高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干旱对欧美杨气孔发育的影响

王丛鹏 贾伏丽 刘沙 刘超 夏新莉 尹伟伦

王丛鹏, 贾伏丽, 刘沙, 刘超, 夏新莉, 尹伟伦. 干旱对欧美杨气孔发育的影响[J]. 北京林业大学学报, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050
引用本文: 王丛鹏, 贾伏丽, 刘沙, 刘超, 夏新莉, 尹伟伦. 干旱对欧美杨气孔发育的影响[J]. 北京林业大学学报, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050
WANG Cong-peng, JIA Fu-li, LIU Sha, LIU Chao, XIA Xin-li, YIN Wei-lun. Drought induces alterations in stomatal development in Populus deltoides×P. nigra[J]. Journal of Beijing Forestry University, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050
Citation: WANG Cong-peng, JIA Fu-li, LIU Sha, LIU Chao, XIA Xin-li, YIN Wei-lun. Drought induces alterations in stomatal development in Populus deltoides×P. nigra[J]. Journal of Beijing Forestry University, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050

干旱对欧美杨气孔发育的影响

doi: 10.13332/j.1000-1522.20160050
基金项目: 

十二五”

国家科技支撑计划项目(2015BAD07B01)、国家自然科学基金项目(31270656)

详细信息
    作者简介:

    王丛鹏,博士生。主要研究方向: 植物抗逆分子生物学。Email: wangcongpeng@aliyun.com 地址:100083 北京市海淀区清华东路35号北京林业大学林木育种国家工程实验室。

    通讯作者:

    夏新莉,教授,博士生导师。主要研究方向:植物抗逆分子生物学。Email: xiaxl@bjfu.edu.cn 地址:同上。尹伟伦,教授,博士生导师。主要研究方向:植物生理与生物技术。Email: yinwl@bjfu.edu.cn 地址:同上。

    夏新莉,教授,博士生导师。主要研究方向:植物抗逆分子生物学。Email: xiaxl@bjfu.edu.cn 地址:同上。尹伟伦,教授,博士生导师。主要研究方向:植物生理与生物技术。Email: yinwl@bjfu.edu.cn 地址:同上。

Drought induces alterations in stomatal development in Populus deltoides×P. nigra

  • 摘要: 为了探究干旱对木本植物气孔发育的影响,本文挑选了5个欧美杨无性系NE-19、R270、107、109和111,进行了14d的自然干旱处理及7d的复水处理。结果发现:NE-19、R270与107的光合速率在复水后第5天恢复至处理前水平,气孔导度在第3天恢复至处理前水平,而109与111在复水处理期间光合与气孔导度恢复缓慢。测量各无性系复水后的生长速率,与对照组相比由快到慢依次为NE-19(64.96%)、R270(55.73%)、107(49.87%)、109(35.08%)、111(23.62%)。综合光合、气孔导度与生长的数据,5个无性系耐旱性由强至弱的排序为NE-19、R270、107、109、111。统计5个无性系在处理期间幼叶气孔指数的变化,发现各无性系在干旱期间气孔发育速度均下降。其中NE-19与R270下降最多,分别为30.75%和29.24%,说明耐旱性好的无性系,更善于调节幼叶中的气孔发育来适应外界的水分变化。通过荧光定量PCR检测与气孔发育相关基因ERECTA、EPF1、EPFL9、FAMA、SDD1在处理期间处理组与对照组的表达量差异,发现在干旱期间对气孔发育正调控的EPFL9与FAMA表达量下降,而负调控气孔发育的ERECTA与EPF1表达量上调,在NE-19与R270中的变化幅度尤为明显,而SDD1在整个处理期间表达量没有十分明显的变化。研究发现欧美杨在干旱中可通过调节气孔发育相关基因ERECTA、EPF1、EPFL9和FAMA的表达来抑制幼叶气孔发育,从而减少叶片水分散失以抵御干旱胁迫。
  • [1] COWAN I R, FARQUHAR G D. Stomatal function in relation to leaf metabolism and environment[J]. Symposia of the Society for Experimental Biology, 1977, 31(31):471-505.
    [2] CHAVES M M, MAROCO O P, PEREIRA O S. Understanding plant responses to drought: from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3):239-264.
    [3] PILLITTERI L J, DONG J. Stomatal development in Arabidopsis [J]. Arabidopsis Book, 2012, 11(1):e0066.
    [4] BERGMANN D, SACK F. Stomatal development[J]. Annual Review of Plant Biology, 2007, 58(4):163-181.
    [5] CASSON S A, HETHERINGTON A M. Environmental regulation of stomatal development[J]. Current Opinion in Plant Biology, 2009, 13(1):90-95.
    [6] KENTA H, RYOKO K, TORII K U, et al. The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule[J]. Genes & Development, 2007, 21(14):1720-1725.
    [7] HARA K, YOKOO T, KAJITA R, et al. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves[J]. Plant & Cell Physiology, 2009, 50(6):1019-1031.
    [8] TATSUHIKO K, RYOKO K, AYA M, et al. Stomatal density is controlled by a mesophyll-derived signaling molecule[J]. Plant & Cell Physiology, 2010, 51(1):1-8.
    [9] SUGANO S S, TOMOO S, YU I, et al. Stomagen positively regulates stomatal density in Arabidopsis [J]. Nature, 2010, 463:241-244.
    [10] NADEAU J A, SACK F D. Control of stomatal distribution on the Arabidopsis leaf surface[J]. Science, 2002, 296:1697-1700.
    [11] SHPAK E D, JESSICA M M, LYNN J P, et al. Stomatal patterning and differentiation by synergistic interactions of receptor kinases[J]. Pediatrics, 2005, 115(Suppl.4):1160-1164.
    [12] LEE J S, KUROHA T, HNILOVA M, et al. Direct interaction of ligand-receptor pairs specifying stomatal patterning[J]. Genes & Development, 2012, 26(2):126-136.
    [13] BERGER D, ALTMANN T. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana [J]. Genes & Development, 2000, 14(9):1119-1131.
    [14] URITZA V G, DIETER B, THOMAS A. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development[J]. Plant Cell, 2002, 14(7):1527-1539.
    [15] BERGMANN D C, WOLFGANG L, SOMERVILLE C R. Stomatal development and pattern controlled by a MAPKK kinase[J]. Science, 2004, 304:1494-1497.
    [16] PILLITTERI L, TORII K. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development[J]. Bioessays, 2007, 29(9):861-70.
    [17] WANG H, NGWENYAMA N, LIU Y, et al. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis [J]. Plant Cell, 2007, 19(1):63-73.
    [18] MIYAZAWA S I, TURPIN D H. Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar ( Populus trichocarpa×P. deltoides )[J]. Journal of Experimental Botany, 2006, 57(2):373-380.
    [19] SAKURAI N, AKIYAMA M, KURAISHI S. Irreversible effects of water stress on growth and stomatal development in cotyledons of etiolated squash seedlings[J]. Plant & Cell Physiology, 1986, 27(6):1177-1185.
    [20] QUARRIE S A, JONES H G. Effects of abscisic acid and water stress on development and morphology of wheat [J]. Journal of Experimental Botany, 1977, 28(1): 192-203.
    [21] XU Z, ZHOU G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany, 2008, 59(12): 3317-3325.
    [22] CLIFFORD S C, BLACK C R, ROBERTS J A, et al. The effect of elevated atmospheric CO 2 and drought on stomatal frequency in groundnut ( Arachis hypogaea (L.))[J]. Journal of Experimental Botany, 1995, 46(288): 847-852.
    [23] CASSON S, GRAY J E. Influence of environmental factors on stomatal development[J]. New Phytologist, 2008, 178(1): 9-23.
    [24] SHIMADA T, SUGANO S S, HARA-NISHIMURA I. Positive and negative peptide signals control stomatal density[J]. Cellular and Molecular Life Sciences, 2011, 68(12): 2081-2088.
  • [1] 魏巍, 王百田, 张克斌.  基于SPEI的中亚地区1901—2015年干旱时空趋势分析 . 北京林业大学学报, 2020, 42(4): 113-121. doi: 10.12171/j.1000-1522.20190055
    [2] 靳川, 查天山, 贾昕, 田赟, 周文君, 杨双宝, 郭子繁.  干旱环境3种荒漠灌木叶绿素荧光参数动态 . 北京林业大学学报, 2020, 42(8): 72-80. doi: 10.12171/j.1000-1522.20190316
    [3] 张勇, 胡晓晴, 李豆, 刘雪梅.  白桦BpSPL8启动子的克隆及异源过表达BpSPL8对拟南芥耐旱性的影响 . 北京林业大学学报, 2019, 41(8): 67-75. doi: 10.13332/j.1000-1522.20190137
    [4] 姜礅, 王月月, 严善春.  锌胁迫对银中杨生长发育和化学防御的影响 . 北京林业大学学报, 2018, 40(11): 42-48. doi: 10.13332/j.1000-1522.20180131
    [5] 姚琨, 练从龙, 王菁菁, 王厚领, 刘超, 尹伟伦, 夏新莉.  胡杨PePEX11基因参与调节盐胁迫下拟南芥的抗氧化能力 . 北京林业大学学报, 2018, 40(5): 19-28. doi: 10.13332/j.1000-1522.20180086
    [6] 李双, 苏艳艳, 王厚领, 李惠广, 刘超, 夏新莉, 尹伟伦.  胡杨miR1444b在拟南芥中正调控植物抗旱性 . 北京林业大学学报, 2018, 40(4): 1-9. doi: 10.13332/j.1000-1522.20180043
    [7] 张罡, 安海龙, 史军娜, 刘超, 田菊, 郭惠红, 夏新莉, 尹伟伦.  欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力 . 北京林业大学学报, 2017, 39(4): 46-54. doi: 10.13332/j.1000-1522.20160376
    [8] 贾伏丽, 王丛鹏, 刘沙, 焦志银, 尹伟伦, 夏新莉.  外源BR与IAA对欧美杨耐旱性的影响 . 北京林业大学学报, 2017, 39(7): 31-39. doi: 10.13332/j.1000-1522.20170055
    [9] 黄小辉, 冯大兰, 刘芸, 朱恒星, 陈道静, 耿养会.  模拟石漠化异质生境中桑树的生长和叶绿素荧光特性 . 北京林业大学学报, 2016, 38(10): 50-58. doi: 10.13332/j.1000-1522.20150324
    [10] 牛春阳, 王峰, 李丹蕾, 陈俏丽, 张瑞芝.  C14 族R2R3鄄MYB 基因调控杨树抗锈菌过敏性反应 . 北京林业大学学报, 2016, 38(7): 25-32. doi: 10.13332/j.1000-1522.20150499
    [11] 曲赞霜, 钱婷婷, 侯聪, 张力杰, 魏志刚.  小黑杨碳酸酐酶家族基因表达特性分析 . 北京林业大学学报, 2015, 37(2): 94-99. doi: 10.13332/j.cnki.jbfu.2015.02.016
    [12] 闫绍鹏, 尚艳茹, 冷淑娇, 杨瑞华, 王秋玉.  欧美山杨杂种插穗不定根2个发育时期基因表达谱分析 . 北京林业大学学报, 2015, 37(10): 9-13. doi: 10.13332/j.1000-1522.20130230
    [13] 郭鹏, 邢鑫, 张万筠, 姜健.  欧美杨脱水素PdDHN2b的克隆与表达分析 . 北京林业大学学报, 2015, 37(1): 22-36. doi: 10.13332/j.cnki.jbfu.2015.01.017
    [14] 郭鹏, 张士刚, 邢鑫, 姜健.  欧美杨PdPP2C基因的克隆与功能分析 . 北京林业大学学报, 2015, 37(2): 100-106. doi: 10.13332/j.cnki.jbfu.2015.02.018
    [15] 韩朝, 董慧, 常智慧.  污泥对干旱条件下高羊茅氮素利用的影响 . 北京林业大学学报, 2014, 36(4): 82-87. doi: 10.13332/j.cnki.jbfu.2014.04.016
    [16] 施征, 史胜青, 张志翔, 高荣孚, 肖文发.  干旱与高盐对梭梭叶绿素荧光特性的影响 . 北京林业大学学报, 2012, 34(3): 20-25.
    [17] 陈明涛, 赵忠.  干旱对4种苗木根系特征及各部分物质分配的影响 . 北京林业大学学报, 2011, 33(1): 16-22.
    [18] 牛敏, 高慧, 赵广杰.  欧美杨107应拉木的纤维形态与化学组成 . 北京林业大学学报, 2010, 32(2): 141-144.
    [19] 周成理, 徐基良, 刘秀萍, 徐向舟, 马尔妮, 姚洪军, 雷加富, 何亚平, 王旭, 李瑞, 任琴, 余雁, 白新祥, 宋颖琦, 耿玉清, 武广涛, 王顺忠, 王清奎, 王尚德, 齐实, 惠刚盈, 俞国胜, 白翠霞, 周国逸, 杨莉, 云琦, 杨谦, 费世民, 赵广杰, 徐海, 费本华, 刘大庆, 汪思龙, 崔国发, 张克斌, 胡可, 史军义, 石玉杰, 陈丽华, 康向阳, 王飞, 张红武, 李代丽, 冯宗炜, 孙阁, 孙阁, 宋维峰, 徐秉玖, 胡艳波, 李忠, 蒋俊明, 秦跟基, 陈晓鸣, 赵铁蕊, 戴思兰, 张恒明, 胡永建, 王百田, 张波, 朱金兆, 董占地, 瞿礼嘉, 张德强, 杨晓晖, 王亮生, 易传辉, 陈华君, 王树森, 高荣孚, 张慧, 王戈, 代力民, 陈秀明, 陈峻崎, 王庆礼, 肖玉保, 石雷, 闫俊华, 金幼菊, 武波, 朱明东, 乔锋, 余英, 陈晓阳, 赵辉, 唐森强, 李镇宇, 杨海龙, 杨俊杰, 杨莉, SteveMcNulty.  AtPIP5K2基因参与拟南芥盐胁迫的调节过程 . 北京林业大学学报, 2006, 28(5): 78-83.
    [20] 杨期和, 宗世祥, LIYong-ning, 杨华, 李悦, 韩轶, 李春干, 吴延熊, 王登芝, 孟宪宇, 贾峰勇, 耿宏生, MENGXian-yu, 李崇贵, 瞿超, 叶万辉, 聂立水, 李吉跃, 李吉跃, 张云, 骆有庆, , 景海涛, 续九如, 高润宏, 刘燕, HUANGXuan-rui, , 胡涌, WANGJin-mao, 廖富林, 许志春, 胡磊, 程俊, , 孙丹峰, , 张连生, , 贾黎明, 梁树军, 刘云慧, , 赵世华, , .  水杨酸甲酯诱抗黑杨对杨扇舟蛾生长发育的影响 . 北京林业大学学报, 2005, 27(1): 75-78.
  • 加载中
计量
  • 文章访问数:  467
  • HTML全文浏览量:  74
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-18
  • 修回日期:  2016-02-18
  • 刊出日期:  2016-06-30

干旱对欧美杨气孔发育的影响

doi: 10.13332/j.1000-1522.20160050
    基金项目:

    十二五”

    国家科技支撑计划项目(2015BAD07B01)、国家自然科学基金项目(31270656)

    作者简介:

    王丛鹏,博士生。主要研究方向: 植物抗逆分子生物学。Email: wangcongpeng@aliyun.com 地址:100083 北京市海淀区清华东路35号北京林业大学林木育种国家工程实验室。

    通讯作者: 夏新莉,教授,博士生导师。主要研究方向:植物抗逆分子生物学。Email: xiaxl@bjfu.edu.cn 地址:同上。尹伟伦,教授,博士生导师。主要研究方向:植物生理与生物技术。Email: yinwl@bjfu.edu.cn 地址:同上。; 夏新莉,教授,博士生导师。主要研究方向:植物抗逆分子生物学。Email: xiaxl@bjfu.edu.cn 地址:同上。尹伟伦,教授,博士生导师。主要研究方向:植物生理与生物技术。Email: yinwl@bjfu.edu.cn 地址:同上。

摘要: 为了探究干旱对木本植物气孔发育的影响,本文挑选了5个欧美杨无性系NE-19、R270、107、109和111,进行了14d的自然干旱处理及7d的复水处理。结果发现:NE-19、R270与107的光合速率在复水后第5天恢复至处理前水平,气孔导度在第3天恢复至处理前水平,而109与111在复水处理期间光合与气孔导度恢复缓慢。测量各无性系复水后的生长速率,与对照组相比由快到慢依次为NE-19(64.96%)、R270(55.73%)、107(49.87%)、109(35.08%)、111(23.62%)。综合光合、气孔导度与生长的数据,5个无性系耐旱性由强至弱的排序为NE-19、R270、107、109、111。统计5个无性系在处理期间幼叶气孔指数的变化,发现各无性系在干旱期间气孔发育速度均下降。其中NE-19与R270下降最多,分别为30.75%和29.24%,说明耐旱性好的无性系,更善于调节幼叶中的气孔发育来适应外界的水分变化。通过荧光定量PCR检测与气孔发育相关基因ERECTA、EPF1、EPFL9、FAMA、SDD1在处理期间处理组与对照组的表达量差异,发现在干旱期间对气孔发育正调控的EPFL9与FAMA表达量下降,而负调控气孔发育的ERECTA与EPF1表达量上调,在NE-19与R270中的变化幅度尤为明显,而SDD1在整个处理期间表达量没有十分明显的变化。研究发现欧美杨在干旱中可通过调节气孔发育相关基因ERECTA、EPF1、EPFL9和FAMA的表达来抑制幼叶气孔发育,从而减少叶片水分散失以抵御干旱胁迫。

English Abstract

王丛鹏, 贾伏丽, 刘沙, 刘超, 夏新莉, 尹伟伦. 干旱对欧美杨气孔发育的影响[J]. 北京林业大学学报, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050
引用本文: 王丛鹏, 贾伏丽, 刘沙, 刘超, 夏新莉, 尹伟伦. 干旱对欧美杨气孔发育的影响[J]. 北京林业大学学报, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050
WANG Cong-peng, JIA Fu-li, LIU Sha, LIU Chao, XIA Xin-li, YIN Wei-lun. Drought induces alterations in stomatal development in Populus deltoides×P. nigra[J]. Journal of Beijing Forestry University, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050
Citation: WANG Cong-peng, JIA Fu-li, LIU Sha, LIU Chao, XIA Xin-li, YIN Wei-lun. Drought induces alterations in stomatal development in Populus deltoides×P. nigra[J]. Journal of Beijing Forestry University, 2016, 38(6): 28-34. doi: 10.13332/j.1000-1522.20160050
参考文献 (24)

目录

    /

    返回文章
    返回