-
白桦(Betula platyphylla)是我国东北地区的重要阔叶速生树种之一,其材质优良,既可做单板材,也可做纸浆材, 是重要的工业用材树种[1-2]。我国自“八五”计划开始,分别以白桦优良单板材和纸浆材选育为目标开展了种源试验、家系选择、杂交育种[3]、基因工程育种[4-6]、航天诱变育种[7]等诸多研究,其中白桦纸浆材良种选育方面主要集中于二倍体白桦优良种源选择及家系选择,获得了一批优良种源、家系[8-9]。
为了培育速生、优质、木材品质进一步改良的白桦良种,作者所在团队自2004年开始了倍性育种研究,利用秋水仙素诱导白桦种子培育出200余株四倍体[10-11],根据开花结实及表型特征筛选出部分白桦四倍体并与二倍体白桦定植于温室大棚内,建立了白桦三倍体制种园。家系间的种子活力及生长性状差异显著,这种差异主要是由于双亲的遗传基础不同所致[12-15]。
白桦作为制浆造纸重要树种,建园母树的木材品质至关重要,选择生长及木材品质优良的四倍体是提高杂种子代生长及材性等性状的根本保障。故此,本研究以制种园中四倍体白桦母树为材料,根据生长表现及木材品质进行优良母树的筛选,为后续开展白桦杂交及初级种子园的改建提供参考,同时也为白桦四倍体无性系扩繁提供优良繁殖材料。
-
试验材料为定植于东北林业大学白桦三倍体制种园中31株四倍体白桦,其中7年生母树9株,11年生母树22株,以园中11年生的3株二倍体白桦为对照。标记树干固定位置用于春、秋2次胸径生长量测定,在同一生长方向剪取直径约为2.0 cm的3年生一级侧枝用于材性测定。
-
由于受弧形塑料大棚制种园的限制, 定植在园内的母树进行了不同程度的截干去顶, 因此母树生长性状仅限于胸径生长量调查,即于2014年春、秋2次调查了每株母树的胸径,用二者之差求算胸径的年生长量。树干通直度测定采用3级目测评定法,Ⅰ级:树干通直无弯曲;Ⅱ级:略有一个明显弯曲;Ⅲ级:有2个或2个以上弯曲,或在树干底部有分叉。
-
1) 木材基本密度根据国家标准GB1993—1991测定。在同一生长方向沿基部剪取直径约为2.0 cm的3年生一级侧枝, 从切断处向上切取2.0 cm为试样,利用排水法测量木段体积,随后将试样放入烘箱内烘干直到试样达到全干后称质量(按GB-T 1931—2009中5.2~5.4中规定进行)。木材基本密度=木段全干时质量/木段水分饱和时的体积(g/cm3)。
2) 纤维长度与宽度测定。将木段由髓心向外切削3 mm宽木片, 劈成火柴杆大小细条,离析方法采用桀弗雷法,用体积分数为10%的硝酸和质量分数为10%铬酸等体积混合浸泡样木,浸泡后用清水清洗数次, 用pH试纸检测冲洗液为中性即可。用洁净的吸管吸取少量样木置于洁净载玻片上, 使之分散均匀, 覆上盖玻片,ZE ISS光学显微镜(10×)下测量其纤维的长度及宽度,每个样木随机测定30根完整的纤维。
3) 纤维素、综纤维素、木质素含量采用ANKOM 2000i全自动纤维分析仪按说明书测定。中性洗涤纤维(NDF)分析法消解后剩余残留为半纤维素,纤维素和木质素。酸性洗涤纤维(ADF)分析法消解后剩余残留为纤维素及木质素。酸性洗涤木质素(ADL)法处理后剩余残留物于马弗炉中灰化得到灰分,进而计算得到各组分含量。
半纤维素%= NDF%-ADF%;综纤维素%= NDF%-ADL%;纤维素%= ADF%-ADL%;木质素%= ADL%-灰分%。
-
对百分数据进行反正弦转换,利用Excel和SPSS16.0进行统计分析。
用隶属函数法对母树的多性状指标进行综合评价及筛选。
隶属函数计算:
${X_i} = \left( {{X_{ij}} - {X_{j\min }}} \right)/\left( {{X_{j\max }} - {X_{j\min }}} \right) $
或该指标与纸浆材材性性状为负相关时计算公式:
$ {X_i} = 1 - \left( {{X_{ij}} - {X_{j\min }}} \right)/\left( {{X_{j\max }} - {X_{i\min }}} \right)$
式中:Xij为i品种j指标的测定值;Xjmin和Xjmax为所有母树j指标的最小值和最大值。
-
调查了制种园内各母树胸径的当年生长量及树干通直度(表 1)。分析显示胸径的年生长量在母树间变化较大, 变异幅度为0.64~2.42 cm,生长量≥2.00 cm的母树有8株,且均为四倍体,其中4-36、4-23母树不仅胸径年生长量在2.00 cm以上,而且干型通直,是生长及其他表型性状方面表现最优的母树。另外,还有11株母树的通直度为Ⅰ级,包括了3株二倍体白桦,这些母树是种子园改造时选留的主要对象。
表 1 参试母树胸径年生长量及树干通直度
Table 1. Diameter growth increment and stem straightness of seed trees
母树
Seed tree胸径生长量
DBH growth/cm通直度
Stem straightness4-20 2.42 Ⅲ 4-36 2.22 Ⅰ 4-23 2.19 Ⅰ 4-8 2.12 Ⅱ 4-21 2.1 Ⅲ 4-11 2.06 Ⅲ 4-40 2.01 Ⅲ 4-5 2.00 Ⅲ 4-3 1.81 Ⅱ 2-16 1.77 Ⅰ 4-15 1.76 Ⅲ 4-47 1.76 Ⅰ 4-28 1.68 Ⅰ 2-32 1.63 Ⅰ 4-12 1.61 Ⅰ 4-27 1.58 Ⅱ 4-33 1.57 Ⅲ 4-44 1.57 Ⅲ 4-43 1.48 Ⅲ 2-13 1.47 Ⅰ 4-30 1.46 Ⅲ 4-38 1.43 Ⅲ 4-41 1.41 Ⅲ 4-46 1.40 Ⅲ 4-6 1.37 Ⅲ 4-31 1.34 Ⅲ 4-9 1.22 Ⅰ 4-24 1.19 Ⅰ 4-2 1.14 Ⅲ 4-34 1.14 Ⅲ 4-14 1.02 Ⅲ 4-17 0.87 Ⅰ 4-18 0.80 Ⅰ 4-25 0.64 Ⅰ 注:4-×表示四倍体母树, 2-×表示二倍体母树。下同。Notes:4-×represents tetraploid seed trees, 2-×represents diploid seed trees. The same as below. 对参试母树的木材基本密度、纤维长宽比、木质素、纤维素含量及综纤维素含量等木材品质性状进行了方差分析(表 2),结果表明这些性状在母树间的差异均达到极显著水平(P < 0.01),并且变幅较大,最大值与最小值相差1.28~1.77倍。据此,依据木材品质性状可筛选出优良母树。
表 2 参试白桦木材品质性状方差分析
Table 2. Variance analysis of tested B. platyphylla seed trees
性状
Trait自由度
Degree of freedom平均值
Mean value标准差
Standard deviationF值
F value变异幅度
Variation range最大值/最小值
Max./Min.基本密度Basic density 33 0.38 g/cm 3 0.05 g/cm 3 3.380 ** 0.310~0.508 g/cm 3 1.64 纤维长Fiber length 33 925 μm 128.73 μm 20.114 ** 730~1 040 μm 1.42 纤维长宽比Ratio of fiber length to width 33 60.53 15.79 8.455 ** 52.43~78.46 1.50 木质素含量Content of lignin 33 11.75% 1.88% 7.712 ** 9.08%~16.03% 1.77 纤维素含量Content of cellulose 33 48.75% 0.03% 12.03 ** 40.08%~54.27% 1.35 综纤维素含量Content of holocellulose 33 69.32% 3.77% 11.279 ** 59.11%~75.43% 1.28 注:**表示在P<0.01水平差异显著。Note:**represents the difference was significant at P<0.01 level. 为了筛选优良母树,分别按性状对参试母树进行多重比较及排序(表 3)。结果显示, 每个母树在6个性状中的排列位置几乎都不同, 但总趋势是呈现优良母树各性状均表现优异,如4-23母树的木材基本密度高、纤维长度大、纤维长宽比大及综纤维素含量高、木质素含量低,是单板材和纸浆材性状优良的母树;而劣等母树各性状均表现较差,如4-18母树的木材基本密度处于中等水平,纸浆材性状表现很差,综纤维素含量几乎最低、木质素含量却最高。从多重比较中也发现了不同倍性白桦的规律性变化, 即二倍体白桦的木材基本密度较四倍体白桦高,3个二倍体对照分别排在1、4、5位,其均值为0.453,较总体均值高了19.1%,较四倍体白桦均值提高了21.4%。四倍体白桦的木材基本密度较低,但纸浆材性状较好,在母树中有20株纤维长高于均值,这些母树均为四倍体白桦;纤维素含量、综纤维素含量等性状较高的也是四倍体白桦,因此,四倍体白桦适宜生产纸浆材。
表 3 四倍体白桦母树材性性状的多重比较
Table 3. Multiple comparison of wood traits for tetraploid B. platyphylla seed trees
母树
Seed tree基本密度
Basic density/(g·cm-3)母树
Seed tree纤维长
Fiber length/μm母树
Seed tree纤维长宽比
Ratio of fiber length to width母树
Seed tree纤维素含量
Content of cellulose/%母树
Seed tree综纤维素含量/%
Content of holocellulose/%母树
Seed tree木质素含量
Content of lignin/%2-13 0.508±0.048a 4-23 1 040±131a 4-9 78.46±14.75a 4-30 54.27±1.15a 4-30 75.43±1.21a 4-18 16.03±1.25a 4-36 0.462±0.164ab 4-33 1 033±129ab 2-32 73.75±12.21b 4-47 53.54±1.47ab 4-47 74.38±1.43ab 4-46 15.90±0.17a 4-23 0.432±0.055bc 4-38 1 028±78ab 4-6 68.41±10.9c 4-21 52.19±1.11abc 4-21 74.10±0.95abc 4-41 15.16±0.41ab 2-32 0.428±0.050bcd 4-40 1 025±146ab 4-28 67.81±10.49c 4-41 51.83±0.12abcd 4-41 73.60±0.88abcd 4-2 13.59±0.06bc 2-16 0.422±0.015bcde 4-28 1 016±93abc 4-40 67.4±16.57cd 4-20 51.46±1.48abcde 4-31 73.06±2.37abcde 4-27 13.49±1.76bc 4-9 0.414±0.015bcdef 4-27 1 009±121abcd 4-33 67.18±3.07cd 4-34 51.71±1.54abcde 4-20 72.40±1.65abcdef 4-43 13.28±0.74bcd 4-17 0.412±0.027bcdef 4-30 1 001±155abcde 4-23 67.15±7.81cd 4-24 51.69±0.61abcde 4-38 72.34±0.78abcdef 4-14 13.07±2.14cde 4-43 0.411±0.046bcdef 4-44 988±96abcdef 4-15 65.46±11.22cde 4-31 51.31±2.00bcdef 4-34 72.12±1.43bcdef 4-38 12.78±0.73cdef 4-21 0.408±0.019bcdefg 4-2 973±99bcdefg 4-38 64.41±3.32cdef 4-38 50.70±0.63bcdefg 2-16 71.80±0.26bcdefg 4-33 12.56±0.46cdefg 4-15 0.407±0.026bcdefg 4-47 965±108cdefg 4-20 63.14±4.8defg 2-16 50.60±0.42bcdefg 4-24 71.51±0.74bcdefgh 4-6 12.32±0.86cdefgh 4-28 0.402±0.026bcdefg 4-46 963±112cdefgh 4-36 63.07±7.31defg 4-15 50.52±0.63cdefg 2-13 71.31±1.70bcdefgh 2-16 12.27±0.41cdefgh 4-31 0.401±0.030bcdefg 4-41 958±98cdefgh 4-46 62.98±5.56defg 4-2 50.50±0.09cdefg 4-15 70.96±0.72cdefghi 4-44 12.25±0.60cdefgh 4-8 0.400±0.021bcdefg 4-25 957±111cdefgh 4-18 61.3±8.24efgh 2-13 50.35±1.81cdefgh 4-2 70.41±0.28defghi 4-15 11.87±0.23cdefghi 4-12 0.388±0.034bcdefgh 4-5 956±103cdefgh 2-13 60.75±6.67fghi 4-40 49.95±1.23cdefghi 4-8 70.36±1.80defghi 4-28 11.85±0.56cdefghi 4-46 0.379±0.005cdefgh 4-24 950±75defghi 4-25 59.19±3.14ghij 4-8 49.63±1.45cdefghi 4-9 70.33±0.89defghi 4-17 11.85±0.85cdefghi 4-38 0.378±0.053cdefgh 4-36 947±140defghi 4-11 59.04±4.63ghij 4-23 48.97±1.60defghij 4-23 69.79±1.72efghi 4-25 11.81±1.33cdefghi 4-27 0.377±0.034cdefgh 4-14 947±150defghi 4-21 58.44±5.68hijk 2-32 48.84±1.44defghij 4-12 69.72±0.89efghij 4-12 11.55±0.72cdefghij 4-18 0.376±0.022cdefgh 4-34 944±78efghij 4-17 58.07±4.8hijk 4-9 48.80±0.83defghij 4-17 69.48±1.13fghijk 4-11 11.55±0.87cdefghij 4-33 0.372±0.002cdefgh 4-9 942±83efghij 4-5 57.91±9.49hijk 4-12 48.78±0.91defghij 4-40 69.46±1.44fghijk 2-32 11.28±1.18defghij 4-11 0.371±0.020cdefgh 4-15 927±75fghijk 4-24 57.53±6.96hijk 4-17 48.74±1.02efghij 4-3 69.18±0.86fghijkl 2-13 11.10±1.57efghij 4-6 0.368±0.021cdefgh 4-31 920±65ghijkl 4-30 57.41±3.49hijk 4-25 48.53±1.83fghijk 2-32 69.05±0.91fghijkl 4-3 10.96±0.92fghijk 4-24 0.363±0.022cdefgh 4-43 919±80ghijkl 4-31 57.38±7.58hijk 4-3 48.36±0.59fghijk 4-25 68.39±1.53ghijklm 4-5 10.95±1.16fghijk 4-5 0.360±0.020cdefgh 4-11 918±98ghijkl 4-14 57.28±4.3hijk 4-44 48.22±0.99ghijk 4-44 68.21±0.98hijklm 4-36 10.87±0.83fghijk 4-47 0.355±0.028cdefgh 4-3 903±74hijkl 4-27 57.28±8.59hijk 4-36 48.04±1.40ghijk 4-36 68.19±1.06hijklm 4-9 10.63±0.64ghijk 4-44 0.351±0.016cdefgh 4-18 891±63ijklm 2-16 57.07±7.56hijkl 4-28 47.43±1.04hijk 4-5 67.68±1.77ijklm 4-40 10.46±1.41hijk 4-2 0.347±0.080defgh 4-6 884±90jklm 4-47 56.04±5.74ijkl 4-33 47.08±1.36ijkl 4-33 67.64±1.57ijklm 4-34 10.33±1.19hijk 4-34 0.340±0.011efgh 4-12 875±85klm 4-43 55.68±9.11jkl 4-5 46.35±1.43jklm 4-27 66.26±1.72jklmn 4-24 10.22±0.57ijk 4-20 0.337±0.021fgh 4-8 872±106klm 4-2 55.26±5.45jkl 4-14 46.23±1.89jklm 4-28 66.19±1.31klmn 4-8 10.23±1.11ijk 4-30 0.334±0.018fgh 4-17 866±73lm 4-34 54.72±4.44jkl 4-27 46.11±1.50jklm 4-6 65.89±0.73lmn 4-20 10.21±0.96ijk 4-3 0.327±0.008gh 2-13 834±91m 4-3 54.72±7.6jkl 4-43 45.57±0.94klm 4-14 65.77±1.93lmn 4-21 10.16±0.85ijk 4-14 0.327±0.019gh 2-32 781±102n 4-12 53.78±6.48kl 4-6 44.47±0.76klm 4-11 64.88±7.51mn 4-31 10.06±1.07ijk 4-40 0.326±0.053gh 4-20 747±75n 4-41 53.75±5.42kl 4-11 44.02±5.59lm 4-43 64.87±0.99mn 4-23 9.99±1.71ijk 4-25 0.310±0.015h 2-16 738±45n 4-44 53.65±5.24kl 4-18 42.48±1.15lm 4-18 63.00±1.61n 4-30 9.69±1.05jk 4-41 0.310±0.036h 4-21 730±97n 4-8 52.43±4.54l 4-46 40.08±0.72m 4-46 59.11±1.02o 4-47 9.08±0.92k 平均值
Mean value0.38±0.05 平均值
Mean value925±129 平均值
Mean value60.53±15.79 平均值
Mean value48.75±0.03 平均值
Mean value69.32±3.77 平均值
Mean value11.75±1.88 -
由上述各性状方差分析及多重比较排序结果,并不能清晰的判别母树的优劣,各性状间的关系也不清楚,因此有必要通过相关性分析,研究各性状之间是否存在某种相关关系(表 4)。
表 4 参试白桦母树各性状间相关性分析
Table 4. Correlation analysis of tested B. platyphylla seed trees
性状Trait 木质素含量
Content of lignin综纤维素含量
Content of holocellulose纤维素含量
Content of cellulose基本密度
Basic density胸径生长量
DBH growth纤维长
Fiber length纤维长宽比
Ratio of fiber length to width木质素含量Content of lignin 1 -0.570 ** -0.574 ** -0.081 -0.426 * 0.111 -0.016 综纤维素含量Content of holocellulose 1 0.980 ** -0.069 0.100 -0.099 -0.213 纤维素含量Content of cellulose 1 -0.116 0.107 -0.059 -0.190 基本密度Basic density 1 0.259 -0.354 * 0.335 胸径生长量DBH growth 1 -0.096 0.070 纤维长Fiber length 1 0.143 纤维长宽比Ratio of fiber length to width 1 注:**表示在P<0.01水平上极显著相关, *表示在P<0.05水平上显著相关。Notes: **represents significant correlation at P<0.01 level, * represents significant correlation at P<0.05 level. 各性状相关分析表明,木质素含量与纤维素含量、综纤维素含量、胸径年生长量间存在着显著的负相关关系,木材基本密度与纤维长度间存在显著负相关关系,综纤维素含量与纤维素含量间呈显著正相关关系,其他性状间尚未存在明显的相关性。相关分析表明,木质素含量低的母树,其纤维素及综纤维素含量高,胸径年生长量也大;这种相关关系正是纸浆材的选育目标,并且可以进行联合选择。
-
纸浆材的选育目标以生长量大、干形通直、木材品质优良为基础。因此,试验以胸径年生长量作为生长量的指标,选择木材密度大、纤维长度长、纤维长宽比值高、综纤维素含量高,木质素含量低的母树。
采用模糊数学隶属函数法的综合评价指数对34株母树进行评定,由于综纤维素含量与纤维素含量间呈显著正相关关系(表 4),因此,在综合评价时只需考虑综纤维素含量,综合评价中对胸径年生长量给予0.2的权重值。木材基本密度、纤维长度、纤维长宽比、综纤维素含量及木质素含量分别给予0.16的权重值。根据模糊隶属函数法算出的各性状标准化值乘以参试指标在评价体系中的权重值, 获得白桦母树各指标隶属函数均值(表 5),根据隶属函数均值将参试母树评为优秀、良好、一般、较差等4类。即将隶属函数均值为0.6及0.6以上的7株母树评为最优;由于4-40和4-15母树的通直度较差(表 1),因此,将它们划为良好。入选的4-23、4-36、4-9、4-47和4-28等5株最优母树,它们的胸径年生长量均值较群体均值高15.29%,木材基本密度、纤维长度、纤维长宽比、综纤维素含量均值分别较群体均值高7.89%、6.16%、9.88%、0.66%,木质素含量较群体均值降低了10.81%。隶属函数均值小于0.6≥0.5的母树评为良好,包括2-13、4-30、4-38、2-32、4-20、4-33、4-21、4-8、4-31、4-5、4-11、4-24等12株母树,加上4-40和4-15母树,共14株良好母树。隶属函数值小于0.4的母树评定为较差母树,将被淘汰。
表 5 参试母树隶属函数均值及综合评价
Table 5. Average membership function and comprehensive evaluation of tested seed trees
母树
Seed tree隶属函数均值
Mean value of membership funtion排序
Priority综合评价
Comprehensive assessment母树
Seed tree隶属函数均值
Mean value of membership funtion排序
Priority综合评价
Comprehensive assessment4-23 0.76 1 优秀Excellent 4-11 0.52 18 良好Good 4-36 0.68 2 优秀Excellent 4-24 0.5 19 良好Good 4-9 0.65 3 优秀Excellent 4-3 0.47 20 一般Common 4-40 0.65 4 良好Good 4-27 0.47 21 一般Common 4-47 0.61 5 优秀Excellent 4-34 0.46 22 一般Common 4-15 0.6 6 良好Good 4-12 0.46 23 一般Common 4-28 0.6 7 优秀Excellent 4-6 0.46 24 一般Common 2-13 0.59 8 良好Good 2-16 0.46 25 一般Common 4-30 0.58 9 良好Good 4-44 0.45 26 一般Common 4-38 0.58 10 良好Good 4-43 0.41 27 一般Common 2-32 0.57 11 良好Good 4-17 0.41 28 一般Common 4-20 0.56 12 良好Good 4-2 0.4 29 一般Common 4-33 0.56 13 良好Good 4-41 0.38 30 较差Poor 4-21 0.56 14 良好Good 4-25 0.35 31 较差Poor 4-8 0.55 15 良好Good 4-14 0.33 32 较差Poor 4-31 0.55 16 良好Good 4-46 0.33 33 较差Poor 4-5 0.54 17 良好Good 4-18 0.25 34 较差Poor -
在木材品质评价指标中,纤维形态指标与木浆造纸的质量息息相关,其中纤维长度与纸张强度呈正线性相关[16],纤维长宽比值也很重要,其比值愈大,纤维间交织次数就愈越多,最终成纸时强度也大,所以纤维形态是衡量纸浆用材树种优劣的重要指标之一[17]。先前开展白桦纸浆材选择时,二倍体白桦纤维长最大值为775.24 μm[8];纤维长宽比在最高家系里为56.04[2]。本文显示,白桦染色体加倍后对纤维长度影响显著,多数四倍体白桦纤维长度明显增长,有77.42%的四倍体白桦纤维长显著高于二倍体(表 3),其中,4-9四倍体白桦的纤维长宽比为78.46,比先前测定的纤维长宽比值最高的二倍体家系高40%,说明4-9母树在纤维长宽比特性方面变异较大。
综纤维素是植物原料中的全部碳水化合物,与纸浆得率直接相关,通常用作制浆造纸的优良阔叶材,其综纤维素含量在70%以上,纤维素含量在50%以上[18-21],参试的四倍体白桦中有13株母树综纤维素含量高于70%,12株母树纤维素含量高于50%,进一步表明在四倍体母树中可选出用于纸浆材的优良母树。
木质素是构成植物细胞壁的主要成分之一,木质素也是在制浆造纸中需要除去的成分,若原料中木素含量较高的话,将造成制浆及漂白困难等一系列问题,因此,作为优良的制浆造纸原料木质素含量愈低愈好[22]。四倍体白桦中木质素含量低于10%的母树是4-23、4-30、4-47,其木质素含量均值较含量最高的母树降低了40.17%。虽然木质素是制浆中弃除的成分,但是,对于植物来说木质素仍至关重要,当细胞壁缺乏木质素时,导管细胞因缺少支撑而导致崩塌[23],从而影响植物的输水功能及正常生长。因此,寻找一种在不降低木质素含量的前提下,通过优化林木木质素单体比例,获得适合于制浆造纸的白桦品种是我们的努力方向。
总之,从纸浆材选育目标来看,34株母树中4-23、4-36、4-9、4-40、4-47、4-15、4-28、2-13、4-30、4-38、2-32、4-20、4-33、4-21、4-8、4-31、4-5、4-11、4-24等19株母树胸径生长较快、木材纤维长、纤维长宽比大、综纤维素含量高、木质素含量低,这些入选母树中包括了一些树干通直度较差的四倍体白桦;但作为纸浆材对该性状的要求可适当放宽,据此,初步选择上述19株母树为纸浆材的优良母树。作为种子园的制种母树,不仅木材品质优良、生长快,同时还应关注其子代特性,因此,对园中母树开展子代测定是必要环节,目前,由于白桦四倍体染色体倍性的增加,进入开花结实期较晚,随着产种母树的陆续增加,在园中母树进入规模性结实时,入选的优良母树可做为母本与二倍体白桦杂交,通过三倍体子代生长、材性等性状的测定,进一步探讨纸浆材性状在亲本与子代间的相关性,同时对入选优良母树再度进行评价。
Comparison of tetraploid Betula platyphylla wood fiber traits and selection of superior seed trees
-
摘要: 为选出不仅生长速度快而且木材纤维性状表现优良适于制浆造纸的四倍体白桦母树。以制种园中31株四倍体白桦为研究对象,测量其胸径生长指标,测定木材密度、纤维长度、纤维宽度以及木质素、纤维素、综纤维素含量等木材品质指标,并对其进行了方差分析和多重比较。结果显示:各性状在母树间的差异均达到极显著水平(P<0.01),在31株四倍体母树中24株的纤维长显著高于二倍体对照。有13株母树综纤维素含量大于70%,12株母树纤维素含量高于50%,说明白桦染色体加倍后对木材纤维性状影响显著,在四倍体母树中可选出用于纸浆材的优良母树。参试母树胸径生长量为2.00或2.00 cm以上的有8株母树,并且均为四倍体白桦;根据胸径生长量及材性指标,采用隶属函数法对参试母树进行综合评价,表现最优的7株母树均为四倍体母树,说明染色体加倍可提高白桦的生长量及木材品质。虽然四倍体在树干通直度方面表现较差,仅有42%母树通直度为Ⅱ级或Ⅰ级,但作为纸浆材对该性状的要求可适当放宽,最后初步选出19株母树生长和材性均表现优良,其中5株兼具生长、材性、干型最优。在种子园中,生长及材性性状表现均较差的5株四倍体母树将被淘汰。Abstract: In this paper, we compared 31 tetraploid seed trees and three diploid Betula platyphylla seed trees in terms of their wood property traits and growth characteristics. The measured traits include DBH growth increment, stem straightness, wood density, fiber length, ratio of fiber length to width, content of lignin, cellulose, and holocellulose. The measured data were then analyzed in terms of variance with multiple comparisons. The results showed as the following: the differences in traits among the seed trees reached a significant level (P < 0.01). Of the 31 tetraploid seed trees, the fiber length of 24 was significantly higher than that of the diploid birch. In addition, the cellulose content of 13 seed trees was greater than 70%, and that of 12 was higher than 50%, which indicated that birch had significant effects on the traits of wood fiber after chromosome doubling, thus we can choose the good seed trees used for pulp material in tetraploid trees. Among the experimental seed trees, there were eight seed trees with a DBH amount of 2.00 cm or above, and all of them were tetraploid birch. According to the DBH growth and wood traits, using the subordinate function to comprehensively evaluate the experimental seed trees, the results showed that: the seven best performing birch seed trees were all tetraploid seed trees, which indicated that chromosome doubling can improve the growth of birch trees and the material properties of pulp and paper. Although the performance in terms of stem straightness was poor, with only 42% of the seed trees having straightnesses of grade Ⅱ orⅠ, but as pulpwood, the requirements of traits may be less strict. Finally, 19 seed trees were preliminary selected, of which the DBH growth and wood traits were all excellent, and five of them had optimal performance in terms of growth, wood properties and trunk shape. In the seed orchard, five tetraploid seed trees which have poor growth and wood properties will be eliminated.
-
Key words:
- tetraploid Betula platyphylla /
- fiber trait /
- comprehensive assessment /
- seed tree
-
表 1 参试母树胸径年生长量及树干通直度
Table 1. Diameter growth increment and stem straightness of seed trees
母树
Seed tree胸径生长量
DBH growth/cm通直度
Stem straightness4-20 2.42 Ⅲ 4-36 2.22 Ⅰ 4-23 2.19 Ⅰ 4-8 2.12 Ⅱ 4-21 2.1 Ⅲ 4-11 2.06 Ⅲ 4-40 2.01 Ⅲ 4-5 2.00 Ⅲ 4-3 1.81 Ⅱ 2-16 1.77 Ⅰ 4-15 1.76 Ⅲ 4-47 1.76 Ⅰ 4-28 1.68 Ⅰ 2-32 1.63 Ⅰ 4-12 1.61 Ⅰ 4-27 1.58 Ⅱ 4-33 1.57 Ⅲ 4-44 1.57 Ⅲ 4-43 1.48 Ⅲ 2-13 1.47 Ⅰ 4-30 1.46 Ⅲ 4-38 1.43 Ⅲ 4-41 1.41 Ⅲ 4-46 1.40 Ⅲ 4-6 1.37 Ⅲ 4-31 1.34 Ⅲ 4-9 1.22 Ⅰ 4-24 1.19 Ⅰ 4-2 1.14 Ⅲ 4-34 1.14 Ⅲ 4-14 1.02 Ⅲ 4-17 0.87 Ⅰ 4-18 0.80 Ⅰ 4-25 0.64 Ⅰ 注:4-×表示四倍体母树, 2-×表示二倍体母树。下同。Notes:4-×represents tetraploid seed trees, 2-×represents diploid seed trees. The same as below. 表 2 参试白桦木材品质性状方差分析
Table 2. Variance analysis of tested B. platyphylla seed trees
性状
Trait自由度
Degree of freedom平均值
Mean value标准差
Standard deviationF值
F value变异幅度
Variation range最大值/最小值
Max./Min.基本密度Basic density 33 0.38 g/cm 3 0.05 g/cm 3 3.380 ** 0.310~0.508 g/cm 3 1.64 纤维长Fiber length 33 925 μm 128.73 μm 20.114 ** 730~1 040 μm 1.42 纤维长宽比Ratio of fiber length to width 33 60.53 15.79 8.455 ** 52.43~78.46 1.50 木质素含量Content of lignin 33 11.75% 1.88% 7.712 ** 9.08%~16.03% 1.77 纤维素含量Content of cellulose 33 48.75% 0.03% 12.03 ** 40.08%~54.27% 1.35 综纤维素含量Content of holocellulose 33 69.32% 3.77% 11.279 ** 59.11%~75.43% 1.28 注:**表示在P<0.01水平差异显著。Note:**represents the difference was significant at P<0.01 level. 表 3 四倍体白桦母树材性性状的多重比较
Table 3. Multiple comparison of wood traits for tetraploid B. platyphylla seed trees
母树
Seed tree基本密度
Basic density/(g·cm-3)母树
Seed tree纤维长
Fiber length/μm母树
Seed tree纤维长宽比
Ratio of fiber length to width母树
Seed tree纤维素含量
Content of cellulose/%母树
Seed tree综纤维素含量/%
Content of holocellulose/%母树
Seed tree木质素含量
Content of lignin/%2-13 0.508±0.048a 4-23 1 040±131a 4-9 78.46±14.75a 4-30 54.27±1.15a 4-30 75.43±1.21a 4-18 16.03±1.25a 4-36 0.462±0.164ab 4-33 1 033±129ab 2-32 73.75±12.21b 4-47 53.54±1.47ab 4-47 74.38±1.43ab 4-46 15.90±0.17a 4-23 0.432±0.055bc 4-38 1 028±78ab 4-6 68.41±10.9c 4-21 52.19±1.11abc 4-21 74.10±0.95abc 4-41 15.16±0.41ab 2-32 0.428±0.050bcd 4-40 1 025±146ab 4-28 67.81±10.49c 4-41 51.83±0.12abcd 4-41 73.60±0.88abcd 4-2 13.59±0.06bc 2-16 0.422±0.015bcde 4-28 1 016±93abc 4-40 67.4±16.57cd 4-20 51.46±1.48abcde 4-31 73.06±2.37abcde 4-27 13.49±1.76bc 4-9 0.414±0.015bcdef 4-27 1 009±121abcd 4-33 67.18±3.07cd 4-34 51.71±1.54abcde 4-20 72.40±1.65abcdef 4-43 13.28±0.74bcd 4-17 0.412±0.027bcdef 4-30 1 001±155abcde 4-23 67.15±7.81cd 4-24 51.69±0.61abcde 4-38 72.34±0.78abcdef 4-14 13.07±2.14cde 4-43 0.411±0.046bcdef 4-44 988±96abcdef 4-15 65.46±11.22cde 4-31 51.31±2.00bcdef 4-34 72.12±1.43bcdef 4-38 12.78±0.73cdef 4-21 0.408±0.019bcdefg 4-2 973±99bcdefg 4-38 64.41±3.32cdef 4-38 50.70±0.63bcdefg 2-16 71.80±0.26bcdefg 4-33 12.56±0.46cdefg 4-15 0.407±0.026bcdefg 4-47 965±108cdefg 4-20 63.14±4.8defg 2-16 50.60±0.42bcdefg 4-24 71.51±0.74bcdefgh 4-6 12.32±0.86cdefgh 4-28 0.402±0.026bcdefg 4-46 963±112cdefgh 4-36 63.07±7.31defg 4-15 50.52±0.63cdefg 2-13 71.31±1.70bcdefgh 2-16 12.27±0.41cdefgh 4-31 0.401±0.030bcdefg 4-41 958±98cdefgh 4-46 62.98±5.56defg 4-2 50.50±0.09cdefg 4-15 70.96±0.72cdefghi 4-44 12.25±0.60cdefgh 4-8 0.400±0.021bcdefg 4-25 957±111cdefgh 4-18 61.3±8.24efgh 2-13 50.35±1.81cdefgh 4-2 70.41±0.28defghi 4-15 11.87±0.23cdefghi 4-12 0.388±0.034bcdefgh 4-5 956±103cdefgh 2-13 60.75±6.67fghi 4-40 49.95±1.23cdefghi 4-8 70.36±1.80defghi 4-28 11.85±0.56cdefghi 4-46 0.379±0.005cdefgh 4-24 950±75defghi 4-25 59.19±3.14ghij 4-8 49.63±1.45cdefghi 4-9 70.33±0.89defghi 4-17 11.85±0.85cdefghi 4-38 0.378±0.053cdefgh 4-36 947±140defghi 4-11 59.04±4.63ghij 4-23 48.97±1.60defghij 4-23 69.79±1.72efghi 4-25 11.81±1.33cdefghi 4-27 0.377±0.034cdefgh 4-14 947±150defghi 4-21 58.44±5.68hijk 2-32 48.84±1.44defghij 4-12 69.72±0.89efghij 4-12 11.55±0.72cdefghij 4-18 0.376±0.022cdefgh 4-34 944±78efghij 4-17 58.07±4.8hijk 4-9 48.80±0.83defghij 4-17 69.48±1.13fghijk 4-11 11.55±0.87cdefghij 4-33 0.372±0.002cdefgh 4-9 942±83efghij 4-5 57.91±9.49hijk 4-12 48.78±0.91defghij 4-40 69.46±1.44fghijk 2-32 11.28±1.18defghij 4-11 0.371±0.020cdefgh 4-15 927±75fghijk 4-24 57.53±6.96hijk 4-17 48.74±1.02efghij 4-3 69.18±0.86fghijkl 2-13 11.10±1.57efghij 4-6 0.368±0.021cdefgh 4-31 920±65ghijkl 4-30 57.41±3.49hijk 4-25 48.53±1.83fghijk 2-32 69.05±0.91fghijkl 4-3 10.96±0.92fghijk 4-24 0.363±0.022cdefgh 4-43 919±80ghijkl 4-31 57.38±7.58hijk 4-3 48.36±0.59fghijk 4-25 68.39±1.53ghijklm 4-5 10.95±1.16fghijk 4-5 0.360±0.020cdefgh 4-11 918±98ghijkl 4-14 57.28±4.3hijk 4-44 48.22±0.99ghijk 4-44 68.21±0.98hijklm 4-36 10.87±0.83fghijk 4-47 0.355±0.028cdefgh 4-3 903±74hijkl 4-27 57.28±8.59hijk 4-36 48.04±1.40ghijk 4-36 68.19±1.06hijklm 4-9 10.63±0.64ghijk 4-44 0.351±0.016cdefgh 4-18 891±63ijklm 2-16 57.07±7.56hijkl 4-28 47.43±1.04hijk 4-5 67.68±1.77ijklm 4-40 10.46±1.41hijk 4-2 0.347±0.080defgh 4-6 884±90jklm 4-47 56.04±5.74ijkl 4-33 47.08±1.36ijkl 4-33 67.64±1.57ijklm 4-34 10.33±1.19hijk 4-34 0.340±0.011efgh 4-12 875±85klm 4-43 55.68±9.11jkl 4-5 46.35±1.43jklm 4-27 66.26±1.72jklmn 4-24 10.22±0.57ijk 4-20 0.337±0.021fgh 4-8 872±106klm 4-2 55.26±5.45jkl 4-14 46.23±1.89jklm 4-28 66.19±1.31klmn 4-8 10.23±1.11ijk 4-30 0.334±0.018fgh 4-17 866±73lm 4-34 54.72±4.44jkl 4-27 46.11±1.50jklm 4-6 65.89±0.73lmn 4-20 10.21±0.96ijk 4-3 0.327±0.008gh 2-13 834±91m 4-3 54.72±7.6jkl 4-43 45.57±0.94klm 4-14 65.77±1.93lmn 4-21 10.16±0.85ijk 4-14 0.327±0.019gh 2-32 781±102n 4-12 53.78±6.48kl 4-6 44.47±0.76klm 4-11 64.88±7.51mn 4-31 10.06±1.07ijk 4-40 0.326±0.053gh 4-20 747±75n 4-41 53.75±5.42kl 4-11 44.02±5.59lm 4-43 64.87±0.99mn 4-23 9.99±1.71ijk 4-25 0.310±0.015h 2-16 738±45n 4-44 53.65±5.24kl 4-18 42.48±1.15lm 4-18 63.00±1.61n 4-30 9.69±1.05jk 4-41 0.310±0.036h 4-21 730±97n 4-8 52.43±4.54l 4-46 40.08±0.72m 4-46 59.11±1.02o 4-47 9.08±0.92k 平均值
Mean value0.38±0.05 平均值
Mean value925±129 平均值
Mean value60.53±15.79 平均值
Mean value48.75±0.03 平均值
Mean value69.32±3.77 平均值
Mean value11.75±1.88 表 4 参试白桦母树各性状间相关性分析
Table 4. Correlation analysis of tested B. platyphylla seed trees
性状Trait 木质素含量
Content of lignin综纤维素含量
Content of holocellulose纤维素含量
Content of cellulose基本密度
Basic density胸径生长量
DBH growth纤维长
Fiber length纤维长宽比
Ratio of fiber length to width木质素含量Content of lignin 1 -0.570 ** -0.574 ** -0.081 -0.426 * 0.111 -0.016 综纤维素含量Content of holocellulose 1 0.980 ** -0.069 0.100 -0.099 -0.213 纤维素含量Content of cellulose 1 -0.116 0.107 -0.059 -0.190 基本密度Basic density 1 0.259 -0.354 * 0.335 胸径生长量DBH growth 1 -0.096 0.070 纤维长Fiber length 1 0.143 纤维长宽比Ratio of fiber length to width 1 注:**表示在P<0.01水平上极显著相关, *表示在P<0.05水平上显著相关。Notes: **represents significant correlation at P<0.01 level, * represents significant correlation at P<0.05 level. 表 5 参试母树隶属函数均值及综合评价
Table 5. Average membership function and comprehensive evaluation of tested seed trees
母树
Seed tree隶属函数均值
Mean value of membership funtion排序
Priority综合评价
Comprehensive assessment母树
Seed tree隶属函数均值
Mean value of membership funtion排序
Priority综合评价
Comprehensive assessment4-23 0.76 1 优秀Excellent 4-11 0.52 18 良好Good 4-36 0.68 2 优秀Excellent 4-24 0.5 19 良好Good 4-9 0.65 3 优秀Excellent 4-3 0.47 20 一般Common 4-40 0.65 4 良好Good 4-27 0.47 21 一般Common 4-47 0.61 5 优秀Excellent 4-34 0.46 22 一般Common 4-15 0.6 6 良好Good 4-12 0.46 23 一般Common 4-28 0.6 7 优秀Excellent 4-6 0.46 24 一般Common 2-13 0.59 8 良好Good 2-16 0.46 25 一般Common 4-30 0.58 9 良好Good 4-44 0.45 26 一般Common 4-38 0.58 10 良好Good 4-43 0.41 27 一般Common 2-32 0.57 11 良好Good 4-17 0.41 28 一般Common 4-20 0.56 12 良好Good 4-2 0.4 29 一般Common 4-33 0.56 13 良好Good 4-41 0.38 30 较差Poor 4-21 0.56 14 良好Good 4-25 0.35 31 较差Poor 4-8 0.55 15 良好Good 4-14 0.33 32 较差Poor 4-31 0.55 16 良好Good 4-46 0.33 33 较差Poor 4-5 0.54 17 良好Good 4-18 0.25 34 较差Poor -
[1] 杨传平, 杨晶, 寇晓东, 等.白桦木材纤维与生长特性的遗传差异[J].东北林业大学学报, 1992, 20(6): 6-14. YANG C P, YANG J, KOU X D, et al. Genetic differences of birch wood fiber and growth characteristics[J]. Journal of Northeast Forestry University, 1992, 20(6): 6-14. [2] 祝泽兵, 刘桂丰, 姜静, 等.小兴安岭地区白桦纸浆材优良家系选择[J].东北林业大学学报, 2009, 37(11):1-10. doi: 10.3969/j.issn.1000-5382.2009.11.001 ZHU Z B, LIU G F, JIANG J, et al.Preliminary selection of Betula platyphylla superior family for pulpwood production[J].Journal of Northeast Forestry University, 2009, 37(11):1-10. doi: 10.3969/j.issn.1000-5382.2009.11.001 [3] 王成, 滕文华, 李开隆, 等.白桦5×5双列杂交子代生长性状的遗传效应分析[J].北京林业大学学报, 2011, 33(3):14-20. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201103003 WANG C, TENG W H, LI K L, et al. Analysis ofgenetic effects on growth traits in a 5×5 diallel cross of Betula platyphylla[J].Journal of Beijing Forestry University, 2011, 33(3):14-20. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201103003 [4] HUANG H J, WANG S, JIANG J, et al. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla×B. pendula[J].Physiol Plant, 2014, 151: 495-506. doi: 10.1111/ppl.12123 [5] YANG G, CHEN S, WANG S, et al. BpGH3.5, an early auxin-response gene, regulates root elongation in Betula platyphylla×Betula pendula[J]. Plant Cell Tiss Organ Cult, 2015, 20: 239-250. doi: 10.1007/s11240-014-0599-9 [6] ZHANG W B, WEI R, CHEN S, et al.Functional characterization of cinnamoyl-CoA reductase (CCR) in birch (B.platyphylla×B.pendula) through overexpression and suppression analysis[J]. Physiol Plant, 2015, 154:283-296 https://www.ncbi.nlm.nih.gov/pubmed/25393559 [7] 黄海娇, 李开隆, 刘桂丰, 等.航天搭载白桦种子早期生长性状的初步研究[J].核农学报, 2010, 24(6):1148-1151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201006007 HUANG H J, LI K L, LIU G F, et al. Preliminary study on early growth traits of Betula platyphylla seeds carried by space satellite[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(6):1148-1151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201006007 [8] 宁坤, 刘笑平, 林永红, 等.白桦子代遗传变异与纸浆材优良种质选择[J].植物研究, 2015, 35(1): 39-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyj201501008 NING K, LIU X P, LIN Y H, et al. Germplasm selection of the progeny genetic variation and superior pulpwood of Betula platyphylla[J].Bulletin of Botanical Research, 2015, 35(1): 39-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyj201501008 [9] 穆怀志, 刘桂丰, 姜静, 等.白桦半同胞子代生长及木材纤维性状变异分析[J].东北林业大学学报, 2009, 37(3):1-8. doi: 10.3969/j.issn.1000-5382.2009.03.001 MU H Z, LIU G F, JIANG J, et al.Variation analysis of Betula platyphylla half-sib family progeny growth and wood fiber traits[J].Journal of Northeast Forestry University, 2009, 37(3):1-8. doi: 10.3969/j.issn.1000-5382.2009.03.001 [10] 刘福妹, 穆怀志, 刘子嘉, 等.用秋水仙素处理不同家系白桦种子诱导四倍体的研究[J].北京林业大学学报, 2013, 35(3): 84-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201303012 LIU F M, MU H Z, LIU Z J, et al.Inducing tetraploid of Betula platyphylla with different generations of seeds by colchicines[J].Journal of Beijing Forestry University, 2013, 35(3): 84-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201303012 [11] 多倍体白桦的诱导及其生长、光合特性的分析[D].哈尔滨: 东北林业大学, 2010: 1-69. MU H Z. Inducement growth and photosynthetic character study on polyploid Betula platyphylla[D].Harbin: Northeast Forestry University, 2010: 1-69. [12] MU H Z, LIU Z J, LIN L, et al. Transcriptomic analysis of phenotypic changes in birch (Betula platyphylla) autotetraploids[J]. International Journal of Molecular Sciences, 2012, 13:13012-13029. [13] 王遂, 赵慧, 杨传平, 等.四倍体桦树树皮中三萜化合物的测定与评价[J].北京林业大学学报, 2015, 37(8):53-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201509007 WANG S, ZHAO H, YANG C P, et al. Analysis and evaluation of triterpenoids in tetraploidbirch(Betula)[J]. Journal of Beijing Forestry University, 2015, 37(8):53-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201509007 [14] 林琳, 穆怀志, 姚启超, 等.白桦不同杂交组合三倍体子代当年生苗木生长性状分析[J].北京林业大学学报, 2012, 34(5):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201205002 LIN L, MU H Z, YAO Q C, et al. Growth traits of triploid progenies in one year old from different crosses of Betula platyphylla Suk[J].Journal of Beijing Forestry University, 2012, 34(5):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201205002 [15] 刘宇, 徐焕文, 姜静, 等.基于种子活力及苗期生长性状的白桦四倍体半同胞家系初选[J].北京林业大学学报, 2014, 34(2):74-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201402011 LIU Y, XU H W, JIANG J, et al.Family selection of birch tetraploid half-sibling based on seed vigor and seedling growth traits[J]. Journal of Beijing Forestry University, 2014, 34(2):74-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201402011 [16] 曾广植.对用纸浆纤维筛分组分评价纸张综合强度影响关系的探讨[J].纸和造纸, 2006, 25(5):74-75. doi: 10.3969/j.issn.1001-6309.2006.05.029 ZENG G Z.The discussion of using pulp fiber fraction to estimate the paper comprehensive strength[J].Paper and Paper Making, 2006, 25(5):74-75. doi: 10.3969/j.issn.1001-6309.2006.05.029 [17] 张平东, 吴峰, 康向阳, 等.三倍体白杨杂种无性系的纤维性状遗传变异研究[J].西南林学院学报, 2014, 29(1):78-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xblxyxb201401016 ZHANG P D, WU F, KANG X Y, et al.Genetic variation of fiber properties of triploid hybrid clones of white poplar[J].Journal of Northwest Forestry University, 2014, 29(1):78-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xblxyxb201401016 [18] 李晶, 王福森, 李树森, 等.黑龙江省主要杨树纤维用材品种纸浆性能综合评价[J].防护林科技, 2013(3):17-20. doi: 10.3969/j.issn.1005-5215.2013.03.006 LI J, WANG F S, LI S S, et al. Comprehensive evaluation on pulp properties for fiber timber varieties of poplar in Heilongjiang Province[J].Protection Forest Science and Technology, 2013(3):17-20. doi: 10.3969/j.issn.1005-5215.2013.03.006 [19] 张平冬, 姚胜, 康向阳, 等.三倍体毛白杨超短轮伐纸浆材基本密度及化学成分分析[J].林业科学, 2011, 47(11):133-138. doi: 10.11707/j.1001-7488.20111121 ZHANG P D, YAO S, KANG X Y, et al.Wood basic density and chemical components in intensive short-rotation pulpwood plantations of triploid hybrids of Populus tomentosa[J].Scientia Silvae Sinicae, 2011, 47(11):133-138. doi: 10.11707/j.1001-7488.20111121 [20] 孙晓梅.日本落叶松纸浆材优良家系选择及家系生长模型的研究[D].北京: 中国林业科学研究院, 2003: 81-87. SUN X M.Selection of superior larix kaempferi families for pulpwood purpose and family-based growth simulation[D]. Beijing: Chinese Academy of Forestry, 2003: 81-87. [21] 李巍巍.不同种源长白落叶松生长与纸浆材材性研究[D].哈尔滨: 东北林业大学, 2009: 30-33. LI W W. Research on the growth and pulpwood properties of different provenances of Larix olgensis Henry[D].Harbin: Northeast Forestry University, 2009: 30-33. [22] 邓拥军, 房桂干, 韩善明, 等.不同桉木化学机械法制浆性能的研究[J].林产化学与工业, 2015, 35(1):63-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lchxygy201501010 DENG Y J, FANG G G, HAN S M, et al.Variation of chemi-mechanical pulping properties from several Eucalyptus spp.woodchips[J].Chemistry and Industry of Forest Products, 2015, 35(1):63-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lchxygy201501010 [23] THOMAS G, RICHARD S, BRIGITTE P, et al. A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoylesters[J]. Plant Molecular Biology, 2003, 51(6):973-989. doi: 10.1023/A:1023022825098 -