高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同抚育间伐强度对落叶松人工林生态系统碳储量影响

孙志虎 王秀琴 陈祥伟

孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12): 1-13. doi: 10.13332/j.1000-1522.20160016
引用本文: 孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12): 1-13. doi: 10.13332/j.1000-1522.20160016
SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. doi: 10.13332/j.1000-1522.20160016
Citation: SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. doi: 10.13332/j.1000-1522.20160016

不同抚育间伐强度对落叶松人工林生态系统碳储量影响

doi: 10.13332/j.1000-1522.20160016
基金项目: 

中央高校基本科研业务费专项(2572014EB03-03、DL09EA03-2)、“十二五”国家科技支撑计划课题(2011BAD08B01、2011BAD37B01)。

详细信息
    作者简介:

    孙志虎,博士,副教授。主要研究方向:森林生态学。Email: szhihunefu@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。
    责任作者: 陈祥伟,教授,博士生导师。主要研究方向:森林培育。Email:chenxwnefu@163.com 地址:同上。

    孙志虎,博士,副教授。主要研究方向:森林生态学。Email: szhihunefu@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。
    责任作者: 陈祥伟,教授,博士生导师。主要研究方向:森林培育。Email:chenxwnefu@163.com 地址:同上。

Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.

  • 摘要: 以三江平原丘陵区佳木斯市孟家岗林场的长白落叶松人工幼龄林(17年生)为对象,设置5种长期、多次、不同强度的间伐试验:2次高强度间伐(L1,35.6%~43.4%)、2次中强度间伐(L2,23.1%~24.3%)、3次中强度间伐(L3,15.3%~23.8%)、4次低强度间伐(L4,5.8%~17.1%)和对照(CK,历次间伐时仅移出枯立木)。通过5种处理后幼龄林生长至成熟林时(56年生)生态系统各组分碳储量调查,结合1974—2013年历次间伐木和枯死木碳储量,从枯死木、间伐木和成熟林活立木生物量碳、土壤碳、生态系统碳分配和林分累计固碳量方面,评价长期间伐对落叶松人工林碳储量的影响。间伐不仅能够明显降低成熟林累计枯死木生物量碳,由CK处理的40.3 t/hm2降低至8.3(3.1~14.1)t/hm2,而且能够提供32.8(21.9~50.1)m3/hm2的间伐材和10.4(6.9~13.8)t/hm2的生物量碳用作生物质燃料。间伐虽然降低成熟林枯枝落叶层碳储量(比CK降低14.8%),但能增加矿质土壤碳储量(比CK提高5.6%),尤其是L3处理后矿质土壤碳储量明显增加(比CK提高15.5%);间伐没有改变成熟林活立木生物量碳和生态系统碳储量分配特征(林分尺度活立木生物量碳中树干、树根、树枝、树皮和树叶比例依次为67.7%~68.7%、17.5%~18.0%、6.8%~7.0%、4.8%~4.9%和2.2%~2.3%。生态系统碳储量中活立木、0~30 cm矿质土壤层、枯枝落叶层、枯立木、灌木层和草本层所占比例依次为69.7%~72.0%、24.7%~27.7%、1.5%~2.2%、0~1.3%、0.1%~1.3%和0.1%~0.2%);但能提高地下碳储量(活立木和枯立木树根+矿质土壤层+枯枝落叶层+灌木层+草本层)占生态系统碳储量比例(间伐为40.5%~42.4%,CK为40.0%),降低树干、树枝和树皮之和所占比例(间伐为56.0%~57.9%,CK为58.3%),维持针叶比例恒定(1.6%)。成熟林主伐时,仅利用干材而枝桠留地时,能使活立木生物量碳的26.5%~27.4%留存于林地(CK为27.7%),而将枝桠随树干一起移出系统时,能使活立木碳储量的19.7%~20.3%(CK为20.5%)、生态系统碳储量的42.1%~44.0%(CK为41.7%)留存于系统。落叶松幼龄林(17年生)多次间伐后至成熟林时(56年生)活立木生物量碳、生态系统碳储量和林分累计固碳量能够恢复至CK相近似水平,分别仅比CK降低1.7%(-4.3%~1.5%)、1.7%(-5.9%~1.4%)和1.1%(-4.0%~0.8%),L3和L4处理,尤其是L4处理在上述指标方面甚至高于CK 处理1.5%、1.4%和0.8%。5.8%~23.8%的3~4次中、低强度抚育间伐至成熟林时既可提供间伐材和生物质燃料又能维持高的活立木生物量碳、生态系统碳储量和林分累计固碳量。
  • [1] DWYER J M, FENSHAM R, BUCKLEY Y M. Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem[J] . Journal of Applied Ecology, 2010,47(3): 681-691.
    [2] LIU G H, FU B J, FANG J Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J] . Acta Ecologica Sinica, 2000,20(5):732-740.
    [3] SUN Y J, ZHANG J, HAN A H, et al. Biomass and carbon pool of Larix gmelini young and middle age forest in Xing'an Mountains, Inner Mongolia[J] . Acta Ecologica Sinica,2007, 27(5):1756-1762.
    [4] NUNERY J S, KEETON W S. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products[J] . Forest Ecology and Management, 2010,259(1): 1363-1375.
    [5] POWERS M, KOLKA R, PALIK B, et al. Long-term management impacts on carbon storage in Lake States forests[J] . Forest Ecology and Management, 2011,262(3):424-431.
    [6] JU W Z, WANG X J, SUN Y J. Age structure effects on stand biomass and carbon storage distribution of Larix olgensis plantation[J] . Acta Ecologica Sinica, 2011, 31(4):1139-1148.
    [7] CLARKE N, GUNDERSEN P, JNSSON-BELYAZID U, et al. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems[J] . Forest Ecology and Management, 2015,351 (1):9-19.
    [8] YIN M F, ZHAO L, CHEN X F, et al. Carbon storage maturity age of Larix olgenisis and L. kaempferi[J] . Chinese Journal of Applied Ecology, 2008,19(12): 2567-2571.
    [9] ALAM A, KILPELAINEN A, KELLOMAKI S. Impacts of initial stand density and thinning regimes on energy wood production and management-related CO2 emissions in boreal ecosystems[J] . European Journal of Forest Research, 2012,131(3): 655-667.
    [10] JIA Z K, GONG N N, YAO K, et al. Effects of thinning intensity on the growth and biomass of Larix principis-rupprechtii plantation in Saihanba, Hebei Province[J] . Journal of Northeast Forestry University, 2012,40(3):5-7,31.
    [11] WANG M, LI F R, JIA W W, et al. Dynamic change of carbon storage for larch plantation in Heilongjiang Province[J] . Bulletin of Botanical Research,2013, 33(5):623-628.
    [12] RUIZ-PEINADO R, BRAVO-OVIEDO A, LPEZ-SENESPLEDA E, et al. Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods [J] . European Journal of Forest Research, 2013,132(2):253-262.
    [13] VARGAS R, ALLEN E B, ALLEN M F. Effects of vegetation thinning on above-and belowground carbon in a seasonally dry tropical forest in Mexico[J] . The Journal of Tropical Biology and Conservation, 2009,41(3):302-311.
    [14] SUN Z H, JIN G Z, MU C C. On the long-term productivity maintenance of monoculture Larix olgensis larch timber forest in northeastern China[M] . Beijing: Science Press,2009.
    [15] NAVE L E, VANCE E D, SWANSTON C W, et al. Harvest impacts on soil carbon storage in temperate forests[J] . Forest Ecology and Management, 2010,259(1): 857-866.
    [16] WANG W F, PENG C H, KNEESHAW D D, et al. Modeling the effects of varied forest management regimes on carbon dynamics in jack pine stands under climate change[J] . Canadian Journal of Forest Research, 2013,43(5):469-479.
    [17] THUMBER C, EASTAUGH C S, HASENAUER H. A thinning routine for large-scale biogeochemical mechanistic ecosystem models[J] . Forest Ecology and Management, 2014,320(1): 56-69.
    [18] 刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J] .生态学报,2000,20(5):732-740.
    [19] 孙玉军,张俊,韩爱惠,等.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能[J] .生态学报, 2007,27(5):1756-1762.
    [20] 巨文珍,王新杰,孙玉军.长白落叶松林龄序列上的生物量及碳储量分配规律[J] .生态学报,2011,31(4):1139-1148.
    [21] 殷鸣放,赵林,陈晓非,等.长白落叶松与日本落叶松的碳储量成熟龄[J] .应用生态学报,2008,19(12):2567-2571.
    [22] 贾忠奎,公宁宁,姚凯,等.间伐强度对塞罕坝华北落叶松人工林生长进程和生物量的影响[J] .东北林业大学学报,2012,40(3):5-7,31.
    [23] 王蒙,李凤日,贾炜炜,等.黑龙江省落叶松人工林碳储量动态研究[J] .植物研究,2013,33(5):623-628.
    [24] 孙志虎,金光泽,牟长城.长白落叶松人工林长期生产力维持的研究[M] .北京:科学出版社, 2009.
    [25] BARITZ R, SEUFERT G, MONTANARELLA L, et al. Carbon concentrations and stocks in forest soils of Europe[J] . Forest Ecology and Management,2010,260(3):262-277.
    [26] KURTH V J, D’AMATO A W, PALIK B J, et al. Fifteen-year patterns of soil carbon and nitrogen following biomass harvesting[J] . Soil Science Society of America Journal, 2014,8(2): 624-633.
    [27] PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world’s forests[J] . Science, 2011,333:988-993.
    [28] ESWARAN H, BERG E V D, REICH P. Organic carbon in soils of the world[J] . Soil Science Society of America Journal, 1993,57(1):192-194.
    [29] BATJES N H. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil[J] . Biology Fertility of Soils, 1998,27(3):230-235.
    [30] JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration [J] . Geoderma, 2007,137(3): 253-268.
    [31] GRAND S, LAVKULICH L M. Effects of forest harvest on soil carbon and related variables in Canadian spodosols[J] . Soil Science Society of America Journal, 2012,76(5): 1816-1827.
    [32] HOOVER C M. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US[J] . Carbon Balance and Management, 2011,6(1):17-24.
    [33] GOODALE C L, APPS M J, BIRDSEY R A, et al. Forest carbon sinks in the northern hemisphere[J] . Ecological Applications, 2002, 12(3):891-899.
    [34] VESTERDAL L, ELBERLING B, CHRISTIANSEN J R, et al. Soil respiration and rates of soil carbon turnover differ among six common European tree species[J] . Forest Ecology and Management, 2012,264(1):185-196.
    [35] JOHNSON D W, CURTIS P S. Effects of forest management on soil C and N storage: meta analysis[J] . Forest Ecology and Management, 2001,140(1):227-238.
    [36] ROIG S, RIO M, CANELLAS I, et al. Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes[J] . Forest Ecology and Management,2005,206(1): 179-190.
    [37] BLANCO J A, IMBERT J, CASTILLO F J. Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees[J] . Forest Ecology and Management, 2006, 237(1): 342-352.
    [38] SLODICAK M, NOVAK J, SKOVSGAARD J P. Wood production, litter fall and humus accumulation in a Czech thinning experiment in Norway spruce (Picea abies (L.) Karst.) [J] . Forest Ecology and Management, 2005,209(1): 157-166.
    [39] DINCA L C, SPARCHEZ G H, DINCA M, et al. Organic carbon concentrations and stocks in Romanian mineral forest soils[J] . Annals of Forest Research, 2012,55(2):229-241.
    [40] VESTERDAL L, RAULUND-RASMUSSEN K. Forest floor chemistry under seven tree species along a soil fertility gradient[J] . Canadian Journal of Forest Research, 1998, 28(11):1636-1647.
    [41] CALLESEN I, LISKI J, RAULUND-RASMUSSEN K, et al. Soil carbon stores in Nordic well-drained forest soils: relationships with climate and texture class[J] . Global Change Biology, 2003,9(3): 358-370.
    [42] ZHAO D H, KANE M, TESKEY R, et al. Impact of management on nutrients, carbon, and energy in aboveground biomass components of mid-rotation loblolly pine (Pinus taeda L.) plantations[J] . Annals of Forest Science, 2014,71(8): 843-851.
    [43] VESTERDAL L, DALSGAARD M, FELBY C, et al. Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands[J] . Forest Ecology and Management, 1995, 77(1):1-10.
    [44] JONARD M, MISSON L, PONETTE Q. Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes[J] . Canadian Journal of Forest Research, 2006,36(10): 2684-2695.
    [45] SKOVSGAARD J P, STUPAK I, VESTERDAL L. Distribution of biomass and carbon in even-aged stands of Norway spruce (Picea abies (L.) Karst.): a case study on spacing and thinning effects in northern Denmark[J] . Scandinavian Journal of Forest Research, 2006, 21(6): 470-488.
    [46] TVEITE B, HANSSEN K H. Whole-tree thinnings in stands of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies):short-and long-term growth results[J] . Forest Ecology and Management, 2013,298(1): 52-61.
    [47] DEWAR R, CANNELL M G R. Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples[J] . Tree Physiology, 1992,11(1): 49-71.
    [48] THORNLEY J H M, CANNELL M G R. Managing forests for wood yield and carbon storage: a theoretical study[J] . Tree Physiology, 2000,20(7):477-484.
    [49] HAWTHORNE S N D, LANE P N J, BREN L J, et al. The long term effects of thinning treatments on vegetation structure and water yield[J] . Forest Ecology and Management, 2013,310(1):983-993.
    [50] HERAS J D L, MOYA D, LO'PEZ-SERRANO F R, et al. Carbon sequestration of naturally regenerated Aleppo pine stands in response to early thinning[J] . New Forests, 2013,44: 457-470.
    [51] ALFARO-SANCHEZ R,LOPEZ-SERRANO F R, RUBIO E, et al. Response of biomass allocation patterns to thinning in Pinus halepensis differs under dry and semiarid Mediterranean climates[J] . Annals of Forest Science, 2015,72(5): 595-607.
    [52] BAGDON B, HUANG C H. Carbon stocks and climate change: management implications in Northern Arizona ponderosa pine forests[J] . Forests, 2014,5(4): 620-642.
    [53] MARTIN J L, GOWER S T, PLAUT J, et al. Carbon pools in a boreal mixedwood logging chronosequence[J] . Global Change Biology, 2005,11(11): 1883-1894.
    [54] BRADFORD J B, FRAVER S, MILO A M, et al. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks[J] . Forest Ecology and Management, 2012,267(1): 209-214.
    [55] WARD C, POTHIER D, PARE D. Do boreal forests need fire disturbance to maintain productivity[J] . Ecosystems, 2014,17(6): 1053-1067.
    [56] ALAM A, KELLOMAKI S, KILPELAINEN A, et al. Effects of stump extraction on the carbon sequestration in Norway spruce forest ecosystems under varying thinning regimes with implications for fossil fuel substitution[J] . Global Change Biology Bioenergy, 2013,5(4): 445-458.
    [57] POWERS M D, KOLKA R K, BRADFORD J B, et al. Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands[J] . Ecological Applications, 2012,22(4): 1297-1307.
    [58] PYORALA P, KELLOMKI S, PELTOLA H. Effects of management on biomass production in Norway spruce stands and carbon balance of bioenergy use[J] . Forest Ecology and Management, 2012,275(1): 87-97.
  • [1] 张参参, 吴小刚, 刘斌, 施雪文, 陈伏生, 裘利洪, 卜文圣.  江西九连山不同海拔梯度土壤有机碳的变异规律 . 北京林业大学学报, 2019, 41(2): 19-28. doi: 10.13332/j.1000-1522.20180383
    [2] 张靖宙, 吴秀芹, 肖桂英.  云南省建水县不同石漠化治理模式下碳储量功能评估 . 北京林业大学学报, 2018, 40(8): 72-81. doi: 10.13332/j.1000-1522.20180069
    [3] 刘延惠, 丁访军, 崔迎春, 谢涛, 马亨发, 赵文君.  林地抚育对黔中地区杉木人工幼林生态系统碳储量的影响 . 北京林业大学学报, 2017, 39(1): 27-33. doi: 10.13332/j.1000-1522.20160021
    [4] 那萌, 刘婷岩, 张彦东, 冯晨辛, 刘道锟.  林分密度对水曲柳人工林碳储量的影响 . 北京林业大学学报, 2017, 39(1): 20-26. doi: 10.13332/j.1000-1522.20160111
    [5] 明安刚, 郑路, 麻静, 陶怡, 劳庆祥, 卢立华.  铁力木人工林生物量与碳储量及其分配特征 . 北京林业大学学报, 2015, 37(2): 32-39. doi: 10.13332/j.cnki.jbfu.2015.02.015
    [6] 王伊琨, 赵云, 马智杰, 戴群莉, 廖雪菲, 吕志远, 王高敏, 查同刚, .  黔东南典型林分碳储量及其分布 . 北京林业大学学报, 2014, 36(5): 54-61. doi: 10.13332/j.cnki.jbfu.2014.05.012
    [7] 崔巍, 牟长城, 卢慧翠, 包旭, 王彪.  排水造林对大兴安岭湿地生态系统碳储量的影响 . 北京林业大学学报, 2013, 35(5): 28-36.
    [8] 刘宪钊, 元昌, 履一, 薛杨.  林场级森林林木碳储量估测方法研究 . 北京林业大学学报, 2013, 35(5): 144-148.
    [9] 刘艳红, 马炜.  长白落叶松人工林可燃物碳储量分布及燃烧性 . 北京林业大学学报, 2013, 35(3): 32-38.
    [10] 田世艳, 张宇清, 吴斌, 郑慧, 李春平.  中国平原地区农田防护林碳储量差异分析 . 北京林业大学学报, 2012, 34(2): 39-44.
    [11] 司婧, 贾黎明, 韦艳葵, 邢长山, 刘诗琦, 郭正兴.  地下滴灌对杨树速生丰产林碳储量的影响 . 北京林业大学学报, 2012, 34(1): 14-18.
    [12] 贾炜玮, 李凤日, 董利虎, 赵鑫.  基于相容性生物量模型的樟子松林碳密度与碳储量研究 . 北京林业大学学报, 2012, 34(1): 6-13.
    [13] 殷鸣放, 杨琳, 殷炜达, 雷庆国, 谭希斌, 张艳会, 李志伟.  油松、刺槐与杨树树干材积碳储量动态变化研究 . 北京林业大学学报, 2011, 33(5): 65-68.
    [14] 宋熙龙, 毕君, 刘峰, 王超.  木兰林管局白桦次生林生物量与碳储量研究 . 北京林业大学学报, 2010, 32(6): 33-36.
    [15] 王海燕, 雷相东, 张会儒, 杨平, .  近天然落叶松云冷杉林土壤有机碳研究 . 北京林业大学学报, 2009, 31(3): 11-16.
    [16] 樊登星, 余新晓, 岳永杰, 牛丽丽, 高志亮, 马莉娅.  北京市森林碳储量及其动态变化 . 北京林业大学学报, 2008, 30(supp.2): 117-120.
    [17] 刘鹏举, 王立海, 李雪华, 韦艳葵, 耿玉清, 刘剑锋, 朱小龙, 任强, 王兰珍, 周传艳, 薛康, 李义良, 党文杰, 汪杭军1, 李生宇, 赵铁珍, 方升佐, HUALi_zhong, 李国雷, 张冬梅, 王旭, 吴丽娟, 段文霞, 朱波, 刘勇, 苏晓华, 李建章, 黎明, 阎秀峰, 方陆明, 何茜, 刘勇, 高岚, JIANGXi_dian, 尹光彩, 崔同林, 李振基, 韩士杰, 雷加强, 周宇飞, 宋永明, 杨娅, 周亮, 周国逸, 余新晓, 杨慧敏, 柯水发, 唐小明, 赖志华, 王清文, 王新杰, 沈熙环, HEXiu_bin, 徐扬, 徐新文, 王春林, 虞木奎, 刘锐, 孙向阳, 喻理飞, 周国逸, 鹿振友, 李吉跃, 张冰玉, 宗文君, 玲, 程云清, 温亚利, , 齐涛, 李俊清, 王伟宏, 孙阁, 陈培金, 国庆, 陈峻崎, 陈实, 茹广欣, 周晓梅, 李丙文, 3, 郭蓓, 李晓兰, 宋爱琴, 张志毅, 唐旭利, 王晓静, 长山, 刘志明, 姚永刚, 蒋德明, 张可栋, 周玉平, 王建林, 王旭, 陈放, 关少华, 赵双荣, 宋湛谦, 王春林, 杨伟伟, 闫俊华, 郑凌峰.  间伐强度对油松人工林植被发育的影响 . 北京林业大学学报, 2007, 29(2): 70-75.
    [18] 张冬梅, 李国雷, 朱小龙, 方升佐, 刘鹏举, 王立海, 耿玉清, 周传艳, 刘剑锋, 党文杰, 赵铁珍, 汪杭军1, 李雪华, 李义良, 王旭, 薛康, 李生宇, 吴丽娟, 任强, HUALi_zhong, 韦艳葵, 王兰珍, 段文霞, 刘勇, 刘勇, 尹光彩, 朱波, 杨慧敏, 苏晓华, JIANGXi_dian, 周国逸, 李建章, 李振基, 周宇飞, 雷加强, 余新晓, 何茜, 韩士杰, 高岚, 方陆明, 阎秀峰, 崔同林, 周亮, 杨娅, 宋永明, 黎明, 刘锐, 王春林, 玲, 程云清, 王新杰, 周国逸, 唐小明, 虞木奎, 李吉跃, 柯水发, 徐扬, 宗文君, 鹿振友, 孙向阳, HEXiu_bin, 徐新文, 喻理飞, 王清文, 赖志华, 张冰玉, 沈熙环, 李俊清, 国庆, 陈实, 茹广欣, 李晓兰, , 周晓梅, 宋爱琴, 张志毅, 王伟宏, 陈峻崎, 齐涛, 李丙文, 郭蓓, 温亚利, 3, 孙阁, 陈培金, 王晓静, 姚永刚, 张可栋, 唐旭利, 周玉平, 王建林, 刘志明, 王旭, 蒋德明, 长山, 宋湛谦, 关少华, 赵双荣, 王春林, 陈放, 杨伟伟, 闫俊华, 郑凌峰.  广东省森林植被恢复下的碳储量动态 . 北京林业大学学报, 2007, 29(2): 60-65.
    [19] 王兰珍, 韦艳葵, 吴丽娟, 耿玉清, 李国雷, 王旭, 刘鹏举, 方升佐, 任强, 段文霞, 李雪华, 汪杭军1, 李生宇, 薛康, 党文杰, 周传艳, 赵铁珍, 刘剑锋, 张冬梅, 王立海, HUALi_zhong, 李义良, 朱小龙, 崔同林, 余新晓, 周亮, 周宇飞, 宋永明, 刘勇, 方陆明, 高岚, 杨娅, 雷加强, JIANGXi_dian, 周国逸, 韩士杰, 李振基, 苏晓华, 尹光彩, 何茜, 李建章, 朱波, 黎明, 阎秀峰, 刘勇, 杨慧敏, 玲, HEXiu_bin, 喻理飞, 沈熙环, 孙向阳, 宗文君, 鹿振友, 周国逸, 徐扬, 唐小明, 虞木奎, 李吉跃, 王春林, 徐新文, 赖志华, 张冰玉, 王清文, 王新杰, 刘锐, 程云清, 柯水发, 3, 国庆, 王伟宏, 陈实, 周晓梅, , 温亚利, 茹广欣, 郭蓓, 陈培金, 宋爱琴, 李丙文, 张志毅, 孙阁, 陈峻崎, 齐涛, 李晓兰, 李俊清, 长山, 张可栋, 周玉平, 刘志明, 王建林, 蒋德明, 王晓静, 王旭, 唐旭利, 姚永刚, 宋湛谦, 陈放, 赵双荣, 王春林, 关少华, 闫俊华, 杨伟伟, 郑凌峰.  人工柳杉林生物量及其土壤碳动态分析 . 北京林业大学学报, 2007, 29(2): 55-59.
    [20] 陈玮, 赵博光, 武三安, 杜晓, 郭惠红, 石娟, 李成茂, 刁一伟, 韩烈保, 张丽丽, 胡建忠, 贾黎明, 张厚江, 张建军, 刘晓丽, 莫秋云, 李文彬, 王安志, 姜笑梅, 李镇宇, 张峻萍, 骆有庆, 王昌俊, 清水晃, 梁波, 徐文铎, 马履一, 申世杰, 邢长山, 宋菲, 苏德荣, 赵林果, 石碧, 李景锐, 曾凡勇, 王小平, 李海林, 沉昕, 崔英颖, 殷亚方, 金昌杰, 壁谷直记, 陈卫平2, 蒋艳灵, 徐梅, 延廣竜彦, 苗毅, 韩瑞东, 关德新, 韦艳葵, 胡青, 高述民, 严晓素, 裴铁璠, 王瀛坤, 赵永利, 徐君, 周军, 蒋平, 蒋平, 李凤兰.  黄河上游退耕地人工林的碳储量研究 . 北京林业大学学报, 2005, 27(6): 1-8.
  • 加载中
计量
  • 文章访问数:  971
  • HTML全文浏览量:  61
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-18
  • 刊出日期:  2016-12-31

不同抚育间伐强度对落叶松人工林生态系统碳储量影响

doi: 10.13332/j.1000-1522.20160016
    基金项目:

    中央高校基本科研业务费专项(2572014EB03-03、DL09EA03-2)、“十二五”国家科技支撑计划课题(2011BAD08B01、2011BAD37B01)。

    作者简介:

    孙志虎,博士,副教授。主要研究方向:森林生态学。Email: szhihunefu@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。
    责任作者: 陈祥伟,教授,博士生导师。主要研究方向:森林培育。Email:chenxwnefu@163.com 地址:同上。

    孙志虎,博士,副教授。主要研究方向:森林生态学。Email: szhihunefu@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。
    责任作者: 陈祥伟,教授,博士生导师。主要研究方向:森林培育。Email:chenxwnefu@163.com 地址:同上。

摘要: 以三江平原丘陵区佳木斯市孟家岗林场的长白落叶松人工幼龄林(17年生)为对象,设置5种长期、多次、不同强度的间伐试验:2次高强度间伐(L1,35.6%~43.4%)、2次中强度间伐(L2,23.1%~24.3%)、3次中强度间伐(L3,15.3%~23.8%)、4次低强度间伐(L4,5.8%~17.1%)和对照(CK,历次间伐时仅移出枯立木)。通过5种处理后幼龄林生长至成熟林时(56年生)生态系统各组分碳储量调查,结合1974—2013年历次间伐木和枯死木碳储量,从枯死木、间伐木和成熟林活立木生物量碳、土壤碳、生态系统碳分配和林分累计固碳量方面,评价长期间伐对落叶松人工林碳储量的影响。间伐不仅能够明显降低成熟林累计枯死木生物量碳,由CK处理的40.3 t/hm2降低至8.3(3.1~14.1)t/hm2,而且能够提供32.8(21.9~50.1)m3/hm2的间伐材和10.4(6.9~13.8)t/hm2的生物量碳用作生物质燃料。间伐虽然降低成熟林枯枝落叶层碳储量(比CK降低14.8%),但能增加矿质土壤碳储量(比CK提高5.6%),尤其是L3处理后矿质土壤碳储量明显增加(比CK提高15.5%);间伐没有改变成熟林活立木生物量碳和生态系统碳储量分配特征(林分尺度活立木生物量碳中树干、树根、树枝、树皮和树叶比例依次为67.7%~68.7%、17.5%~18.0%、6.8%~7.0%、4.8%~4.9%和2.2%~2.3%。生态系统碳储量中活立木、0~30 cm矿质土壤层、枯枝落叶层、枯立木、灌木层和草本层所占比例依次为69.7%~72.0%、24.7%~27.7%、1.5%~2.2%、0~1.3%、0.1%~1.3%和0.1%~0.2%);但能提高地下碳储量(活立木和枯立木树根+矿质土壤层+枯枝落叶层+灌木层+草本层)占生态系统碳储量比例(间伐为40.5%~42.4%,CK为40.0%),降低树干、树枝和树皮之和所占比例(间伐为56.0%~57.9%,CK为58.3%),维持针叶比例恒定(1.6%)。成熟林主伐时,仅利用干材而枝桠留地时,能使活立木生物量碳的26.5%~27.4%留存于林地(CK为27.7%),而将枝桠随树干一起移出系统时,能使活立木碳储量的19.7%~20.3%(CK为20.5%)、生态系统碳储量的42.1%~44.0%(CK为41.7%)留存于系统。落叶松幼龄林(17年生)多次间伐后至成熟林时(56年生)活立木生物量碳、生态系统碳储量和林分累计固碳量能够恢复至CK相近似水平,分别仅比CK降低1.7%(-4.3%~1.5%)、1.7%(-5.9%~1.4%)和1.1%(-4.0%~0.8%),L3和L4处理,尤其是L4处理在上述指标方面甚至高于CK 处理1.5%、1.4%和0.8%。5.8%~23.8%的3~4次中、低强度抚育间伐至成熟林时既可提供间伐材和生物质燃料又能维持高的活立木生物量碳、生态系统碳储量和林分累计固碳量。

English Abstract

孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12): 1-13. doi: 10.13332/j.1000-1522.20160016
引用本文: 孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12): 1-13. doi: 10.13332/j.1000-1522.20160016
SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. doi: 10.13332/j.1000-1522.20160016
Citation: SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. doi: 10.13332/j.1000-1522.20160016
参考文献 (58)

目录

    /

    返回文章
    返回