高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北方森林生态系统对全球气候变化的响应研究进展

韩士杰 王庆贵

韩士杰, 王庆贵. 北方森林生态系统对全球气候变化的响应研究进展[J]. 北京林业大学学报, 2016, 38(4): 1-20. doi: 10.13332/j.1000-1522.20160046
引用本文: 韩士杰, 王庆贵. 北方森林生态系统对全球气候变化的响应研究进展[J]. 北京林业大学学报, 2016, 38(4): 1-20. doi: 10.13332/j.1000-1522.20160046
HAN Shi-jie, WANG Qing-gui. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1-20. doi: 10.13332/j.1000-1522.20160046
Citation: HAN Shi-jie, WANG Qing-gui. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1-20. doi: 10.13332/j.1000-1522.20160046

北方森林生态系统对全球气候变化的响应研究进展

doi: 10.13332/j.1000-1522.20160046
基金项目: 

国家自然科学基金项目(41575137、31370494、31170421)、黑龙江省自然科学基金重点项目(ZD201406)。

详细信息
    作者简介:

    韩士杰,研究员,博士生导师。主要研究方向:气候变化背景下的生态系统响应。Email:hansj@iae.ac.cn 地址:110016辽宁省沈阳市文化路72号中国科学院沈阳应用生态研究所。

Response of boreal forest ecosystem to global climate change: a review

  • 摘要: 北方森林是地球上第2大生物群区,约占陆地森林面积的30%,提供了从局地到全球的生态系统服务功能。1850年以来,全球性持续升温不断显现,2000—2050年全球至少升高2 ℃,甚至更高。预计到2100年,北方森林区冬季平均温度将升高1.3~6.3 ℃。与此同时,几乎所有的北方森林生态系统功能都将会受到影响,尤其是近几十年来,该区域发生了很多与温度升高相关的潜在生态响应。本文从碳循环、生物多样性、干旱化和林火发生频率以及冻土变化等方面具体综述了北方森林生态系统对于全球气候变化的响应。响应结果如下:1)气候变化对于北方森林碳循环动态的影响是极其复杂的,迄今为止并没有达成共识, 分解对于温度的反应敏感程度至今仍存在很多不确定性。2)动物、植物和微生物(真菌)均对气候变化产生了一定的响应,表现为动物和植物的分布区进一步北移,但真菌的多样性和生产力响应机制尚无法确定。3)北方森林区随气候变化表现为进一步的干旱化和林火发生明显增加。4)北方森林区与冻土伴生,冻土随气候变暖表现出了面积缩小和活动层扩大的趋势。可见,北方森林对气候变化响应明显,尽管到目前为止有些响应机制尚不清楚,但变化趋势十分明显。本文旨在为北方森林的经营和管理提供基础数据和技术支持,实现北方森林的可持续经营。
  • [1] GOWER S T, KRANKINA O, OLSON R J, et al. Net primary production and carbon allocation patterns of boreal forest ecosystems[J]. Ecological Applications, 2001, 11:1395-1411.
    [2] RYAN M B, CLARA A, RASMUS A, et al. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway[J]. Global Change Biology, 2014,20:607-621. DOI:  10.1111/gcb.12451.
    [3] GAUTHIER S, BERNIER P, KUULUVAINEN T, et al.Boreal forest health and global change[J]. Science, 2015, 349:819-822. DOI:  10.1126/science.aaa9092.
    [4] BAUMGARTNER A. Climatic variability and forestry[C]∥Proceedings of the World Climate Conference. Geneva: World Meteorological Organization, 1979:581-607.
    [5] STOCKS B J, LYNHAM T J. Fire weather climatology in Canada and Russia[M]∥GOLDAMMER J G, FURYAEV V V. Fire in ecosystems of boreal Eurasia. Boston: Kluwer Academic Publishers, 1996: 481-494.
    [6] BRANDT J P, FLANNIGAN M D, MAYNARD D G, et al. An introduction to Canadas boreal zone: ecosystem processes, health, sustainability, and environmental issues[J].Environmental Reviews, 2013, 21:207-226. DOI: org/10.1139/er-2013-0040.
    [7] LARSEN J A. The boreal ecosystem[M]. New York: Academic Press, 1980.
    [8] HARE F K, RITCHIE J C. The boreal bioclimates[J]. Geographical Review, 1972, 62:333-365.
    [9] VIERECK L A, SCHANDELMEIER L H. Effects of fire in Alaska and adjacent Canada: a literature review[R]∥Alaska technical report 6. Anchorage: US Department of the Interior, Bureau of Land Management, Alaska State Office, 1980.
    [10] HEINSELMAN M L. Fire and succession in the conifer forests of northern North America[M]∥WEST D C, SHUGART H H, BOTKIN D B. Forest succession: concepts and application. New York: Springer-Verlag, 1981: 374-405.
    [11] BONAN G B. A computer-model of the solar-radiation, soil moisture, and soil thermal regimes in boreal forests[J]. Ecological Modelling, 1989, 45(4): 275-306.
    [12] BONAN G B, SHUGART H H. Environmental-factors and ecological processes in boreal forests[J]. Annual Review of Ecology and Systematics,1989,20:1-28.
    [13] SOJA A J, TCHEBAKOVA N M, FRENCH N H F, et al. Climate-induced boreal forest change: predictions versus current observations[J]. Global and Planetary Change,2007,56: 274-296.
    [14] DAVID T, PRICE R I, ALFARO K J, et al. Anticipating the consequences of climate change for Canadas boreal forest ecosystems[J]. Environmental Reviews, 2013, 21: 322-365.
    [15] ELMHAGEN B, KINDBERG J, HELLSTROM P, et al. A boreal invasion in response to climate change: range shifts and community effects in the borderland between forest and tundra[J]. AMBIO,2015, 44(Suppl. 1):39-50.
    [16] APRIL M, MELVIN, MICHELLE C, et al. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a Mid-Successional Boreal Forest[J]. Ecosystems,2015,18: 1472-1488.
    [17] APPS M J, KURZ W A, LUXMOORE R J, et al. Boreal forests and tundra[J]. Water, Air and Soil Pollution, 1993,70 (1-4): 39-53.
    [18] MCGUIRE A D, MELILLO J W, KICKLIGHTER D W, et al. Equilibrium responses of soil carbon to climate change: empirical and process-based estimates[J]. Journal of Biogeography,1995,22:785-796.
    [19] ZOLTAI S C, MARTIKAINEN P J. The role of forested peatlands in the global carbon cycle[C]∥APPS M J, PRICE D T. Forest ecosystems, forest management and the global carbon cycle. Heidelberg: Springer-Verlag, 1996: 47-58.
    [20] ALEXEYEV V A, BIRDSEY R A. Carbon storage in forests and peatlands of Russia[R]. Delaware: Forest Service Northeastern Research Station, 1998: 24.
    [21] SEPPL R, BUCK A, KATILA P. Adaptation of forests and people to climate change: a global assessment report [R]. Helsinki: International Union of Forest Research Organizations (IUFRO) World Series, 2009.
    [22] ZUBIZARRETA-GERENDIAIN A, PUKKALAT T, KELLOMKI S,et al. Effects of climate change on optimised stand management in the boreal forests of central Finland[J]. European Journal of Forest Research, 2015, 134:273-280.
    [23] STOCKER T F, QIN D, PLATTNER G K, et al. Climate change: the physical science basis[M]. Cambridge: Cambridge University Press,2013.
    [24] HANSEN J R, RUEY M, SATO M, et al. Global surface air temperature in 1995: return to pre-pinatubo level[J]. Geophysical Research Letters, 1996,23:1665-1668.
    [25] BALLING R C, MICHAELS P J, KNAPPENBERGER P C. Analysis of winter and summer warming rates in gridded temperature time series[J]. Climate Research,1998,9:175-181.
    [26] SERREZE M C, WALSH J E, CHAPIN III F S,et al. Observational evidence of recent change in the northern high-latitude environment[J]. Climate Change, 2000,46:159-207.
    [27] HOUGHTON J T, DING Y, GRIGGS D J, et al. Climate change 2001: the scientific basis[M]. New York: Cambridge University Press, 2001.
    [28] ACIA. Impacts of a warming arctic[M]. Cambridge: Cambridge University Press, 2004.
    [29] STOCKS B J, FOSBERG M A, WOTTON M B, et al. Climate change and forest fire activity in North American boreal forests[M]∥ KASISCHKE E S, STOCKS B J. Fire, climate change, and carbon cycling in the boreal forest. New York: Springer-Verlag, 2000:368-376.
    [30] GROISMAN P Y, SHERSTYUKOV B G, RAZUVAEV V N, et al. Potential forest fire danger over northern Eurasia: changes during the 20th century[J]. Global and Planetary Change,2007, 56:371-386.
    [31] POST E, FORCHHAMMER M C, BRET-HARTE M S, et al. Ecological dynamics across the Arctic associated with recent climate change[J]. Science, 2009,325: 1355-1358.
    [32] KURZ W A, APPS M J, STOCKS B J, et al. Global climate change: disturbance regimes and biospheric feedbacks of temperate and boreal forests[M]∥WOODWELL G M, MACKENZIE F T. Biotic feedbacks in the global climate system: will the warming feed the warming?. New York:Oxford University Press, 1995:119-133.
    [33] HARDEN J W, TRUMBORE S E, STOCKS B J, et al. The role of fire in the boreal carbon budget[J]. Global Change Biology,2000,6:174-184.
    [34] KASISCHKE E S, STOCKS B J. Fire, climate change, and carbon cycling in the boreal forest[M]∥KASISCHKE E S, STOCKS B J. Ecological studies. New York: Springer-Verlag, 2000: 461.
    [35] FRENCH N N F. The impact of fire disturbance on carbon and energy exchange in the Alaskan Boreal Region: a geospatial data analysis[D]. Ann Arbor: University of Michigan, 2002:105.
    [36] SOJA A J, COFER III W R, SHUGART H H, et al. Estimating fire emissions and disparities in boreal Siberia (1998 through 2002)[J]. Journal of Geophysical Research, 2004,109 (D14S06). DOI: 10.1029/2004JD004570.
    [37] BALZTER H, GERARD F F, GEORGE C T, et al. Impact of the Arctic Oscillation pattern on interannual forest fire variability in central Siberia[J]. Geophysical Research Letters, 2005,32(14). DOI:  10.1029/2005GL022526.
    [38] LEMRIRE T C, KURZ W A, HOGG E H, et al. Canadian boreal forests and climate change mitigation[J]. Environmental Reviews,2013,21: 293-321.
    [39] PAN Y, BIRDSEY Y, FANG R A, et al.A large and persistent carbon sink in the worlds forests[J]. Science, 2011, 333: 988-993. DOI: 10.1126/science.1201609.
    [40] PETERS G P, MARLAND G, LE QUERE C, et al. Rapid growth in CO2 emissions after the 2008-2009 global financial crisis[J]. Nature Climate Change, 2012,2(1): 2-4. DOI: 10.1038/nclimate1332.
    [41] LE QUERE C, RAUPACH M R, CANADELL J G, et al. Trends in the sources and sinks of carbon dioxide[J]. Nature Geosci, 2009,2(12):831-836. DOI: 10.1038/ngeo689.
    [42] SARMIENTO J L, GLOOR M, GRUBER N, et al. Trends and regional distributions of land and ocean carbon sinks[J]. Biogeosciences, 2010,7(8): 2351-2367. DOI: 10.5194/bg-7-2351-2010.
    [43] KURZ W A, SHAW C H, BOISVENUE C,et al. Carbon in Canadas boreal forest: a synthesis[J]. Environmental Reviews, 2013, 21(4): 260-292.DOI: 10.1139/er-2013-0041.
    [44] MILAKOVSKY B, FREY B, JAMES T. Carbon dynamics in the boreal forest[M]∥ASHTON M S, TYRRELL M L, SPALDING D, et al. Managing forest carbon in a changing climate. New York: Springer Science Business Media, 2012: 109-135.
    [45] LI Z, KURZ W A, APPS M J. Belowground biomass dynamics in the carbon budget model of the Canadian forest sector: recent improvements and implications for the estimation of NPP and NEP[J]. Canadian Journal of Forest Research, 2003,33(1):126-136. DOI: 10.1139/x02-165.
    [46] KURZ W A, DYMOND C C, WHITE T M. CBM-CFS3: a model of carbon-dynamics in forestry and landuse change implementing IPCC standards[J]. Ecological Modelling, 2009,220(4):480-504. DOI:10. 1016/j.ecolmodel.2008.10.018.
    [47] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010,259(4):660-684. DOI:10.1016/j. foreco.2009.09.001.
    [48] BOISVENUE C, RUNNING S W. Impacts of climate change on natural forest productivityevidence since the middle of the 20th century[J]. Global Change Biolology,2006,12:1-21. DOI:  10.1111/j.1365-2486.2005.001080.x.
    [49] MICHAELIAN M, HOGG E H, HALL R J, et al. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest[J]. Global Change Biology,2011, 17:2084-2094. DOI:10. 1111/j.1365-2486.2010.02357.x.
    [50] HEMBER R A, KURZ W A, METSARANTA J M, et al. Accelerated regrowth of temperate-maritime forests due to environmental change[J]. Global Change Biology,2012,18:2026-2040. DOI:10.1111/j.1365-2486. 2012.02669.x.
    [51] MAGNANI F, MENCUCCINI M, BORGHETTI M, et al. The human footprint in the carbon cycle of temperate and boreal forests[J]. Nature, 2007, 447:849-851. DOI: 10.1038/nature05847.
    [52] BRIFFA K R, SHISHOV V V, MELVIN T M, et al. Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2008,363:2269-2282. DOI: 10.1098/rstb.2007.2199.
    [53] HICKLER T, SMITH B, PRENTICE I C, et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests[J]. Global Change Biology, 2008,14(7): 1531-1542. DOI:10. 1111/j.1365-2486.2008.01598.x.
    [54] BOISVENUE C, BERGERON Y, BERNIER P, et al. Simulations show potential for reduced emissions and carbon stocks increase in boreal forests under ecosystem management[J]. Carbon Management, 2012,3(6):553-568. DOI: 10.4155/cmt.12.57.
    [55] LAFLEUR B, PARE D, MUNSON A D,et al. Response of northeastern North American forests to climate change: will soil conditions constrain tree species migration?[J]. Environmental Reviews,2010,18: 279-289. DOI: 10.1139/A10-013.
    [56] BECK P S A, JUDAY G P, ALIX C, et al. Changes in forest productivity across Alaska consistent with biome shift[J]. Ecology Letters,2011, 14: 373-379. DOI: 10.1111/j.1461-0248.2011.01598.x.
    [57] COLE C T, ANDERSON J E, LINDROTH R L, et al. Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides)[J]. Global Change Biolology, 2010, 16: 2186-2197. DOI: 10.1111/j.1365-2486.2009.02103.x.
    [58] PAQUETTE A, MESSIER C. The effect of biodiversity on tree productivity: from temperate to boreal forests[J]. Global Ecology and Biogeography,2011,20(1):170-180.DOI:10.1111/j.1466-8238.2010. 00592.x.
    [59] MCLANE S C, DANIELS L D, AITKEN S N, et al. Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment[J]. Forest Ecology and Management, 2011,262(2): 115-123. DOI: 10.1016/j.foreco.2011.03.007.
    [60] CYR D, GAUTHIER S, BERGERON Y, et al. Forest management is driving the eastern North American boreal forest outside its natural range of variability[J]. Frontiers in Ecology and the Environment, 2009, 7(10): 519-524. DOI: 10.1890/080088.
    [61] ALLEN M R, FRAME D J, HUNTINGFORD C, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne[J]. Nature, 2009, 458: 1163-1166. DOI: 10.1038/nature08019.
    [62] VAN MANTGEM P J, STEPHENSON N L, BYRNE J C, et al. Widespread increase of tree mortality rates in the western United States[J]. Science, 2009,323: 521-524. DOI: 10.1126/science.1165000.
    [63] ZHAO M, RUNNING S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010,329:940-943. DOI: 10.1126/science.1192666.
    [64] STURROCK R N, FRANKEL S J, BROWN A V, et al. Climate change and forest diseases[J]. Plant Pathology,2011,60(1): 133-149. DOI: 10.1111/j.1365-3059.2010.02406.x.
    [65] HICKE J A, ALLEN C D, DESAI A R, et al. Effects of biotic disturbances on forest carbon cycling in the United States and Canada[J]. Global Change Biology,2012,18:7-34. DOI:  10.1111/j.1365-2486.2011.02543.x.
    [66] MCLANE S C, LEMAY V M, AITEN S N. Modeling lodgepole pine radial growth relative to climate and genetics using universal growth-trend response functions[J]. Ecological Applications,2011,21(3): 776-788. DOI: 10.1890/10-0131.1.
    [67] PENG C, MA Z, LEI X, et al. A drought-induced pervasive increase in tree mortality across Canadas boreal forests[J]. Nature Climate Change, 2011,1(9): 467-471. DOI: 10.1038/nclimate1293.
    [68] MA Z, PENG C, ZHU Q, et al. Regional drought-induced reduction in the biomass carbon sink of Canadas boreal forests[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(7): 2423-2427. DOI: 10.1073/pnas.1111576109.
    [69] SMITH B, SAMUELSSON P, WRAMNEBY A, et al. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications[J]. Tellus Series A-dynamic Meteorology and Oceanography, 2011, 63(1): 87-106. DOI: 10.1111/j.1600-0870.2010.00477.x.
    [70] SCHNEIDER R R, HAMANN A, FARR D, et al. Potential effects of climate change on ecosystem distribution in Alberta[J]. Canadian Journal of Forest Research, 2009,39(5):1001-1010.DOI:10.1139/ X09-033.
    [71] NATHAN R, HORVITZ N, HE Y, et al. Spread of North American wind-dispersed trees in future environments[J]. Ecology Letters,2011,14:211-219. DOI: 10.1111/j.1461-0248.2010.01573.x.
    [72] LOEHLE C. Forest response to climate change: do simulations predict unrealistic dieback?[J]. Journal of Forest,1996,94(9): 13-15.
    [73] LEITHEAD M, ANAND M, SILVA L. Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada[J]. Oecologia, 2010,164(4):1095-1106.DOI:10. 1007/s00442-010-1769-z.
    [74] CLASSEN A T, NORBY R J, CAMPANY C E, et al. Climate change alters seedling emergence and establishment in an old-field ecosystem[J].PLoS ONE,2010,5(10):e13476. DOI:10.1371/journal.pone. 0013476
    [75] JOHNSTONE J F, CHAPIN F S III. Effects of soil burn severity on postfire tree recruitment in boreal forests[J]. Ecosystems, 2006,9(1):14-31. DOI: 10.1007/s10021-004-0042-x.
    [76] JOHNSTONE J F, CHAPIN F S III. Fire interval effects on successional trajectory in boreal forests of northwest Canada[J]. Ecosystems, 2006, 9(2): 268-277.DOI: 10.1007/s10021-005-0061-2.
    [77] MBOGGA M S, WANG X, HAMANN A. Bioclimate envelope model predictions for natural resource management: dealing with uncertainty[J]. Journal of Applied Ecology,2010,47(4):731-740. DOI:  10.1111/j.1365-2664.2010.01830.x.
    [78] AITKEN S N, YEAMAN S, HOLLIDAY J A, et al. Adaptation, migration or extirpation: climate change outcomes for tree populations[J]. Evolutionary Applications,2008,1(1):95-111. DOI:10.1111/j. 1752-4571.2007.00013.x.
    [79] TRINDADE M, BELL T, LAROQUE C. Changing climatic sensitivities of two spruce species across a moisture gradient in Northeastern Canada[J]. Dendrochronologia, 2011,29(1): 25-30. DOI: 10.1016/j.dendro.2010.10.002.
    [80] IPCC. Climate change 1995: the science of climate change[M].New York: Cambridge University Press, 1996:572.
    [81] DESANTIS R D, HALLGREN S W, STAHLE D W. Drought and fire suppression lead to rapid forest composition change in a forest-prairie ecotone[J]. Forest Ecology and Management, 2011,261(11):1833-1840. DOI:  10.1016/j.foreco.2011.02.006.
    [82] GIRARD F, PAYETTE S, GAGNON R. Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada[J]. Journal of Biogeography, 2008,35(3): 529-537.DOI: 10.1111/j.1365-2699.2007.01816.x.
    [83] BERNIER P Y, DESJARDINS R L, KARIMI-ZINDASHTY Y, et al. Boreal lichen woodlands: a possible negative feedback to climate change in eastern North America[J]. Agricultural and Forest Meteorology, 2011,151(4): 521-528. DOI: 10.1016/j.agrformet.2010.12.013.
    [84] SMITH M. Alpine treelines: functional ecology of the global high elevation tree limits[J]. Mountain Research and Development, 2013,33:357.
    [85] HARSCH M A, HULME P E, MCGLONE M S, et al. Are treelines advancing: a global meta-analysis of treeline response to climate warming[J]. Ecology Letters,2009,12:1040-1049.
    [86] FRASER R H, OLTHOF I, CARRIERE M, et al. Detecting long-term changes to vegetation in northern Canada using the landsat satellite image archive[J]. Environmental Research Letters, 2011,6:045502. DOI:10. 1088/1748-9326/6/4/045502.
    [87] MCMANUS K M, MORTON D C, MASEK J G, et al. Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986-2010[J]. Global Change Biology, 2012,18(7):2313-2323. DOI:10.1111/ j.1365-2486.2012.02708.x.
    [88] PELTONIEMI M, THURING E, OGLE S, et al. Models in country scale carbon accounting of forest soils[J]. Silva Fennica,2007,41(3): 575-602.
    [89] KNORR M, FREY S D, CURTIS P S. Nitrogen additions and litter decomposition: a meta-analysis[J]. Ecology, 2005,86(12): 3252-3257. DOI: 10.1890/05-0150.
    [90] GIARDINA C P, RYAN M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000,404: 858-861. DOI: 10.1038/35009076.
    [91] GAUMONT-GUAY D, BLACK T A, BARR A G, et al. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand[J]. Tree Physiology, 2008, 28(2): 161-171. DOI: 10.1093/treephys/28.2.161.
    [92] FISSORE C, GIARDINA C P, KOLKA R K, et al. Soil organic carbon quality in forested mineral wetlands at different mean annual temperature[J]. Soil Biology and Biochemistry,2009, 41(3): 458-466. DOI:10.1016/j. soilbio.2008.11.004.
    [93] DUNGAIT J A J, HOPKINS D W, GREGORY A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012,18:1781-1796. DOI:10.1111/j.1365-2486.2012. 02665.x.
    [94] ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010,3(5): 336-340.DOI: 10.1038/ngeo846.
    [95] CONANT R T, RYAN M G, GREN G I, et al. Temperature and soil organic matter decomposition rates: synthesis of current knowledge and a way forward[J]. Global Change Biology, 2011, 17: 3392-3404. DOI: 10.1111/j.1365-2486.2011.02496.x.
    [96] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011,478: 49-56. DOI: 10.1038/nature10386.
    [97] ZHANG Y, CHEN W, SMITH S L, et al. Soil temperature in Canada during the twentieth century: complex responses to atmospheric climate change[J]. Journal of Geophysical Research, 2005, 110: D03112. DOI:10. 1029/ 2004 JD 004 910.
    [98] HELAMA S, TUOMENVIRTA H, VENLINEN A. Boreal and subarctic soils under climatic change: global planet[J]. Change, 2011,79(1-2): 37-47. DOI: 10.1016/j.gloplacha.2011.08.001.
    [99] HENNON P E, DAMORE D V, SCHABERG P G, et al. Shifting climate, altered niche, and a dynamic conservation strategy for yellow-cedar in the North Pacific coastal rainforest[J]. Bioscience, 2012, 62(2): 147-158. DOI: 10.1525/bio.2012.62.2.8.
    [100] SCHUUR E A G, ABBOTT B. Climate change: high risk of permafrost thaw[J]. Nature, 2011,480: 32-33. DOI: 10.1038/480032a.
    [101] SCHUUR E A G, VOGEL J G, CRUMMER K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009,459:556-559. DOI: 10.1038/nature08031.
    [102] ODONNELL J A, JORGENSON M T, HARDEN J W, et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland[J]. Ecosystems, 2012,15:213-229. DOI: 10.1007/s10021-011-9504-0.
    [103] SCHAPHOFF S, HEYDER U, OSTBERG S, et al. Contribution of permafrost soils to the global carbon budget[J]. Environmental Research Letters,2013,8: 014026. DOI: 10.1088/1748-9326/8/1/014026.
    [104] KUPARINEN A, KATUL G, NATHAN R, et al. Increases in air temperature can promote wind-driven dispersal and spread of plants[J]. Proceedings Research Society Series Bontany,2009,276: 3081-3087. DOI: 10.1098/rspb.2009.0693.
    [105] MIDGLEY G F, DAVIES I D, ALBERT C H, et al. BioMove: an integrated platform simulating the dynamic response of species to environmental change[J]. Ecography, 2010,33(3): 612-616. DOI:10.1111/j.1600-0587. 2009.06000.x.
    [106] HOF C, LEVINSKY I, ARAJO M B, et al. Rethinking species ability to cope with rapid climate change[J]. Global Change Biology,2011,17: 2987-2990. DOI: 10.1111/j.1365-2486.2011.02418.x.
    [107] ZHU K, WOODALL C W, GHOSH S, et al. Dual impacts of climate change: forest migration and turnover through life history[J]. Global Change Biology,2013,20:251-264. DOI:  10.1111/gcb.12382.
    [108] MALCOLM J R, MARKHAM A, NEILSON R P, et al. Estimated migration rates under scenarios of global climate change[J]. Journal of Biogeography, 2002,29: 835-849.DOI:10.1046/ j.1365-2699.2002.00702.x.
    [109] MCKENNEY D W, PEDLAR J H, ROOD R B, et al. Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models[J]. Global Change Biology, 2011,17: 2720-2730. DOI: 10.1111/j.1365-2486.2011.02413.x.
    [110] PATRY C, OUTERBRIDGE R O, HOLMES S B, et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests[J]. Environmental Reviews,2014, 22, 457-490. DOI.org/ 10.1139/er-2013-0075.
    [111] BOUCHER Y, ARSENEAULT D, SIROIS L. Logging history (1820-2000) of a heavily exploited southern boreal forest landscape: insights from sunken logs and forestry maps[J]. Forest Ecology and Management,2009, 258(7): 1359-1368. DOI: 10.1016/j.foreco.2009.06.037.
    [112] BOUCHER Y, ARSENEAULT D, SIROIS L, et al. Logging pattern and landscape changes over the last century at the boreal and deciduous forest transition in eastern Canada[J]. Landscape Ecology,2009, 24(2): 171-184. DOI: 10.1007/s10980-008-9294-8.
    [113] VIRKKALA R, HEIKKINEN R K, LEIKOLA N, et al. Projected largescale range reductions of northern-boreal land bird species due to climate change[J].Biological Conservation, 2008, 141(5): 1343-1353. DOI: 10.1016/j.biocon.2008.03.007.
    [114] THOMAS C, LENNON J. Birds extend their ranges northwards[J].Nature,1999, 399:213. DOI: 10.1038/20335.
    [115] LA PORTA N, CAPRETTI P, THOMSEN I M, et al.Forest pathogens with higher damage potential due to climate change in Europe[J]. Canadian Journal of Plant Pathology,2008, 30: 177-195. DOI: 10.1080/07060661.2008.10540534.
    [116] MOORE B, ALLARD G. Climate change impacts on forest health[R]. Rome: Food and Agriculture Organization of the United Nations,2008.
    [117] DUKES J S, PONTIUS J, ORWIG D, et al. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? [J]Canadian Journal of Forest Research,2009, 39(2): 231-248. DOI: 10.1139/X08-171.
    [118] KLIEJUNAS J T, GEILS B W, GLAESER J M, et al. Review of literature on climate change and forest diseases of western North America[Z]∥General Technical Report: PSW-GTR-225. Albany: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, 2009.
    [119] TUBBY K V, WEBBER J F. Pests and diseases threatening urban trees under a changing climate[J]. Forestry, 2010, 83(4): 451-459. DOI: 10.1093/forestry/cpq027.
    [120] MCGUIRE K L, ALLISON S D, TRESEDER K K.Spatial segregation of ectomycorrhizal and saprotrophic fungi in boreal and tropical forest soils[C]∥Proceedings of 93rd ESA Annual Meeting. Milwaukee: Ecological Society of America, 2008.
    [121] KRANABETTER J M, DURALL D M, MACKENZIE W H. Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest[J]. Mycorrhiza,2009, 19: 99-111. DOI: 10.1007/s00572-008-0208-z.PMID:18941804.
    [122] MONTEITH J L, UNSWORTH M H. Principles of environmental physics[M]. 3rd ed. Amsterdam: Academic Press, 2008.
    [123] HOGG E H, SCHWARZ A G. Regeneration of planted conifers across climatic moisture gradients on the Canadian prairies: implications for distribution and climate change[J].Journal of Biogeography, 1997, 24: 527-534. DOI: 10.1111/j.1365-2699.1997.00138.x.
    [124] PARISIEN M A, PARKS S A, KRAWCHUK M A, et al. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005[J]. Ecological Applications,2011, 21: 789-805. DOI: 10.1890/10-0326.1.PMID:21639045.
    [125] APPENZELLER T. The new north Stoked by climate change, fire and insects are remaking the planets vast boreal forest[J]. Science, 349: 772-773. DOI:  10.1126/science.349.6250.772.
    [126] AMIRO B D, TODD J B, WOTTON B M, et al. Direct carbon emissions from Canadian forest fires, 1959-1999[J]. Canadian Journal of Forest Research, 2001, 31: 512-525.
    [127] FLANNIGAN M D, KRAWCHUK M A, DE GROOT W J, et al. Implications of changing climate for global wild land fire[J]. International Journal of Wildland Fire,2009, 18(5): 483-507. DOI: 10.1071/WF08187.
    [128] 周幼吴, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
    [129] ZHOU Y W, GUO D X, QIU G Q, et al. Frozen ground of China[M].Beijing: Beijing Science Press, 2000.
    [130] TARNOCAI C, CANADELL J G, SCHUUR E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochem Cycles, 2009,23(2):GB2023. DOI: 10.1029/2008GB003327.
    [131] SCHUUR E A G, BOCKHEIM J, CANNDELL J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. Bioscience, 2008,58(8): 701-714.
    [132] SCHUUR E A, MCGUIRE A D, SCHDEL C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520: 171-179.DOI:10.1038/ nature14338.
    [133] KOVEN C D, LAWRENCE D M, RILEY W J. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics[J]. Proceedings of the National Academy of Sciences, 2015, 112(12): 3752-3757.
    [134] HULTMAN J, WALDROP M P, MACKELPRANG R, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes[J]. Nature, 2015, 521: 208-212.
    [135] SCHAEFER K, LANTUIT H, ROMANOVSKY V E, et al. The impact of the permafrost carbon feedback on global climate[J]. Environmental Research Letters, 2014, 9: 85003-85011.
    [136] OSTERKAMP T E. Characteristics of the recent warming of permafrost in Alaska[J]. Journal of Geophysical Research,2007, 112 : F02S02. DOI:  10.1029/2006JF000578.
    [137] PASTICKA N J, JORGENSONB M T, WYLIEC B K, et al. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions[J]. Remote Sensing of Environment, 2015, 168: 301-315.
    [138] CAMILL P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming[J]. Climate Change, 2005, 68 (1-2): 135-152.
    [139] TCHEBAKOVA N M, PARFENOVA E, SOJA A. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate[J]. Environmental Research Letters,2009, 4: 045013. DOI: 10.1088/1748-9326/4/4/045013.
    [140] WU Q, ZHANG T. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research,2008, 113: D13108. DOI:  10.1029/2007JD009539.
    [141] 魏智, 金会军, 张建明, 等.气候变化条件下东北地区多年冻土变化预测[J]. 中国科学: 地球科学, 2011, 41(1): 74- 84.
    [142] WEI Z, JIN H J,ZHANG J M, et al. Prediction of permafrost changes in northeastern China under a changing climate [J] . Science China Earth Science, 2011, 41(1):74- 84.
    [143] SCHUUR E A G, ABBOTI B W, BOWDEN W B, et al. Expert assessment of vulnerability of permafrost carbon to climate change[J]. Climatic Change,2013, 119: 359-374.
    [144] LAWRENCE D M, SLATER A G, SWENSON S C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4[J]. Journal of Climate, 2012, 25: 2207-2225.
    [145] KOVEN C D, RILEY W J,STERN A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models[J]. Journal of Climate,2012, 26: 1877-1900.
    [146] SMITH T E, WALL D H, HOGG I D, et al. Thawing permafrost alters nematode populations and soil habitat characteristic in an Antarctic polar desert ecosystem[J]. Pedobiologia, 2012, 55: 75-81.
    [147] SCHAEFER K, ZHANG T, BRUHWILER, et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus Series B-Chemical and Physical Meteorology,2011, 63: 165-80.
    [148] BURKE E J, HARTLEY I P,JONES C D. Uncertainties in the global temperature change caused by carbon release from permafrost thawing[J]. The Cryosphere,2012, 6:1063-1076.
    [149] SCHNEIDER V D T, MEINSHAUSEN M, LEVERMANN A, et al. Estimating the near surface permafrost carbon feedback on global warming[J]. Biogeosciences, 2012, 9: 649-65.
    [150] HAYES D J, KICKLIGHTER D W, MCGUIRE A D, et al. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange [J]. Environmental Research Letters,2014, 9:045005. DOI: 10.1088/1748-9326/9/4/045005.
    [151] SONG C, XU X, SUN X, et al. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region[J]. Environmental Research Letters,2012, 7: 34009-34016. DOI: 10.1088/1748-9326/7/3/034009.
    [152] SHEN W, ZOU C, LIU D, et al. Climate-forced ecological changes over the Tibetan Plateau[J]. Cold Regions Science and Technology, 2015, 114: 27-35.
    [153] KURYLYK B L, MACQUARRIE K T B, MCKENZIE J M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools[J]. Earth-Science Reviews, 2014, 138: 313-334.
    [154] VOGEL J, SCHUUR E A G, TRUCCO C, et al. Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development[J]. Journal of Geophysical Research: Biogeosciences,2009, 114(G4). DOI:  10.1029/2008JG000901
    [155] NATALI S M, SCHUUR A G E, RUBIN R L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost[J]. Journal of Ecology, 2012, 100: 488-498.
    [156] NATALI S M, SHUUR EAG, WEBB EE,et al. Permafrost degradation stimulates carbon loss from experimentally warmed tundra[J]. Ecology, 2014, 95(3): 602-608.
    [157] DONNELL J A O, HARDEN J W, MCGUIRE A D, et al. Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem[J]. Biogeosciences, 2011, 8: 1367-1382.
    [158] YI S, MANIES K, HARDEN J, et al. Characteristics of organic soil in black spruce forests: implications for the application of land surface and ecosystem models in cold regions[J]. Geophysical Research Letters,2009,36: L05501. DOI: 10.1029/2008GL037014.
    [159] BALE J S , MASTERS G J, HODKINSON I D, et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores[J]. Global Change Biology,2002, 8:1-16.
    [160] KURZ W A, DYMOND C C, STINSON G, et al. Mountain pine beetle and forest carbon feedback to climate change[J].Nature, 2008, 452: 987-990.
    [161] PATANKAR R, QUINTON W L, BALTZER J L. Permafrost-driven differences in habitat quality determine plant response to gall-inducing mite herbivory[J]. Journal of Ecology, 2013,101: 1042-1052.
    [162] SIMMONS B L, WALL D H,ADAMS B J, et al. Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica[J]. Soil Biology Biochemistry, 2009, 41: 2052-2060.
    [163] FRAUENFELD O W, ZHANG T. An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes[J]. Environmental Research Letters,2011, 6: 44024-44031. DOI: 10.1088/1748-9326/6/4/044024.
    [164] DE BRUIJN A M G, BUTTERBACH-BAHL K, BLAGODATSKY S, et al. Model evaluation of different mechanisms driving freeze-thaw N2O emissions[J]. Agriculture Ecosystems and Environment, 2009, 133: 196-207.
    [165] JOSEPH G , HENRY H A L. Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field[J]. Soil Biology Biochemistry, 2008, 40: 1947-1953.
    [166] WEIH M, KARLSSON P S. Low winter soil temperature affects summertime nutrient uptake capacity and growth rate of mountain birch seedlings in the subarctic, Swedish lapland[J]. Arctic Antarctic and Alpine Research, 2002, 34: 434-439.
    [167] SULKAVA P, HUHTA V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil[J]. Applied Soil Ecology,2003, 22:225-239.
    [168] FITZHUGH R D, LIKENS G E, DRISCOLL C T, et al. Role of soil freezing events in interannual patterns of stream chemistry at the Hubbard Brook experimental forest, New Hampshire[J]. Environmental Science Technology, 2003, 37:1575-1580.
    [169] GOU X, TAN B, WU F, et al. Seasonal dynamics of soil microbial biomass C and N along an elevational gradient on the eastern Tibetan Plateau, China[J]. PLoS ONE, 2015, 10(7): e0132443. DOI: 10.1371/journal.pone.013244.
    [170] HENRY H A L. Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements[J]. Soil Biology Biochemistry, 2007, 39: 977-986.
    [171] KREYLING J, BEIERKUHNLEIN C, JENTSCH A. Effects of soil freeze-thaw cycles differ between experimental plant communities[J]. Basic and Applied Ecology, 2010, 11:65-75.
  • [1] 何荣晓, 杨帆, 闫蓬勃, 韦家瑜.  海南省3座城市的植物多样性水平对比研究 . 北京林业大学学报, 2019, 41(4): 107-115. doi: 10.13332/j.1000-1522.20180315
    [2] 胡海清, 罗斯生, 罗碧珍, 魏书精, 王振师, 吴泽鹏.  林火干扰对广东省杉木林土壤有机碳及其组分的影响 . 北京林业大学学报, 2019, 41(12): 108-118. doi: 10.12171/j.1000-1522.20190179
    [3] 赵人镜, 戈晓宇, 李雄.  “留白增绿”背景下北京市栖息生境型城市森林营建策略研究 . 北京林业大学学报, 2018, 40(10): 102-114. doi: 10.13332/j.1000-1522.20180187
    [4] 石旭霞, 侯继华, 王冰雪, 王安志, 吴家兵, 张雷明, 苏文, 牛书丽.  长白山阔叶红松林生态系统生产力与温度的关系 . 北京林业大学学报, 2018, 40(11): 49-57. doi: 10.13332/j.1000-1522.20180275
    [5] 王建宇, 王庆贵, 闫国永, 姜思领, 刘博奇, 邢亚娟.  原始云冷杉、红松林树木生长对氮沉降的响应 . 北京林业大学学报, 2017, 39(4): 21-28. doi: 10.13332/j.1000-1522.20160106
    [6] 涂磊, 崔国发.  自然保护区森林资源连续清查改进方法 . 北京林业大学学报, 2016, 38(8): 111-115. doi: 10.13332/j.1000-1522.20160067
    [7] 解潍嘉, 黄侃, 李瑞平, 孙浩, 扈晶晶, 黄华国.  应用高分辨率卫星数据估算阔叶红松林乔木多样性 . 北京林业大学学报, 2015, 37(3): 20-26. doi: 10.13332/j.1000-1522.20140306
    [8] 吴金卓, 彭萱亦, 林文树.  针阔混交林生物多样性评价指标体系与模型构建 . 北京林业大学学报, 2015, 37(4): 8-18. doi: DOI:10.13332/j.1000-1522.20140209
    [9] 裴顺祥, 郭泉水, 贾渝彬, 辛学兵, 许格希.  保定市8种乔灌木开花始期对气候变化响应的积分回归分析 . 北京林业大学学报, 2015, 37(7): 11-18. doi: 10.13332/j.1000-1522.20130423
    [10] 徐卫, 程明杰, 林天喜, 程艳霞.  吉林蛟河近熟林树种多样性格局组建机制研究 . 北京林业大学学报, 2014, 36(6): 80-85. doi: 10.13332/j.cnki.jbfu.2014.06.016
    [11] 马志远, 石玲, 吴相菊, 张春雨.  长白山次生针阔混交林乔木多样性维持机制研究 . 北京林业大学学报, 2014, 36(6): 93-98. doi: 10.13332/j.cnki.jbfu.2014.06.018
    [12] 李效文, 贾黎明, 李广德, 汪平, 郝小飞, .  抚育对北京低山侧柏游憩林灌草生物多样性的影响 . 北京林业大学学报, 2009, 31(6): 193-197.
    [13] 董百丽, 王淼, 姜萍, 姬兰柱.  长白山北坡水甲虫多样性与环境因子的关系 . 北京林业大学学报, 2008, 30(1): 74-78.
    [14] 鲁绍伟, 王雄宾, 余新晓, 鲁少波, 李金海, 武军, .  封育对人工针叶林林下植物多样性恢复的影响 . 北京林业大学学报, 2008, 30(supp.2): 121-126.
    [15] 王义平, 吴鸿.  树冠节肢动物多样性研究进展 . 北京林业大学学报, 2008, 30(2): 143-146.
    [16] 王树森, 余新晓, 罗于洋, 赵广亮, 杨君, 海龙.  人工造林对八达岭森林植被木本植物生物多样性的影响 . 北京林业大学学报, 2008, 30(supp.2): 155-159.
    [17] 李朝生, 杨晓晖, 张克斌, 于春堂, 慈龙骏.  沙漠-绿洲系统中降雨、土壤水分与地下水位的响应特征 . 北京林业大学学报, 2007, 29(4): 129-135.
    [18] 朱教君, 胡晓丽, 李世东, 李发东, 徐双民, 李绍才, 王玉杰, 肖生春, 陈文汇, 范丙友, 高峻, 南海龙, 谭伟, 颜容, 孙晓梅, 金小娟, 时尽书, 张冰玉, 吕建雄, 窦军霞, 杨振德, 翟明普, 张宇清, 潘存德, 田小青, 骆秀琴, 王云琦, 冯仲科, 师瑞峰, 孟平, 朱清科, 张一平, 宋献方, 张守攻, 肖洪浪, 韩海荣, 孙海龙, 李建章, 刘俊昌, 苏晓华, 谢益民, 周春江, 胡诗宇, 刘红霞, 康宏樟, 三乃, 赵博光, 李智辉, 杨志荣, 周文瑞, 赵双菊, 张雁, 陆海, 岳良松, 吴斌, 马钦彦, 蔡怀, 齐实, 齐实, 蒋佳荔, 刘昌明, 姜伟, 王笑山, 李义良, 齐力旺, 伊力塔, 蒲俊文, 葛颂, 蒋湘宁, 张劲松, 张永安, 姚山, 于静洁, 赵有科, 张岩, 朱金兆, 宋清海, 张德荣, 何磊, 褚建民, 杨聪, 崔保山, 马超德, 曲良建, 石丽萍, 刘元, 吕守芳, 吴庆利, 康峰峰, 刘鑫宇, 刘相超, 朱林峰, 王玉珠, 王建华, 胡堃, 田颖川, 唐常源.  森林可持续经营:从木材到生物多样性 . 北京林业大学学报, 2006, 28(2): 133-138.
    [19] 钟健, 史军辉, 姜春宁, 赵广亮, 于格, 李长洪, 张亚利, 王华, 贾彩凤, 王勇, 郭小平, 吕兆林, 张力平, 张春雨, 马履一, 林峰, 许月卿, 杨永福, 曹金珍, 何恒斌, 李笑吟, 李秀芬, 王献溥, 于占源, 何利娟, 赖巧玲, D.PascalKamdem, 尚晓倩, 王希群, 郝玉光, 杨培岭, 赵秀海, 黄忠良, 于顺利, 赵博光, 习宝田, 曾德慧, 李悦, 孙长霞, 毕华兴, 贾桂霞, 朱清科, 郑彩霞, 胥辉, 鲁春霞, 王继兴, 邵晓梅, 王骏, 杨明嘉, 朱教君, 李鸿琦, 郭惠红, 丁琼, 王秀珍, 郑景明, 陈宏伟, 谢高地, 任树梅, 丁琼, 包仁艳, 费孛, 欧阳学军, 王庆礼, 崔小鹏, 姜凤岐, 周金池, 尚宇, 甘敬, 朱金兆, 杨为民, 刘燕, 李黎, 张志2, 张榕, , 沈应柏, 张池, 贾桂霞, 蔡宝军, 何晓青, 刘鑫, 刘足根, , 张中南, 范志平, 贾昆锋, 刘艳, 沈应柏, 唐小明, 陈伏生, 毛志宏, 周金池, 李凤兰, 李林, 纳磊, 张方秋, 鹿振友, 周小勇, , 申世杰, 马玲, 赵琼, .  半干旱区沙质草地生态系统碳循环关键过程对水肥添加的响应 . 北京林业大学学报, 2006, 28(4): 45-50.
    [20] 黄荣凤, 邵海荣, 曹世雄, 王小丹, 贺庆棠, 李雪玲, 李黎, 戴松香, 王瑞刚, 董运斋, 张德荣, 田晶会, 马宇飞, 高岩, 赵晓松, 黄华国, 郭明辉, 华丽, 李俊清, 贺康宁, 古川郁夫, 于志明, 冷平生, 王四清, 张晓丽, 陈斌如, 关德新, 金幼菊, 陈少良, 阎海平, 闫丽, 贺庆棠, 习宝田, 李文彬, 陈少良, 李海英, 王百田, 高攀, 邹祥旺, 李建章, 刘力源, 杨永福, 任云卯, 高双林, 陈莉, 阎海平, 鲍甫成, 王蕾, 吴家兵, 张卫强, 金小娟, 金昌杰, 陈华君, 侯智, 程根伟, 侯智, 郝志勇, 赵有科, 陈源泉, 王金满, 韩士杰, 李涛, 高旺盛, 尹婧, 杜建军, 翁海娇, 李鹤, 赵琼, 杨爽, 段杉.  毛乌素沙地杨树年轮结构对气候因子的响应 . 北京林业大学学报, 2005, 27(3): 24-29.
  • 加载中
计量
  • 文章访问数:  638
  • HTML全文浏览量:  141
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-10
  • 刊出日期:  2016-04-30

北方森林生态系统对全球气候变化的响应研究进展

doi: 10.13332/j.1000-1522.20160046
    基金项目:

    国家自然科学基金项目(41575137、31370494、31170421)、黑龙江省自然科学基金重点项目(ZD201406)。

    作者简介:

    韩士杰,研究员,博士生导师。主要研究方向:气候变化背景下的生态系统响应。Email:hansj@iae.ac.cn 地址:110016辽宁省沈阳市文化路72号中国科学院沈阳应用生态研究所。

摘要: 北方森林是地球上第2大生物群区,约占陆地森林面积的30%,提供了从局地到全球的生态系统服务功能。1850年以来,全球性持续升温不断显现,2000—2050年全球至少升高2 ℃,甚至更高。预计到2100年,北方森林区冬季平均温度将升高1.3~6.3 ℃。与此同时,几乎所有的北方森林生态系统功能都将会受到影响,尤其是近几十年来,该区域发生了很多与温度升高相关的潜在生态响应。本文从碳循环、生物多样性、干旱化和林火发生频率以及冻土变化等方面具体综述了北方森林生态系统对于全球气候变化的响应。响应结果如下:1)气候变化对于北方森林碳循环动态的影响是极其复杂的,迄今为止并没有达成共识, 分解对于温度的反应敏感程度至今仍存在很多不确定性。2)动物、植物和微生物(真菌)均对气候变化产生了一定的响应,表现为动物和植物的分布区进一步北移,但真菌的多样性和生产力响应机制尚无法确定。3)北方森林区随气候变化表现为进一步的干旱化和林火发生明显增加。4)北方森林区与冻土伴生,冻土随气候变暖表现出了面积缩小和活动层扩大的趋势。可见,北方森林对气候变化响应明显,尽管到目前为止有些响应机制尚不清楚,但变化趋势十分明显。本文旨在为北方森林的经营和管理提供基础数据和技术支持,实现北方森林的可持续经营。

English Abstract

韩士杰, 王庆贵. 北方森林生态系统对全球气候变化的响应研究进展[J]. 北京林业大学学报, 2016, 38(4): 1-20. doi: 10.13332/j.1000-1522.20160046
引用本文: 韩士杰, 王庆贵. 北方森林生态系统对全球气候变化的响应研究进展[J]. 北京林业大学学报, 2016, 38(4): 1-20. doi: 10.13332/j.1000-1522.20160046
HAN Shi-jie, WANG Qing-gui. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1-20. doi: 10.13332/j.1000-1522.20160046
Citation: HAN Shi-jie, WANG Qing-gui. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1-20. doi: 10.13332/j.1000-1522.20160046
参考文献 (171)

目录

    /

    返回文章
    返回