Modification of SCS-CN model for estimating event rainfall runoff for small watersheds in the Loess Plateau, China.
-
摘要: 径流曲线数(SCS-CN)是预测场降雨地表径流常用的水文模型之一,由于其基本假设合理、参数易于获得而被广泛应用。然而,由于流域径流的形成受广泛存在空间或时间异质性的地形、地貌、土壤、气象、植被以及土地利用等多种因素的影响,按照标准径流曲线数模型估算的场降雨径流与实测径流相差可能很大。因此,针对特定区域、特定流域对该模型进行相应的修正是提高其径流预测精度的有效途径。本文于晋西黄土区吉县蔡家川分别以农田草地、人工林和次生林为主的3个典型小流域为对象,将2004—2011年实测的场降雨径流数据分为模型参数率定期(2004—2009年)和验证期(2010—2011年),对比标准SCS-CN模型和修正的SCS-CN模型(包括降雨量修正,降雨量与降雨强度修正,降雨量、降雨强度和初损率优化修正)预测场降雨径流的可靠性。结果表明:1)标准SCS-CN预测小流域场降水径流时,精度极差,模型拟合效率系数(E)均小于0;2)采用降雨量修正CN值预测流域地表径流精度优于标准模型,但对于小径流事件而言,预测结果会偏大,对于大径流事件,预测结果会偏小;3)基于优化降雨强度修正因子β和初损率λ模型可以提高以农田草地和人工林为主2个小流域的径流预测精度。对于以次生林为主的流域而言,仅通过降雨量修正CN值即可提高模型的预测精度,E可达0.79。反映流域储水特征的初损率λ,人工林为主的流域最小,为0.069,农田草地为主的流域次之,为0.189,次生林为主的流域,为0.200,表明次生林流域具有较好的储水效果。Abstract: The SCS-CN method is one of the most widely used hydrological models to predict surface runoff from watershed for a given rainfall event. However, runoff generation is governed by spatially and temporally heterogeneous factors including topography, landform, soil, climate, vegetation and land use, and using standard SCS-CN method to predict surface runoff, could thus result in large errors. Therefore, it is an effective way to modify the original model for particular region, specific watershed for improving the accuracy. The measured event rainfall-runoff datasets from three watersheds located in Caijiachuan watershed on the Loess Plateau of China during 2004 and 2011 were used for calibrating (2004 to 2009) and validating (2010—2011) the original and five modified SCS-CN models. The selected three watersheds are dominated by farmland and grassland, plantation forests, and secondary forests, respectively. We found that the standard SCS-CN method poorly estimated the event runoff for all three watersheds (model efficiency coefficients E less than 0). The performance of revised SCS-CN based on rainfall amount was better than the standard one even though overestimation for small runoff events and underestimation for large ones were observed across the watersheds. The optimized SCS-CN model by rainfall intensity revised and initial abstraction coefficient improved the prediction accuracy most among the five modified models for watersheds dominated by farmland and grassland and plantation forest. Interestingly, revised SCS-CN by rainfall amount only improved significantly the predicting accuracy for secondary forest dominated watershed (E=0.79). In addition, the initial abstraction coefficient (λ) was 0.069, 0.189, and 0.200 for watersheds dominated by plantation forest, farmland and grassland, and secondary forest, respectively, indicating that the water storage capacity was affected by the vegetation type.
-
Key words:
- SCS-CN /
- rainfall /
- runoff /
- the Loess Plateau
-
[1] DESHMUKH D S, CHAUBE U C, EKUBE H A, et al. Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope[J]. Journal of Hydrology,2013,492:89-101. [2] FU S H, LIU B Y, WU J D. Study on runoff calculation method in Beijing mountainous area[J]. Scientia Geographica Sinica, 2002,22(5):604-609. [3] XIAO B, WANG Q H, FAN J,et al. Application of the SCS-CN model to runoff estimation in a small watershed with high spatial heterogeneity[J]. Pedosphere, 2011,21(6):738-749. [4] ZHANG J J, NA L, DONG H B, et al. Hydrological response to changes in vegetation covers of small watersheds on the Loess Plateau[J]. Acta Ecological Sinica,2008,28(8):3597-3604. [5] ZHANG L, PODLASLY C, REN Y, et al. Separating the effects of changes in land management and climatic conditions on long-term streamflow trends analyzed for a small catchment in the Loess Plateau region, NW China[J]. Hydrological Processes, 2014,28(3):1284-1293. [6] ZHENG F, ZHANG J J. Analyses of rainfall-runoff relationship and water balance in Caijiachuan watershed[J]. Bulletin of Soil and Water Conservation,2012,32(1):71-76. [7] WANG Y, HUANG M B. Application of the SCS-CN method on runoff estimation in small watershed on Loess Plateau[J]. Science of Soil and Water Conservation,2008,6(6):87-91. [8] 符素华,刘宝元,吴敬东. 北京地区坡而径流计算模型的比较研究[J]. 地理科学,2002,22(5):604-609. [9] HE W, ZHANG J J, NA L, et al. Research on relationship between rainfall and runoff in different land use patterns on loess slope in west of Shanxi province[J]. Journal of Arid Land Resources and Environment,2007,5(27):80-87. [10] JUNG J W, YOON K S, CHOI D H, et al. Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes[J]. Agricultural Water Management,2012,110:78-83. [11] REISTETTER J A, RUSSELL M. High-resolution land cover datasets, composite curve numbers, and storm water retention in the Tampa Bay, FL region[J]. Applied Geography,2011,31(2):740-747. [12] WANG W Z. Study on index of erosivity(R) of rainfall in loess area[J]. Soil and Water Conservation in China,1987(12):34-38. [13] KOUSARI M R, MALEKINEZHAD H, AHANI H, et al. Sensitivity analysis and impact quantification of the main factors affecting peak discharge in the SCS curve number method: an analysis of Iranian watersheds[J]. Quaternary International, 2010,226(1-2):66-74. [14] YU X X, ZHANG X M, WU S H, et al. The effect of vegetation and precipitation upon runoff and sediment production in sloping lands of loess area[J]. Journal of Mountain Science,2006,24(1):19-26. [15] ZHANG X Y, MENG F, DING N. Application of SCS model to estimating the quantity of runoff of small watershed in semi-arid or arid region[J]. Research of Soil and Water Conservation,2003,4(10):172-174. [16] MISHRA S K, SAHU R K, ELDHO T I, et al. An improved Ia-S relation incorporating antecedent moisture in SCS-CN methodology[J]. Water Resources Management, 2006,20(5): 643-660. [17] WANG B L. Study on the improved SCS model [J]. Yellow River,2005,5(27):24-26. [18] BOUGHTON W C. A review of the USDA SCS curve number method[J]. Soil and Water Management and Conservation,1989, 27 (5):11-23. [19] ZHANG Y X, MU X M, WANG F. Calibration and validation to parameter λ of soil conservation service curve number method in hilly region of the loess plateau[J]. Agricultural Research in the Arid Areas,2008,26(5):124-128. [20] MISHRA S K, SINGH V P, SANSALONE J, et al. A modified SCS-CN method: characterization and testing[J]. Water Resources Management,2003,17(1): 37-68. [21] HE B G, ZHOU N S, GAO X J, et al. Precipitation-runoff relationship in farmland nonpoint source pollution research: amending coeffcient of SCS hydrologic method[J]. Research of Environmental Sciences,2001,3(14):49-51. [22] BALTAS E A, DERVOS N A, MIMIKOU M A. Technical note: determination of the SCS initial abstraction ratio in an experimental watershed in Greece[J]. Hydrology and Earth System Sciences,2007,11(6):1825-1829. [23] MISHRA S K, SINGH V P. Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates[J]. Hydrological Processes,2004,18(17): 3323-3345. [24] YUAN Y P, NIE W M, STEVEN C, et al. Initial abstraction and curve numbers for semiarid watersheds in southeastern Arizona[J]. Hydrological Processes,2014,28(3):774-783. [25] WANG S P, ZHANG Z Q, MCVICAR T R, et al. An event-based approach to understanding the hydrological impacts of different land uses in semi-arid catchments[J]. Journal of Hydrology, 2012,416-417:50-59. [26] 张建军,纳磊,董煌标,等. 黄土高原不同植被覆盖对流域水文的影响[J]. 生态学报,2008,28(8):3597-3604. [27] 郑芳,张建军. 蔡家川流域降雨-径流关系及水量平衡分析[J]. 水土保持通报,2012,32(1):71-76. [28] HAWKINS R H. Asymptotic determination runoff curve numbers from data[J]. Journal of Irrigation and Drainage Engineering,1993,119(2):334-345. [29] 王英,黄明斌. 径流曲线法在黄土区小流域地表径流预测中的初步应用[J]. 中国水土保持科学,2008,6(6):87-91. [30] 贺维,张建军,纳磊,等. 晋西黄土区不同土地利用类型降雨-径流关系的研究[J]. 干旱区资源与环境,2007,5(27):80-87. [31] 王万忠. 黄土地区降雨侵蚀力R指标的研究[J]. 中国水土保持,1987(12):34-38. [32] 余新晓,张晓明,武思宏,等. 黄土区林草植被与降水对坡面径流和侵蚀产沙的影响[J]. 山地学报,2006,24(1):19-26. [33] SAHU R K, MISHRA S K, ELDHO T I. Comparative evaluation of SCS-CN-inspired models in applications to classified datasets[J]. Agricultural Water Management, 2010,97(5):749-756. [34] 张秀英,孟飞,丁宁. SCS模型在干旱半干旱区小流域径流估算中的应用[J]. 水土保持研究,2003,4(10):172-174. [35] MISHRA S K, PANDEY R P, JAIN M K, et al. A rain duration and modified AMC-dependent SCS-CNProcedure for long duration rainfall-runoff events[J]. Water Resources Management,2008,22(7):861-876. [36] HUANG M B, GALLICHAND J, WANG Z, et al. A modification to the soil conservation service curve number method for steep slopes in the Loess Plateau of China[J]. Hydrological Processes,2006,20(3):579-589. [37] HUANG M B, GALLICHAND J, DONG C Y, et a1. Use of soil moisture and curve number method for estimating runoff in the Loess Plateau of China[J]. Hydrological Processes,2007,21:1471-1481. [38] JACOBS J, MYERS D, WHITFIELD B. Improved rainfall/runoff estimates using remotely sensed soil moisture[J]. Journal of the American Water Resources Association,2003,39:313-324. [39] 王白陆. SCS产流模型的改进[J]. 人民黄河,2005,5(27):24-26. [40] 张钰娴,穆兴民,王飞. 径流曲线数模型(SCS-CN)参数λ在黄土丘陵区的率定[J]. 干旱地区农业研究,2008,26(5):124-128. [41] 贺宝根,周乃晟,高效江,等. 农田非点源污染研究中的降雨径流关系-SCS法的修正[J]. 环境科学研究,2001,3(14):49-51. [42] SHI Z H, CHEN L D, FANG N F, et al. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China[J]. Catena,2009,77(1): 1-7. [43] ELHAKEEM M, PAPANICOLAOU A N. Estimation of the runoff curve number via direct rainfall simulator measurements in the state of iowa, USA[J]. Water Resources Management,2009,23(12):2455-2473. -

计量
- 文章访问数: 690
- HTML全文浏览量: 80
- PDF下载量: 17
- 被引次数: 0