科学基金项目(41173087、41330530)

    作者简介:

    郑俊强,博士,副研究员。主要研究方向:森林土壤生态。Email: zhjq79@yahoo.com 地址: 110016辽宁省沈阳市沈河区文化路72号中国科学院沈阳应用生态研究所。
    责任作者: 韩士杰,研究员,博士生导师。主要研究方向:森林生态。Email: hansj@iae.ac.cn 地址:同上。

    郑俊强,博士,副研究员。主要研究方向:森林土壤生态。Email: zhjq79@yahoo.com 地址: 110016辽宁省沈阳市沈河区文化路72号中国科学院沈阳应用生态研究所。
    责任作者: 韩士杰,研究员,博士生导师。主要研究方向:森林生态。Email: hansj@iae.ac.cn 地址:同上。

摘要: 凋落物-土壤界面连续体是森林生态系统的最重要部分,也是氮素生物地球化学循环最活跃的场所。土壤氮元素的生物地球化学循环广义上可分为转运和转化2个环节,真菌和细菌分别在这2个环节上扮演重要角色。降雨、氮沉降和温度等变化能够改变森林生态系统的氮生物地球化学循环过程,在全球变化加剧背景下,深入了解凋落物-土壤界面连续体内氮的转运和转化过程和机制尤为重要。本文综述了凋落物-土壤界面连续体的研究现状,通过应用N示踪、分子生物学测序和N-DNA-SIP分子探针技术,研究氮转运和转化的微生物群落及其过程的可行性,并提出今后森林生态系统凋落物-土壤界面连续体的氮循环模式,强调了真菌的转运和细菌的转化过程在氮固持中的贡献,有助于森林生态系统氮固持力和机制系统认知,为开展温带森林生态系统管理和氮排放控制提供了思路。

English Abstract

郑俊强, 韩士杰. 氮在凋落物-土壤界面连续体转移研究进展[J]. 北京林业大学学报, 2016, 38(4): 116-122. doi: 10.13332/j.1000-1522.20150438
引用本文: 郑俊强, 韩士杰. 氮在凋落物-土壤界面连续体转移研究进展[J]. 北京林业大学学报, 2016, 38(4): 116-122. doi: 10.13332/j.1000-1522.20150438
ZHENG Jun-qiang, HAN Shi-jie. Nitrogen transfer in the litter-soil interface continuum of the temperate forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 116-122. doi: 10.13332/j.1000-1522.20150438
Citation: ZHENG Jun-qiang, HAN Shi-jie. Nitrogen transfer in the litter-soil interface continuum of the temperate forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 116-122. doi: 10.13332/j.1000-1522.20150438
参考文献 (79)

目录

    /

    返回文章
    返回