[1]
|
GOWER S T, KRANKINA O, OLSON R J, et al. Net primary production and carbon allocation patterns of boreal forest ecosystems[J]. Ecological Applications, 2001, 11:1395-1411. |
[2]
|
RYAN M B, CLARA A, RASMUS A, et al. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway[J]. Global Change Biology, 2014,20:607-621. DOI: 10.1111/gcb.12451. |
[3]
|
GAUTHIER S, BERNIER P, KUULUVAINEN T, et al.Boreal forest health and global change[J]. Science, 2015, 349:819-822. DOI: 10.1126/science.aaa9092. |
[4]
|
BAUMGARTNER A. Climatic variability and forestry[C]∥Proceedings of the World Climate Conference. Geneva: World Meteorological Organization, 1979:581-607. |
[5]
|
STOCKS B J, LYNHAM T J. Fire weather climatology in Canada and Russia[M]∥GOLDAMMER J G, FURYAEV V V. Fire in ecosystems of boreal Eurasia. Boston: Kluwer Academic Publishers, 1996: 481-494. |
[6]
|
BRANDT J P, FLANNIGAN M D, MAYNARD D G, et al. An introduction to Canadas boreal zone: ecosystem processes, health, sustainability, and environmental issues[J].Environmental Reviews, 2013, 21:207-226. DOI: org/10.1139/er-2013-0040. |
[7]
|
LARSEN J A. The boreal ecosystem[M]. New York: Academic Press, 1980. |
[8]
|
HARE F K, RITCHIE J C. The boreal bioclimates[J]. Geographical Review, 1972, 62:333-365. |
[9]
|
VIERECK L A, SCHANDELMEIER L H. Effects of fire in Alaska and adjacent Canada: a literature review[R]∥Alaska technical report 6. Anchorage: US Department of the Interior, Bureau of Land Management, Alaska State Office, 1980. |
[10]
|
HEINSELMAN M L. Fire and succession in the conifer forests of northern North America[M]∥WEST D C, SHUGART H H, BOTKIN D B. Forest succession: concepts and application. New York: Springer-Verlag, 1981: 374-405. |
[11]
|
BONAN G B. A computer-model of the solar-radiation, soil moisture, and soil thermal regimes in boreal forests[J]. Ecological Modelling, 1989, 45(4): 275-306. |
[12]
|
BONAN G B, SHUGART H H. Environmental-factors and ecological processes in boreal forests[J]. Annual Review of Ecology and Systematics,1989,20:1-28. |
[13]
|
SOJA A J, TCHEBAKOVA N M, FRENCH N H F, et al. Climate-induced boreal forest change: predictions versus current observations[J]. Global and Planetary Change,2007,56: 274-296. |
[14]
|
DAVID T, PRICE R I, ALFARO K J, et al. Anticipating the consequences of climate change for Canadas boreal forest ecosystems[J]. Environmental Reviews, 2013, 21: 322-365. |
[15]
|
ELMHAGEN B, KINDBERG J, HELLSTROM P, et al. A boreal invasion in response to climate change: range shifts and community effects in the borderland between forest and tundra[J]. AMBIO,2015, 44(Suppl. 1):39-50. |
[16]
|
APRIL M, MELVIN, MICHELLE C, et al. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a Mid-Successional Boreal Forest[J]. Ecosystems,2015,18: 1472-1488. |
[17]
|
APPS M J, KURZ W A, LUXMOORE R J, et al. Boreal forests and tundra[J]. Water, Air and Soil Pollution, 1993,70 (1-4): 39-53. |
[18]
|
MCGUIRE A D, MELILLO J W, KICKLIGHTER D W, et al. Equilibrium responses of soil carbon to climate change: empirical and process-based estimates[J]. Journal of Biogeography,1995,22:785-796. |
[19]
|
ZOLTAI S C, MARTIKAINEN P J. The role of forested peatlands in the global carbon cycle[C]∥APPS M J, PRICE D T. Forest ecosystems, forest management and the global carbon cycle. Heidelberg: Springer-Verlag, 1996: 47-58. |
[20]
|
ALEXEYEV V A, BIRDSEY R A. Carbon storage in forests and peatlands of Russia[R]. Delaware: Forest Service Northeastern Research Station, 1998: 24. |
[21]
|
SEPPL R, BUCK A, KATILA P. Adaptation of forests and people to climate change: a global assessment report [R]. Helsinki: International Union of Forest Research Organizations (IUFRO) World Series, 2009. |
[22]
|
ZUBIZARRETA-GERENDIAIN A, PUKKALAT T, KELLOMKI S,et al. Effects of climate change on optimised stand management in the boreal forests of central Finland[J]. European Journal of Forest Research, 2015, 134:273-280. |
[23]
|
STOCKER T F, QIN D, PLATTNER G K, et al. Climate change: the physical science basis[M]. Cambridge: Cambridge University Press,2013. |
[24]
|
HANSEN J R, RUEY M, SATO M, et al. Global surface air temperature in 1995: return to pre-pinatubo level[J]. Geophysical Research Letters, 1996,23:1665-1668. |
[25]
|
BALLING R C, MICHAELS P J, KNAPPENBERGER P C. Analysis of winter and summer warming rates in gridded temperature time series[J]. Climate Research,1998,9:175-181. |
[26]
|
SERREZE M C, WALSH J E, CHAPIN III F S,et al. Observational evidence of recent change in the northern high-latitude environment[J]. Climate Change, 2000,46:159-207. |
[27]
|
HOUGHTON J T, DING Y, GRIGGS D J, et al. Climate change 2001: the scientific basis[M]. New York: Cambridge University Press, 2001. |
[28]
|
ACIA. Impacts of a warming arctic[M]. Cambridge: Cambridge University Press, 2004. |
[29]
|
STOCKS B J, FOSBERG M A, WOTTON M B, et al. Climate change and forest fire activity in North American boreal forests[M]∥ KASISCHKE E S, STOCKS B J. Fire, climate change, and carbon cycling in the boreal forest. New York: Springer-Verlag, 2000:368-376. |
[30]
|
GROISMAN P Y, SHERSTYUKOV B G, RAZUVAEV V N, et al. Potential forest fire danger over northern Eurasia: changes during the 20th century[J]. Global and Planetary Change,2007, 56:371-386. |
[31]
|
POST E, FORCHHAMMER M C, BRET-HARTE M S, et al. Ecological dynamics across the Arctic associated with recent climate change[J]. Science, 2009,325: 1355-1358. |
[32]
|
KURZ W A, APPS M J, STOCKS B J, et al. Global climate change: disturbance regimes and biospheric feedbacks of temperate and boreal forests[M]∥WOODWELL G M, MACKENZIE F T. Biotic feedbacks in the global climate system: will the warming feed the warming?. New York:Oxford University Press, 1995:119-133. |
[33]
|
HARDEN J W, TRUMBORE S E, STOCKS B J, et al. The role of fire in the boreal carbon budget[J]. Global Change Biology,2000,6:174-184. |
[34]
|
KASISCHKE E S, STOCKS B J. Fire, climate change, and carbon cycling in the boreal forest[M]∥KASISCHKE E S, STOCKS B J. Ecological studies. New York: Springer-Verlag, 2000: 461. |
[35]
|
FRENCH N N F. The impact of fire disturbance on carbon and energy exchange in the Alaskan Boreal Region: a geospatial data analysis[D]. Ann Arbor: University of Michigan, 2002:105. |
[36]
|
SOJA A J, COFER III W R, SHUGART H H, et al. Estimating fire emissions and disparities in boreal Siberia (1998 through 2002)[J]. Journal of Geophysical Research, 2004,109 (D14S06). DOI: 10.1029/2004JD004570. |
[37]
|
BALZTER H, GERARD F F, GEORGE C T, et al. Impact of the Arctic Oscillation pattern on interannual forest fire variability in central Siberia[J]. Geophysical Research Letters, 2005,32(14). DOI: 10.1029/2005GL022526. |
[38]
|
LEMRIRE T C, KURZ W A, HOGG E H, et al. Canadian boreal forests and climate change mitigation[J]. Environmental Reviews,2013,21: 293-321. |
[39]
|
PAN Y, BIRDSEY Y, FANG R A, et al.A large and persistent carbon sink in the worlds forests[J]. Science, 2011, 333: 988-993. DOI: 10.1126/science.1201609. |
[40]
|
PETERS G P, MARLAND G, LE QUERE C, et al. Rapid growth in CO2 emissions after the 2008-2009 global financial crisis[J]. Nature Climate Change, 2012,2(1): 2-4. DOI: 10.1038/nclimate1332. |
[41]
|
LE QUERE C, RAUPACH M R, CANADELL J G, et al. Trends in the sources and sinks of carbon dioxide[J]. Nature Geosci, 2009,2(12):831-836. DOI: 10.1038/ngeo689. |
[42]
|
SARMIENTO J L, GLOOR M, GRUBER N, et al. Trends and regional distributions of land and ocean carbon sinks[J]. Biogeosciences, 2010,7(8): 2351-2367. DOI: 10.5194/bg-7-2351-2010. |
[43]
|
KURZ W A, SHAW C H, BOISVENUE C,et al. Carbon in Canadas boreal forest: a synthesis[J]. Environmental Reviews, 2013, 21(4): 260-292.DOI: 10.1139/er-2013-0041. |
[44]
|
MILAKOVSKY B, FREY B, JAMES T. Carbon dynamics in the boreal forest[M]∥ASHTON M S, TYRRELL M L, SPALDING D, et al. Managing forest carbon in a changing climate. New York: Springer Science Business Media, 2012: 109-135. |
[45]
|
LI Z, KURZ W A, APPS M J. Belowground biomass dynamics in the carbon budget model of the Canadian forest sector: recent improvements and implications for the estimation of NPP and NEP[J]. Canadian Journal of Forest Research, 2003,33(1):126-136. DOI: 10.1139/x02-165. |
[46]
|
KURZ W A, DYMOND C C, WHITE T M. CBM-CFS3: a model of carbon-dynamics in forestry and landuse change implementing IPCC standards[J]. Ecological Modelling, 2009,220(4):480-504. DOI:10. 1016/j.ecolmodel.2008.10.018. |
[47]
|
ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010,259(4):660-684. DOI:10.1016/j. foreco.2009.09.001. |
[48]
|
BOISVENUE C, RUNNING S W. Impacts of climate change on natural forest productivityevidence since the middle of the 20th century[J]. Global Change Biolology,2006,12:1-21. DOI: 10.1111/j.1365-2486.2005.001080.x. |
[49]
|
MICHAELIAN M, HOGG E H, HALL R J, et al. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest[J]. Global Change Biology,2011, 17:2084-2094. DOI:10. 1111/j.1365-2486.2010.02357.x. |
[50]
|
HEMBER R A, KURZ W A, METSARANTA J M, et al. Accelerated regrowth of temperate-maritime forests due to environmental change[J]. Global Change Biology,2012,18:2026-2040. DOI:10.1111/j.1365-2486. 2012.02669.x. |
[51]
|
MAGNANI F, MENCUCCINI M, BORGHETTI M, et al. The human footprint in the carbon cycle of temperate and boreal forests[J]. Nature, 2007, 447:849-851. DOI: 10.1038/nature05847. |
[52]
|
BRIFFA K R, SHISHOV V V, MELVIN T M, et al. Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2008,363:2269-2282. DOI: 10.1098/rstb.2007.2199. |
[53]
|
HICKLER T, SMITH B, PRENTICE I C, et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests[J]. Global Change Biology, 2008,14(7): 1531-1542. DOI:10. 1111/j.1365-2486.2008.01598.x. |
[54]
|
BOISVENUE C, BERGERON Y, BERNIER P, et al. Simulations show potential for reduced emissions and carbon stocks increase in boreal forests under ecosystem management[J]. Carbon Management, 2012,3(6):553-568. DOI: 10.4155/cmt.12.57. |
[55]
|
LAFLEUR B, PARE D, MUNSON A D,et al. Response of northeastern North American forests to climate change: will soil conditions constrain tree species migration?[J]. Environmental Reviews,2010,18: 279-289. DOI: 10.1139/A10-013. |
[56]
|
BECK P S A, JUDAY G P, ALIX C, et al. Changes in forest productivity across Alaska consistent with biome shift[J]. Ecology Letters,2011, 14: 373-379. DOI: 10.1111/j.1461-0248.2011.01598.x. |
[57]
|
COLE C T, ANDERSON J E, LINDROTH R L, et al. Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides)[J]. Global Change Biolology, 2010, 16: 2186-2197. DOI: 10.1111/j.1365-2486.2009.02103.x. |
[58]
|
PAQUETTE A, MESSIER C. The effect of biodiversity on tree productivity: from temperate to boreal forests[J]. Global Ecology and Biogeography,2011,20(1):170-180.DOI:10.1111/j.1466-8238.2010. 00592.x. |
[59]
|
MCLANE S C, DANIELS L D, AITKEN S N, et al. Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment[J]. Forest Ecology and Management, 2011,262(2): 115-123. DOI: 10.1016/j.foreco.2011.03.007. |
[60]
|
CYR D, GAUTHIER S, BERGERON Y, et al. Forest management is driving the eastern North American boreal forest outside its natural range of variability[J]. Frontiers in Ecology and the Environment, 2009, 7(10): 519-524. DOI: 10.1890/080088. |
[61]
|
ALLEN M R, FRAME D J, HUNTINGFORD C, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne[J]. Nature, 2009, 458: 1163-1166. DOI: 10.1038/nature08019. |
[62]
|
VAN MANTGEM P J, STEPHENSON N L, BYRNE J C, et al. Widespread increase of tree mortality rates in the western United States[J]. Science, 2009,323: 521-524. DOI: 10.1126/science.1165000. |
[63]
|
ZHAO M, RUNNING S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010,329:940-943. DOI: 10.1126/science.1192666. |
[64]
|
STURROCK R N, FRANKEL S J, BROWN A V, et al. Climate change and forest diseases[J]. Plant Pathology,2011,60(1): 133-149. DOI: 10.1111/j.1365-3059.2010.02406.x. |
[65]
|
HICKE J A, ALLEN C D, DESAI A R, et al. Effects of biotic disturbances on forest carbon cycling in the United States and Canada[J]. Global Change Biology,2012,18:7-34. DOI: 10.1111/j.1365-2486.2011.02543.x. |
[66]
|
MCLANE S C, LEMAY V M, AITEN S N. Modeling lodgepole pine radial growth relative to climate and genetics using universal growth-trend response functions[J]. Ecological Applications,2011,21(3): 776-788. DOI: 10.1890/10-0131.1. |
[67]
|
PENG C, MA Z, LEI X, et al. A drought-induced pervasive increase in tree mortality across Canadas boreal forests[J]. Nature Climate Change, 2011,1(9): 467-471. DOI: 10.1038/nclimate1293. |
[68]
|
MA Z, PENG C, ZHU Q, et al. Regional drought-induced reduction in the biomass carbon sink of Canadas boreal forests[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(7): 2423-2427. DOI: 10.1073/pnas.1111576109. |
[69]
|
SMITH B, SAMUELSSON P, WRAMNEBY A, et al. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications[J]. Tellus Series A-dynamic Meteorology and Oceanography, 2011, 63(1): 87-106. DOI: 10.1111/j.1600-0870.2010.00477.x. |
[70]
|
SCHNEIDER R R, HAMANN A, FARR D, et al. Potential effects of climate change on ecosystem distribution in Alberta[J]. Canadian Journal of Forest Research, 2009,39(5):1001-1010.DOI:10.1139/ X09-033. |
[71]
|
NATHAN R, HORVITZ N, HE Y, et al. Spread of North American wind-dispersed trees in future environments[J]. Ecology Letters,2011,14:211-219. DOI: 10.1111/j.1461-0248.2010.01573.x. |
[72]
|
LOEHLE C. Forest response to climate change: do simulations predict unrealistic dieback?[J]. Journal of Forest,1996,94(9): 13-15. |
[73]
|
LEITHEAD M, ANAND M, SILVA L. Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada[J]. Oecologia, 2010,164(4):1095-1106.DOI:10. 1007/s00442-010-1769-z. |
[74]
|
CLASSEN A T, NORBY R J, CAMPANY C E, et al. Climate change alters seedling emergence and establishment in an old-field ecosystem[J].PLoS ONE,2010,5(10):e13476. DOI:10.1371/journal.pone. 0013476 |
[75]
|
JOHNSTONE J F, CHAPIN F S III. Effects of soil burn severity on postfire tree recruitment in boreal forests[J]. Ecosystems, 2006,9(1):14-31. DOI: 10.1007/s10021-004-0042-x. |
[76]
|
JOHNSTONE J F, CHAPIN F S III. Fire interval effects on successional trajectory in boreal forests of northwest Canada[J]. Ecosystems, 2006, 9(2): 268-277.DOI: 10.1007/s10021-005-0061-2. |
[77]
|
MBOGGA M S, WANG X, HAMANN A. Bioclimate envelope model predictions for natural resource management: dealing with uncertainty[J]. Journal of Applied Ecology,2010,47(4):731-740. DOI: 10.1111/j.1365-2664.2010.01830.x. |
[78]
|
AITKEN S N, YEAMAN S, HOLLIDAY J A, et al. Adaptation, migration or extirpation: climate change outcomes for tree populations[J]. Evolutionary Applications,2008,1(1):95-111. DOI:10.1111/j. 1752-4571.2007.00013.x. |
[79]
|
TRINDADE M, BELL T, LAROQUE C. Changing climatic sensitivities of two spruce species across a moisture gradient in Northeastern Canada[J]. Dendrochronologia, 2011,29(1): 25-30. DOI: 10.1016/j.dendro.2010.10.002. |
[80]
|
IPCC. Climate change 1995: the science of climate change[M].New York: Cambridge University Press, 1996:572. |
[81]
|
DESANTIS R D, HALLGREN S W, STAHLE D W. Drought and fire suppression lead to rapid forest composition change in a forest-prairie ecotone[J]. Forest Ecology and Management, 2011,261(11):1833-1840. DOI: 10.1016/j.foreco.2011.02.006. |
[82]
|
GIRARD F, PAYETTE S, GAGNON R. Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada[J]. Journal of Biogeography, 2008,35(3): 529-537.DOI: 10.1111/j.1365-2699.2007.01816.x. |
[83]
|
BERNIER P Y, DESJARDINS R L, KARIMI-ZINDASHTY Y, et al. Boreal lichen woodlands: a possible negative feedback to climate change in eastern North America[J]. Agricultural and Forest Meteorology, 2011,151(4): 521-528. DOI: 10.1016/j.agrformet.2010.12.013. |
[84]
|
SMITH M. Alpine treelines: functional ecology of the global high elevation tree limits[J]. Mountain Research and Development, 2013,33:357. |
[85]
|
HARSCH M A, HULME P E, MCGLONE M S, et al. Are treelines advancing: a global meta-analysis of treeline response to climate warming[J]. Ecology Letters,2009,12:1040-1049. |
[86]
|
FRASER R H, OLTHOF I, CARRIERE M, et al. Detecting long-term changes to vegetation in northern Canada using the landsat satellite image archive[J]. Environmental Research Letters, 2011,6:045502. DOI:10. 1088/1748-9326/6/4/045502. |
[87]
|
MCMANUS K M, MORTON D C, MASEK J G, et al. Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986-2010[J]. Global Change Biology, 2012,18(7):2313-2323. DOI:10.1111/ j.1365-2486.2012.02708.x. |
[88]
|
PELTONIEMI M, THURING E, OGLE S, et al. Models in country scale carbon accounting of forest soils[J]. Silva Fennica,2007,41(3): 575-602. |
[89]
|
KNORR M, FREY S D, CURTIS P S. Nitrogen additions and litter decomposition: a meta-analysis[J]. Ecology, 2005,86(12): 3252-3257. DOI: 10.1890/05-0150. |
[90]
|
GIARDINA C P, RYAN M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000,404: 858-861. DOI: 10.1038/35009076. |
[91]
|
GAUMONT-GUAY D, BLACK T A, BARR A G, et al. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand[J]. Tree Physiology, 2008, 28(2): 161-171. DOI: 10.1093/treephys/28.2.161. |
[92]
|
FISSORE C, GIARDINA C P, KOLKA R K, et al. Soil organic carbon quality in forested mineral wetlands at different mean annual temperature[J]. Soil Biology and Biochemistry,2009, 41(3): 458-466. DOI:10.1016/j. soilbio.2008.11.004. |
[93]
|
DUNGAIT J A J, HOPKINS D W, GREGORY A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance[J]. Global Change Biology, 2012,18:1781-1796. DOI:10.1111/j.1365-2486.2012. 02665.x. |
[94]
|
ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010,3(5): 336-340.DOI: 10.1038/ngeo846. |
[95]
|
CONANT R T, RYAN M G, GREN G I, et al. Temperature and soil organic matter decomposition rates: synthesis of current knowledge and a way forward[J]. Global Change Biology, 2011, 17: 3392-3404. DOI: 10.1111/j.1365-2486.2011.02496.x. |
[96]
|
SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011,478: 49-56. DOI: 10.1038/nature10386. |
[97]
|
ZHANG Y, CHEN W, SMITH S L, et al. Soil temperature in Canada during the twentieth century: complex responses to atmospheric climate change[J]. Journal of Geophysical Research, 2005, 110: D03112. DOI:10. 1029/ 2004 JD 004 910. |
[98]
|
HELAMA S, TUOMENVIRTA H, VENLINEN A. Boreal and subarctic soils under climatic change: global planet[J]. Change, 2011,79(1-2): 37-47. DOI: 10.1016/j.gloplacha.2011.08.001. |
[99]
|
HENNON P E, DAMORE D V, SCHABERG P G, et al. Shifting climate, altered niche, and a dynamic conservation strategy for yellow-cedar in the North Pacific coastal rainforest[J]. Bioscience, 2012, 62(2): 147-158. DOI: 10.1525/bio.2012.62.2.8. |
[100]
|
SCHUUR E A G, ABBOTT B. Climate change: high risk of permafrost thaw[J]. Nature, 2011,480: 32-33. DOI: 10.1038/480032a. |
[101]
|
SCHUUR E A G, VOGEL J G, CRUMMER K G, et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra[J]. Nature, 2009,459:556-559. DOI: 10.1038/nature08031. |
[102]
|
ODONNELL J A, JORGENSON M T, HARDEN J W, et al. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland[J]. Ecosystems, 2012,15:213-229. DOI: 10.1007/s10021-011-9504-0. |
[103]
|
SCHAPHOFF S, HEYDER U, OSTBERG S, et al. Contribution of permafrost soils to the global carbon budget[J]. Environmental Research Letters,2013,8: 014026. DOI: 10.1088/1748-9326/8/1/014026. |
[104]
|
KUPARINEN A, KATUL G, NATHAN R, et al. Increases in air temperature can promote wind-driven dispersal and spread of plants[J]. Proceedings Research Society Series Bontany,2009,276: 3081-3087. DOI: 10.1098/rspb.2009.0693. |
[105]
|
MIDGLEY G F, DAVIES I D, ALBERT C H, et al. BioMove: an integrated platform simulating the dynamic response of species to environmental change[J]. Ecography, 2010,33(3): 612-616. DOI:10.1111/j.1600-0587. 2009.06000.x. |
[106]
|
HOF C, LEVINSKY I, ARAJO M B, et al. Rethinking species ability to cope with rapid climate change[J]. Global Change Biology,2011,17: 2987-2990. DOI: 10.1111/j.1365-2486.2011.02418.x. |
[107]
|
ZHU K, WOODALL C W, GHOSH S, et al. Dual impacts of climate change: forest migration and turnover through life history[J]. Global Change Biology,2013,20:251-264. DOI: 10.1111/gcb.12382. |
[108]
|
MALCOLM J R, MARKHAM A, NEILSON R P, et al. Estimated migration rates under scenarios of global climate change[J]. Journal of Biogeography, 2002,29: 835-849.DOI:10.1046/ j.1365-2699.2002.00702.x. |
[109]
|
MCKENNEY D W, PEDLAR J H, ROOD R B, et al. Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models[J]. Global Change Biology, 2011,17: 2720-2730. DOI: 10.1111/j.1365-2486.2011.02413.x. |
[110]
|
PATRY C, OUTERBRIDGE R O, HOLMES S B, et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests[J]. Environmental Reviews,2014, 22, 457-490. DOI.org/ 10.1139/er-2013-0075. |
[111]
|
BOUCHER Y, ARSENEAULT D, SIROIS L. Logging history (1820-2000) of a heavily exploited southern boreal forest landscape: insights from sunken logs and forestry maps[J]. Forest Ecology and Management,2009, 258(7): 1359-1368. DOI: 10.1016/j.foreco.2009.06.037. |
[112]
|
BOUCHER Y, ARSENEAULT D, SIROIS L, et al. Logging pattern and landscape changes over the last century at the boreal and deciduous forest transition in eastern Canada[J]. Landscape Ecology,2009, 24(2): 171-184. DOI: 10.1007/s10980-008-9294-8. |
[113]
|
VIRKKALA R, HEIKKINEN R K, LEIKOLA N, et al. Projected largescale range reductions of northern-boreal land bird species due to climate change[J].Biological Conservation, 2008, 141(5): 1343-1353. DOI: 10.1016/j.biocon.2008.03.007. |
[114]
|
THOMAS C, LENNON J. Birds extend their ranges northwards[J].Nature,1999, 399:213. DOI: 10.1038/20335. |
[115]
|
LA PORTA N, CAPRETTI P, THOMSEN I M, et al.Forest pathogens with higher damage potential due to climate change in Europe[J]. Canadian Journal of Plant Pathology,2008, 30: 177-195. DOI: 10.1080/07060661.2008.10540534. |
[116]
|
MOORE B, ALLARD G. Climate change impacts on forest health[R]. Rome: Food and Agriculture Organization of the United Nations,2008. |
[117]
|
DUKES J S, PONTIUS J, ORWIG D, et al. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? [J]Canadian Journal of Forest Research,2009, 39(2): 231-248. DOI: 10.1139/X08-171. |
[118]
|
KLIEJUNAS J T, GEILS B W, GLAESER J M, et al. Review of literature on climate change and forest diseases of western North America[Z]∥General Technical Report: PSW-GTR-225. Albany: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, 2009. |
[119]
|
TUBBY K V, WEBBER J F. Pests and diseases threatening urban trees under a changing climate[J]. Forestry, 2010, 83(4): 451-459. DOI: 10.1093/forestry/cpq027. |
[120]
|
MCGUIRE K L, ALLISON S D, TRESEDER K K.Spatial segregation of ectomycorrhizal and saprotrophic fungi in boreal and tropical forest soils[C]∥Proceedings of 93rd ESA Annual Meeting. Milwaukee: Ecological Society of America, 2008. |
[121]
|
KRANABETTER J M, DURALL D M, MACKENZIE W H. Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest[J]. Mycorrhiza,2009, 19: 99-111. DOI: 10.1007/s00572-008-0208-z.PMID:18941804. |
[122]
|
MONTEITH J L, UNSWORTH M H. Principles of environmental physics[M]. 3rd ed. Amsterdam: Academic Press, 2008. |
[123]
|
HOGG E H, SCHWARZ A G. Regeneration of planted conifers across climatic moisture gradients on the Canadian prairies: implications for distribution and climate change[J].Journal of Biogeography, 1997, 24: 527-534. DOI: 10.1111/j.1365-2699.1997.00138.x. |
[124]
|
PARISIEN M A, PARKS S A, KRAWCHUK M A, et al. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005[J]. Ecological Applications,2011, 21: 789-805. DOI: 10.1890/10-0326.1.PMID:21639045. |
[125]
|
APPENZELLER T. The new north Stoked by climate change, fire and insects are remaking the planets vast boreal forest[J]. Science, 349: 772-773. DOI: 10.1126/science.349.6250.772. |
[126]
|
AMIRO B D, TODD J B, WOTTON B M, et al. Direct carbon emissions from Canadian forest fires, 1959-1999[J]. Canadian Journal of Forest Research, 2001, 31: 512-525. |
[127]
|
FLANNIGAN M D, KRAWCHUK M A, DE GROOT W J, et al. Implications of changing climate for global wild land fire[J]. International Journal of Wildland Fire,2009, 18(5): 483-507. DOI: 10.1071/WF08187. |
[128]
|
周幼吴, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000. |
[129]
|
ZHOU Y W, GUO D X, QIU G Q, et al. Frozen ground of China[M].Beijing: Beijing Science Press, 2000. |
[130]
|
TARNOCAI C, CANADELL J G, SCHUUR E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochem Cycles, 2009,23(2):GB2023. DOI: 10.1029/2008GB003327. |
[131]
|
SCHUUR E A G, BOCKHEIM J, CANNDELL J G, et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle[J]. Bioscience, 2008,58(8): 701-714. |
[132]
|
SCHUUR E A, MCGUIRE A D, SCHDEL C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520: 171-179.DOI:10.1038/ nature14338. |
[133]
|
KOVEN C D, LAWRENCE D M, RILEY W J. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics[J]. Proceedings of the National Academy of Sciences, 2015, 112(12): 3752-3757. |
[134]
|
HULTMAN J, WALDROP M P, MACKELPRANG R, et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes[J]. Nature, 2015, 521: 208-212. |
[135]
|
SCHAEFER K, LANTUIT H, ROMANOVSKY V E, et al. The impact of the permafrost carbon feedback on global climate[J]. Environmental Research Letters, 2014, 9: 85003-85011. |
[136]
|
OSTERKAMP T E. Characteristics of the recent warming of permafrost in Alaska[J]. Journal of Geophysical Research,2007, 112 : F02S02. DOI: 10.1029/2006JF000578. |
[137]
|
PASTICKA N J, JORGENSONB M T, WYLIEC B K, et al. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions[J]. Remote Sensing of Environment, 2015, 168: 301-315. |
[138]
|
CAMILL P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming[J]. Climate Change, 2005, 68 (1-2): 135-152. |
[139]
|
TCHEBAKOVA N M, PARFENOVA E, SOJA A. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate[J]. Environmental Research Letters,2009, 4: 045013. DOI: 10.1088/1748-9326/4/4/045013. |
[140]
|
WU Q, ZHANG T. Recent permafrost warming on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research,2008, 113: D13108. DOI: 10.1029/2007JD009539. |
[141]
|
魏智, 金会军, 张建明, 等.气候变化条件下东北地区多年冻土变化预测[J]. 中国科学: 地球科学, 2011, 41(1): 74- 84. |
[142]
|
WEI Z, JIN H J,ZHANG J M, et al. Prediction of permafrost changes in northeastern China under a changing climate [J] . Science China Earth Science, 2011, 41(1):74- 84. |
[143]
|
SCHUUR E A G, ABBOTI B W, BOWDEN W B, et al. Expert assessment of vulnerability of permafrost carbon to climate change[J]. Climatic Change,2013, 119: 359-374. |
[144]
|
LAWRENCE D M, SLATER A G, SWENSON S C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4[J]. Journal of Climate, 2012, 25: 2207-2225. |
[145]
|
KOVEN C D, RILEY W J,STERN A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 earth system models[J]. Journal of Climate,2012, 26: 1877-1900. |
[146]
|
SMITH T E, WALL D H, HOGG I D, et al. Thawing permafrost alters nematode populations and soil habitat characteristic in an Antarctic polar desert ecosystem[J]. Pedobiologia, 2012, 55: 75-81. |
[147]
|
SCHAEFER K, ZHANG T, BRUHWILER, et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus Series B-Chemical and Physical Meteorology,2011, 63: 165-80. |
[148]
|
BURKE E J, HARTLEY I P,JONES C D. Uncertainties in the global temperature change caused by carbon release from permafrost thawing[J]. The Cryosphere,2012, 6:1063-1076. |
[149]
|
SCHNEIDER V D T, MEINSHAUSEN M, LEVERMANN A, et al. Estimating the near surface permafrost carbon feedback on global warming[J]. Biogeosciences, 2012, 9: 649-65. |
[150]
|
HAYES D J, KICKLIGHTER D W, MCGUIRE A D, et al. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange [J]. Environmental Research Letters,2014, 9:045005. DOI: 10.1088/1748-9326/9/4/045005. |
[151]
|
SONG C, XU X, SUN X, et al. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region[J]. Environmental Research Letters,2012, 7: 34009-34016. DOI: 10.1088/1748-9326/7/3/034009. |
[152]
|
SHEN W, ZOU C, LIU D, et al. Climate-forced ecological changes over the Tibetan Plateau[J]. Cold Regions Science and Technology, 2015, 114: 27-35. |
[153]
|
KURYLYK B L, MACQUARRIE K T B, MCKENZIE J M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools[J]. Earth-Science Reviews, 2014, 138: 313-334. |
[154]
|
VOGEL J, SCHUUR E A G, TRUCCO C, et al. Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development[J]. Journal of Geophysical Research: Biogeosciences,2009, 114(G4). DOI: 10.1029/2008JG000901 |
[155]
|
NATALI S M, SCHUUR A G E, RUBIN R L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost[J]. Journal of Ecology, 2012, 100: 488-498. |
[156]
|
NATALI S M, SHUUR EAG, WEBB EE,et al. Permafrost degradation stimulates carbon loss from experimentally warmed tundra[J]. Ecology, 2014, 95(3): 602-608. |
[157]
|
DONNELL J A O, HARDEN J W, MCGUIRE A D, et al. Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem[J]. Biogeosciences, 2011, 8: 1367-1382. |
[158]
|
YI S, MANIES K, HARDEN J, et al. Characteristics of organic soil in black spruce forests: implications for the application of land surface and ecosystem models in cold regions[J]. Geophysical Research Letters,2009,36: L05501. DOI: 10.1029/2008GL037014. |
[159]
|
BALE J S , MASTERS G J, HODKINSON I D, et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores[J]. Global Change Biology,2002, 8:1-16. |
[160]
|
KURZ W A, DYMOND C C, STINSON G, et al. Mountain pine beetle and forest carbon feedback to climate change[J].Nature, 2008, 452: 987-990. |
[161]
|
PATANKAR R, QUINTON W L, BALTZER J L. Permafrost-driven differences in habitat quality determine plant response to gall-inducing mite herbivory[J]. Journal of Ecology, 2013,101: 1042-1052. |
[162]
|
SIMMONS B L, WALL D H,ADAMS B J, et al. Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica[J]. Soil Biology Biochemistry, 2009, 41: 2052-2060. |
[163]
|
FRAUENFELD O W, ZHANG T. An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes[J]. Environmental Research Letters,2011, 6: 44024-44031. DOI: 10.1088/1748-9326/6/4/044024. |
[164]
|
DE BRUIJN A M G, BUTTERBACH-BAHL K, BLAGODATSKY S, et al. Model evaluation of different mechanisms driving freeze-thaw N2O emissions[J]. Agriculture Ecosystems and Environment, 2009, 133: 196-207. |
[165]
|
JOSEPH G , HENRY H A L. Soil nitrogen leaching losses in response to freeze-thaw cycles and pulsed warming in a temperate old field[J]. Soil Biology Biochemistry, 2008, 40: 1947-1953. |
[166]
|
WEIH M, KARLSSON P S. Low winter soil temperature affects summertime nutrient uptake capacity and growth rate of mountain birch seedlings in the subarctic, Swedish lapland[J]. Arctic Antarctic and Alpine Research, 2002, 34: 434-439. |
[167]
|
SULKAVA P, HUHTA V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil[J]. Applied Soil Ecology,2003, 22:225-239. |
[168]
|
FITZHUGH R D, LIKENS G E, DRISCOLL C T, et al. Role of soil freezing events in interannual patterns of stream chemistry at the Hubbard Brook experimental forest, New Hampshire[J]. Environmental Science Technology, 2003, 37:1575-1580. |
[169]
|
GOU X, TAN B, WU F, et al. Seasonal dynamics of soil microbial biomass C and N along an elevational gradient on the eastern Tibetan Plateau, China[J]. PLoS ONE, 2015, 10(7): e0132443. DOI: 10.1371/journal.pone.013244. |
[170]
|
HENRY H A L. Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements[J]. Soil Biology Biochemistry, 2007, 39: 977-986. |
[171]
|
KREYLING J, BEIERKUHNLEIN C, JENTSCH A. Effects of soil freeze-thaw cycles differ between experimental plant communities[J]. Basic and Applied Ecology, 2010, 11:65-75. |