高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

林地抚育对黔中地区杉木人工幼林生态系统碳储量的影响

刘延惠 丁访军 崔迎春 谢涛 马亨发 赵文君

刘延惠, 丁访军, 崔迎春, 谢涛, 马亨发, 赵文君. 林地抚育对黔中地区杉木人工幼林生态系统碳储量的影响[J]. 北京林业大学学报, 2017, 39(1): 27-33. doi: 10.13332/j.1000-1522.20160021
引用本文: 刘延惠, 丁访军, 崔迎春, 谢涛, 马亨发, 赵文君. 林地抚育对黔中地区杉木人工幼林生态系统碳储量的影响[J]. 北京林业大学学报, 2017, 39(1): 27-33. doi: 10.13332/j.1000-1522.20160021
LIU Yan-hui, DING Fang-jun, CUI Ying-chun, XIE Tao, MA Heng-fa, ZHAO Wen-jun. Effects of tending on carbon storage in the ecosystems of young Chinese fir plantations at the middle region of Guizhou Province, southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 27-33. doi: 10.13332/j.1000-1522.20160021
Citation: LIU Yan-hui, DING Fang-jun, CUI Ying-chun, XIE Tao, MA Heng-fa, ZHAO Wen-jun. Effects of tending on carbon storage in the ecosystems of young Chinese fir plantations at the middle region of Guizhou Province, southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 27-33. doi: 10.13332/j.1000-1522.20160021

林地抚育对黔中地区杉木人工幼林生态系统碳储量的影响

doi: 10.13332/j.1000-1522.20160021
基金项目: 

贵州省人才团队建设项目 黔科合人才团队[2014]4004号

贵州省重大基础研究项目 黔科合JZ字[2014]200212

详细信息
    作者简介:

    刘延惠,博士,副研究员。主要研究方向:森林生态学。Email:liuyhgz@163.com  地址:550005  贵州省贵阳市南明区富源南路382号贵州省林业科学研究院

  • 中图分类号: S718.56

Effects of tending on carbon storage in the ecosystems of young Chinese fir plantations at the middle region of Guizhou Province, southwestern China

  • 摘要: 林地抚育(松土、割灌、锄草)是提高人工林林分成活率,促进林木生长的重要措施,但对其固碳功能的影响研究仍鲜见报道。本研究以杉木人工林为研究对象,分析了林地抚育(松土、割灌、锄草)对黔中地区杉木人工幼林生态系统碳储量及其组分(植被层、枯落物层、作为主根系层的0~60 cm土壤层的碳储量)的影响。结果表明:林地抚育使得杉木人工林林木的保存率、林分郁闭度、林木胸径、树高等均显著高于对照林分,林木单株生长的固碳能力大幅提高,其碳储量是对照林分的4.93倍。抚育杉木人工幼林生态系统的总碳储量(106.37 t/hm2)显著高于对照(78.61 t/hm2),其中植被碳库储量(26.07 t/hm2)是对照(4.64 t/hm2)的5.62倍,抚育后枯落物碳储量较对照高0.38 t/hm2。但是,林地抚育后表层土壤(0~10 cm)有机碳含量较对照下降5.44 g/kg,而10 cm以下土层较对照均表现为增加,土壤碳储量较对照总体增加3.30 t/hm2。因此,造林初期林地抚育可促进林木生长,提高植被、土壤和生态系统的碳储量,显著增强杉木幼龄林的碳汇功能。
  • 表  1  抚育和未抚育的人工杉木幼林基本特征比较

    Table  1.   Comparison in basic properties of tended stands (TS) and non-tended stands (CK) Chinese fir young plantations

    处理
    Treatment
    保存率
    Survival rate
    郁闭度
    Canopy density
    林分密度/(株·hm-2)
    Stand density/(tree·ha-1)
    灌木盖度
    Shrub coverage/%
    草本盖度
    Herb coverage/%
    胸径
    DBH/cm
    树高
    Tree height/m
    枝下高
    Under branch height/m
    冠幅
    Crown width/m
    高径比
    Height-DBH ratio
    TS0.84(0.05)**0.83(0.06)*2 858.33(411.05)**10.33(8.08)8.33(2.89)*9.02(1.60)*5.83(0.72)*1.71(0.25)**2.31(0.33)6.46(2.7)
    CK0.41(0.13)0.27(0.06)1 808.33(602.25)25.00(8.66)76.67(15.28)4.04(1.35)3.08(0.86)0.78(0.21)1.63(0.39)7.62(1.1)
    差值Difference0.430.571 050.00-14.67-68.334.992.750.930.68-0.26
    平均Mean0.630.552 333.3317.6742.506.534.461.241.970.81
    注:TS为抚育林分;CK为未抚育林分;括号内的值为均值的标准误;**为抚育和对照组间差异极显著(P<0.01),*为差异显著(P<0.05)。下同。Notes: TS means tended stands;CK means untended stands (control);The value in parentheses is stand error of mean;** means very significant difference (P<0.01) between TS and CK;* means significant difference (P<0.05) between TS and CK. The same below.
    下载: 导出CSV

    表  2  抚育和未抚育人工杉木幼林碳储量比较

    Table  2.   Comparison in individual tree carbon storage of Chinese fir young plantations between TS and CK

    处理
    Treatment
    叶Leaf枝Branch干Trunk根Root单株碳储量/(kg·株-1)
    Individual tree carbon storage/(kg·tree-1)
    碳储量
    Carbon storage/kg
    比例
    Percentage/%
    碳储量
    Carbon storage/kg
    比例
    Percentage/%
    碳储量
    Carbon storage/kg
    比例Percentage/%碳储量
    Carbon storage/kg
    比例
    Percentage/%
    TS1.48(0.26)**15.151.29(0.19)**13.175.53(1.55)**56.601.72(0.33)**17.649.77(1.55)**
    CK0.27(0.09)13.640.28(0.10)14.141.19(0.78)60.270.29(0.11)14.481.98(0.73)
    差值Difference1.211.511.01-0.974.34-3.671.443.167.79
    平均Mean0.8810.140.789.073.3638.941.0111.645.88
    下载: 导出CSV

    表  3  抚育和未抚育的人工杉木幼林植被碳密度比较

    Table  3.   Comparison in vegetation carbon density of Chinese fir young plantations between TS and CK

    处理
    Treatment
    乔木层Tree layer灌木层Shrub layer草本层Herb layer植被碳密度/(t·hm-2)Vegetation carbon density/(t·ha-1)
    碳密度/(t·hm-2)
    Carbon density/(t·ha-1)
    比例
    Percentage/%
    碳密度/(t·hm-2)
    Carbon density/(t·ha-1)
    比例
    Percentage/%
    碳密度/(t·hm-2)
    Carbon density/(t·ha-1)
    比例
    Percentage/%
    TS27.36(4.10)**98.740.27(0.09)0.960.10(0.06)0.3027.73(4.13)**
    CK2.74(1.79)75.550.79(0.46)21.690.12(0.10)2.763.65(1.51)
    差值Difference24.6223.19-0.52-20.73-0.02-2.4624.08
    下载: 导出CSV

    表  4  抚育及未抚育人工杉木幼林土壤有机碳含量及有机碳密度比较

    Table  4.   Comparison in soil organic carbon concentration and carbon density of Chinese fir young plantations between TS and CK

    土层
    Soil layer/cm
    土壤有机碳含量
    Soil organic carbon content/(g·kg-1)
    土壤碳密度/(t·hm-2)
    Soil organic carbon density/(t·ha-1)
    CKTS抚育后变化量
    Difference after tending
    CKTS抚育后变化量
    Difference after tending
    0~1024.0418.60-5.4427.0421.05-5.99
    10~2012.4314.231.8015.9119.073.16
    20~406.847.110.2718.2520.312.06
    40~604.425.751.3312.8516.934.08
    0~6011.9311.42-0.5174.0677.353.30
    下载: 导出CSV

    表  5  抚育及未抚育人工杉木幼林生态系统碳储量

    Table  5.   Carbon storage of TS and CK of Chinese fir young plantation ecosystems

    处理
    Treatment
    植被碳密度
    Vegetation carbon density
    枯落物碳密度
    Litter carbon density
    土壤有机碳密度
    Soil organic carbon density
    生态系统碳储量/(t·hm-2)
    Carbon storage of ecosystem/(t·ha-1)
    碳密度/(t·hm-2)
    Carbon density/(t·ha-1)
    比例
    Percentage/%
    碳密度/(t·hm-2)
    Carbon density/(t·ha-1)
    比例
    Percentage/%
    碳密度/(t·hm-2)
    Carbon density/(t·ha-1)
    比例
    Percentage/%
    TS27.73(4.13)26.071.29(0.52)1.2077.35(8.17)72.71106.37**
    CK3.65(1.51)4.640.91(0.73)1.1674.06(3.30)94.2078.61
    差值Difference24.080.383.3027.76
    下载: 导出CSV
  • [1] PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988-993. doi:  10.1126/science.1201609
    [2] FANG J Y, CHEN A P. Dynamic forest biomass carbon pools in China and their significance[J]. Acta Botanica Sinica, 2001, 43(9): 967-973. http://d.old.wanfangdata.com.cn/Periodical/zwxb200109014
    [3] JURGENSEN M F, TIARKS A E, PONDER F, et al. Soil physical property changes at the North American long-term soil productivity study sites: 1 and 5 years after compaction[J]. Canadian Journal of Forest Research, 2006, 36(3): 551-564. doi:  10.1139/x05-273
    [4] MADEIRA M, RIBEIRO C, ARAÚJO M C. Decomposition and nutrient release from leaf litter of Eucalyptus globulus grown under different water and nutrient regimes[J]. Forest Ecology & Management, 2002, 171(1-2): 31-41. https://www.sciencedirect.com/science/article/pii/S0378112702004590
    [5] PENG Y, THOMAS S C, TIAN D. Forest management and soil respiration: implications for carbon sequestration[J]. Environ-mental Reviews, 2008, 16(1): 93-111. doi:  10.1139/A08-003#.XXczw_k6s7M
    [6] HAYNES B E, GOWER S T. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern wisconsin[J]. Tree Physiology, 1995, 15(5): 317-325. doi:  10.1093/treephys/15.5.317
    [7] BRICEЙO -ELIZONDO E, GARCIA-GONZALO J, PELTOLA H, et al. Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions[J]. Forest Ecology & Management, 2006, 232(1-3): 152-167. https://www.sciencedirect.com/science/article/pii/S0378112706003860
    [8] LAL R. Forest soils and carbon sequestration[J]. Forest Ecology and Management, 2005, 220(1): 242-258. https://www.sciencedirect.com/science/article/pii/S0378112705004834
    [9] 国家林业局.森林土壤有机质的测定及碳氮比的计算: LY/T-1237—1999[S].北京: 中国标准出版社, 1999.

    State Forestry Administration. Determination of organic matter in forest soil and calculation carbon-nitrogen ration: LY/T-1237—1999[S]. Beijing: China Standards Press, 1999.
    [10] 李燕, 张建国, 段爱国, 等.杉木人工林生物量估算模型的选择[J].应用生态学报, 2010, 21(12): 3036-3046. http://d.old.wanfangdata.com.cn/Periodical/yystxb201012006

    LI Y, ZHANG J G, DUAN A G, et al. Selection of biomass estimation models for Chinese fir plantation[J]. Chinese Journal of Applied Ecology, 2010, 21(12): 3036-3046. http://d.old.wanfangdata.com.cn/Periodical/yystxb201012006
    [11] 杨旭东.贵州省东南部常见森林类型含碳率分析[J].贵州林业科技, 2015, 43(3): 9-14. http://d.old.wanfangdata.com.cn/Conference/8054913

    YANG X D. Carbon content of common forest types in southeastern Guizhou Province[J]. Guizhou Forestry Science and Technology, 2015, 43(3): 9-14. http://d.old.wanfangdata.com.cn/Conference/8054913
    [12] 刘延惠, 丁访军, 崔迎春, 等.黔中地区不同林龄杉木人工林碳储量及其分配特征[J].水土保持学报, 2015, 29(4): 278-283.

    LIU Y H, DING F J, CUI Y C, et al. Carbon storage and its allocation characters of Chinese fir plantation in different stand ages in the middle part of Guizhou[J]. Journal of Soil and Water Conservation, 2015, 29(4): 278-283.
    [13] BUSSE M D, COCHRAN P H, BARRETT J W. Changes in ponderosa pine site productivity following removal of understory vegetation[J]. Soil Science Society of America Journal, 1996, 60(6): 1614-1621. doi:  10.2136/sssaj1996.03615995006000060004x
    [14] MISSON L, TANG J, MING X, et al. Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation[J]. Agricultural & Forest Meteorology, 2005, 130(3-4): 207-222.
    [15] SHAN J, MORRIS L A, HENDRICK R L. The effects of management on soil and plant carbon sequestration in slash pine plantations[J]. Journal of Applied Ecology, 2001, 38(5): 932-941. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1046/j.1365-2664.2001.00648.x
    [16] 林开敏, 洪伟, 俞新妥, 等.杉木幼林抚育技术的综合评价和决策[J].林业科学, 2001, 37(5): 49-56. doi:  10.3321/j.issn:1001-7488.2001.05.009

    LIN K M, HONG W, YU X T, et al. Synthetical evaluation and stratege of tending techniques in young Chinese fir plantation[J]. Scientia Silvae Sinicae, 2001, 37(5): 49-56. doi:  10.3321/j.issn:1001-7488.2001.05.009
    [17] JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration[J]. Geoderma, 2007, 137(3): 253-268. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023214532/
    [18] JOHNSON D W. Effects of forest management on soil carbon storage[J]. Water Air & Soil Pollution, 1992, 64: 83-120. doi:  10.1007/BF00477097
    [19] MOTAVALLI P P, DISCEKICI H, KUHN J. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer[J]. Agriculture Ecosystems & Environment, 2000, 79(1): 17-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=67d1faeb56b463b701a137e9c604cf46
    [20] CLEMMENSEN K E, BAHR A, OVASKAINEN O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013, 339: 1615-1618. doi:  10.1126/science.1231923
    [21] 吴亚丛, 李正才, 程彩芳, 等.林下植被抚育对樟人工林生态系统碳储量的影响[J].植物生态学报, 2013, 37(2): 142-149. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201302006

    WU Y C, LI Z C, CHENG C F, et al. Effects of understory removal on forest carbon storage in Cinnamomum camphora plantation ecosystem[J]. Chinese Journal of Plant Ecology, 2013, 37(2): 142-149. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201302006
  • [1] 姜俊, 刘宪钊, 贾宏炎, 明安刚, 陈贝贝, 陆元昌.  杉木人工林近自然化改造对林下植被多样性和土壤理化性质的影响 . 北京林业大学学报, 2019, 41(5): 170-177. doi: 10.13332/j.1000-1522.20190022
    [2] 张靖宙, 吴秀芹, 肖桂英.  云南省建水县不同石漠化治理模式下碳储量功能评估 . 北京林业大学学报, 2018, 40(8): 72-81. doi: 10.13332/j.1000-1522.20180069
    [3] 那萌, 刘婷岩, 张彦东, 冯晨辛, 刘道锟.  林分密度对水曲柳人工林碳储量的影响 . 北京林业大学学报, 2017, 39(1): 20-26. doi: 10.13332/j.1000-1522.20160111
    [4] 董晨, 吴保国, 张瀚.  基于冠幅的杉木人工林胸径和树高参数化预估模型 . 北京林业大学学报, 2016, 38(3): 55-63. doi: 10.13332/j.1000-1522.20150129
    [5] 孙志虎, 王秀琴, 陈祥伟.  不同抚育间伐强度对落叶松人工林生态系统碳储量影响 . 北京林业大学学报, 2016, 38(12): 1-13. doi: 10.13332/j.1000-1522.20160016
    [6] 林卓, 吴承祯, 洪伟, 洪滔.  基于BP神经网络和支持向量机的杉木人工林收获模型研究 . 北京林业大学学报, 2015, 37(1): 42-54. doi: 10.13332/j.cnki.jbfu.2015.01.008
    [7] 明安刚, 郑路, 麻静, 陶怡, 劳庆祥, 卢立华.  铁力木人工林生物量与碳储量及其分配特征 . 北京林业大学学报, 2015, 37(2): 32-39. doi: 10.13332/j.cnki.jbfu.2015.02.015
    [8] 王伊琨, 赵云, 马智杰, 戴群莉, 廖雪菲, 吕志远, 王高敏, 查同刚, .  黔东南典型林分碳储量及其分布 . 北京林业大学学报, 2014, 36(5): 54-61. doi: 10.13332/j.cnki.jbfu.2014.05.012
    [9] 崔巍, 牟长城, 卢慧翠, 包旭, 王彪.  排水造林对大兴安岭湿地生态系统碳储量的影响 . 北京林业大学学报, 2013, 35(5): 28-36.
    [10] 刘宪钊, 元昌, 履一, 薛杨.  林场级森林林木碳储量估测方法研究 . 北京林业大学学报, 2013, 35(5): 144-148.
    [11] 刘艳红, 马炜.  长白落叶松人工林可燃物碳储量分布及燃烧性 . 北京林业大学学报, 2013, 35(3): 32-38.
    [12] 贾炜玮, 李凤日, 董利虎, 赵鑫.  基于相容性生物量模型的樟子松林碳密度与碳储量研究 . 北京林业大学学报, 2012, 34(1): 6-13.
    [13] 司婧, 贾黎明, 韦艳葵, 邢长山, 刘诗琦, 郭正兴.  地下滴灌对杨树速生丰产林碳储量的影响 . 北京林业大学学报, 2012, 34(1): 14-18.
    [14] 殷鸣放, 杨琳, 殷炜达, 雷庆国, 谭希斌, 张艳会, 李志伟.  油松、刺槐与杨树树干材积碳储量动态变化研究 . 北京林业大学学报, 2011, 33(5): 65-68.
    [15] 李春明.  随机截距效应在模拟杉木人工林单木胸径生长量中的应用 . 北京林业大学学报, 2011, 33(4): 7-12.
    [16] 王丹, 王兵, 戴伟, 李萍.  杉木人工林土壤有机质相关变量的敏感性分析 . 北京林业大学学报, 2011, 33(1): 78-83.
    [17] 王丹, 戴伟, 王兵, 李萍, 邓宗付, 赵