高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮添加对典型阔叶红松林净初级生产力的影响

毛宏蕊 金光泽

毛宏蕊, 金光泽. 氮添加对典型阔叶红松林净初级生产力的影响[J]. 北京林业大学学报, 2017, 39(8): 42-49. doi: 10.13332/j.1000-1522.20160193
引用本文: 毛宏蕊, 金光泽. 氮添加对典型阔叶红松林净初级生产力的影响[J]. 北京林业大学学报, 2017, 39(8): 42-49. doi: 10.13332/j.1000-1522.20160193
MAO Hong-rui, JIN Guang-ze. Impacts of nitrogen addition on net primary productivity in the typical mixed broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2017, 39(8): 42-49. doi: 10.13332/j.1000-1522.20160193
Citation: MAO Hong-rui, JIN Guang-ze. Impacts of nitrogen addition on net primary productivity in the typical mixed broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2017, 39(8): 42-49. doi: 10.13332/j.1000-1522.20160193

氮添加对典型阔叶红松林净初级生产力的影响

doi: 10.13332/j.1000-1522.20160193
基金项目: 

中央高校基本科研业务费专项 2572017EA02

国家重大科学研究计划项目 2014CB953803

详细信息
    作者简介:

    毛宏蕊。主要研究方向:森林生态学。Email:damao731@126.com   地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心

    通讯作者:

    金光泽,教授,博士生导师。主要研究方向:森林生态学。Email:taxus@126.com   地址:同上

  • 中图分类号: S718.55+6

Impacts of nitrogen addition on net primary productivity in the typical mixed broadleaved-Korean pine forest

  • 摘要: 大气氮(N)浓度日益升高,N沉降对森林生态系统生产力的影响成为当前研究的热点。本研究在典型阔叶红松林内,使用尿素(CO(NH2)2)作为N源,通过向森林地表施N肥的方式对森林生态系统进行为期6年的N添加试验,探究N对森林生态系统各组分碳(C)密度及净初级生产力(NPP)的影响。施N水平分别为N0(0kg/(hm2·a))、N1(30kg/(hm2·a))、N2(60kg/(hm2·a))和N3(120kg/(hm2·a))。结果表明:N添加对森林生态系统植被C库、碎屑C库及土壤C库C密度均无显著影响(P>0.05);对整个森林生态系统的NPP无显著影响,然而对针叶NPP表现出显著抑制作用(P < 0.05),对阔叶NPP表现出显著促进作用。土壤全N含量不受施N影响,但与土壤有机C浓度呈现极显著(P < 0.01)的正相关关系,表明土壤全N含量是土壤有机C的重要影响因素。
  • 图  1  不同施N处理下阔叶红松林乔木层C密度及其分配

    不同小写字母表示相同组分不同处理间差异显著(P < 0.05)。

    Figure  1.  Carbon density and distribution of overstory in the typical mixed broadleaved-Korean pine forest under different nitrogen treatments

    Different lowercases denote significant difference among different nitrogen treatments in the same component at P < 0.05 level.

    图  2  不同施N处理下阔叶红松林土壤C库C密度及其分配

    不同小写字母表示相同土层不同处理间差异显著, 不同大写字母表示相同处理不同土层间差异显著(P < 0.05)。

    Figure  2.  Carbon density and distribution of soil carbon pool in the typical mixed broadleaved-Korean pine forest under different nitrogen treatments

    Different lowercases denote significant difference among different nitrogen treatments in the same soil layer, different capital letters denote significant difference among different soil layers under the same nitrogen treatment in figure 1D at P < 0.05 level.

    图  3  不同施N处理下阔叶红松林针、阔叶的NPP

    Figure  3.  NPP of needle and broadleaf in the typical mixed broadleaved-Korean pine forest under different nitrogen treatments

    图  4  不同施N处理下阔叶红松林各土层土壤全N含量

    不同的小写字母表示相同施N处理下,不同土层土壤全N含量差异显著(P < 0.05)。

    Figure  4.  Soil total nitrogen concentration of different soil layers under different nitrogen treatments in the typical mixed broadleaved-Korean pine forest

    Different lowercases indicate significant difference among different soil layers under the same nitrogen treatment at P < 0.05 level.

    表  1  不同施N处理下阔叶红松林生态系统各组分的C密度及其所占比例

    Table  1.   Carbon density and distribution proportion of ecosystem components in the typical mixed broadleaved-Korean pine forest under different nitrogen treatments (mean±SE)

    生态系统组分
    Ecosystem component
    碳密度/(t ·hm-2) Carbon density/(t·ha-1)
    N0 N1 N2 N3
    植被碳库
    Vegetation carbon pool
    乔木层
    Tree layer
    94.7±36.8 102.8±21.8 99.1±34.6 149.9±23.1
    (27.26%) (25.30%) (27.89%) (34.33%)
    灌木层
    Shrub layer
    0.26±0.06 0.17±0.1 0.25±0.19 0.34±0.13
    (0.07%) (0.04%) (0.07%) (0.08%)
    草本层
    Herb layer
    0.02±0.02 0.03±0.02 0.13±0.08 0.07±0.08
    (0.01%) (0.01%) (0.04%) (0.02%)
    细根
    Fine root
    2.7±1.1 2.6±1.5 2.7±1.5 2.3±0.9
    (0.78%) (0.64%) (0.76%) (0.53%)
    合计
    Total
    97.8±36.8 105.6±22.0 102.3±34.7 152.7±22.9
    (28.15%) (25.99%) (28.79%) (34.97%)
    碎屑碳库
    Detritus carbon pool
    木质残体
    Woody debris(WD)
    8.9±8.0 7.6±9.1 8.5±7.6 12.9±2.1
    (2.56%) (1.87%) (2.39%) (2.95%)
    地被物
    Ground litter
    4.4±0.81 4.7±1.11 5.1±0.52 5.0±1.72
    (1.27%) (1.16%) (1.44%) (1.14%)
    合计
    Total
    13.3±8.8 12.3±8.0 13.62±7.2 17.9±0.4
    (3.83%) (3.03%) (3.83%) (4.10%)
    土壤碳库
    Soil carbon pool
    236.3±28.4 288.5±55.8 239.4±32.3 266.1±22.1
    (68.02%) (71.01%) (67.38%) (60.93%)
    注:N0、N1、N2、N3分别为0、30、60、120kg/(hm2·a)处理。下同。括号内百分数为该组分占森林生态系统C密度比例。Notes: N0, N1, N2, N3 indicated different levels of nitrogen addition, which means control (0kg/(ha·a)), low nitrogen (30kg/(ha·a)), medium nitrogen (60kg/(ha·a)) and high nitrogen (120kg/(ha·a)) respectively. Same below. Percentage in bracket denotes distributing proportion of the component.
    下载: 导出CSV

    表  2  不同施N处理下阔叶红松林森林生态系统与各组分NPP及所占比例

    Table  2.   Ecosystem net primary productivity (NPP) and component NPP and distribution proportion in the typical mixed broadleaved-Korean pine forest under different nitrogen treatments (mean±SE)

    生态系统组分
    Ecosystem component
    NPP/(t·ha-1·a-1)
    N0 N1 N2 N3
    地上部分NPP
    Above-ground NPP
    乔木干、枝
    Stem and branch in overstory
    2.31±1.87 2.24±0.35 2.48±0.54 3.09±0.59
    (41.10%) (37.88%) (41.28%) (40.39%)
    林下层
    Understory
    0.06±0.03 0.04±0.02 0.17±0.12 0.12±0.10
    (1.03%) (0.70%) (2.84%) (1.51%)
    凋落物
    Litterfall
    1.83±0.27 1.57±0.19 1.74±0.12 1.98±0.24
    (32.44%) (26.61%) (28.99%) (25.85%)
    合计
    Total
    4.20±1.78 3.85±0.54 4.40±0.58 5.18±0.47
    (74.57%) (65.19%) (73.11%) (67.75%)
    地下部分
    NPPBelow-ground NPP
    中、粗根
    Middle and coarse root
    0.37±0.36 0.46±0.11 0.47±0.23 0.66±0.09
    (6.54%) (7.83%) (7.81%) (8.66%)
    细根
    Fine root
    1.06±0.23 1.60±0.24 1.15±0.50 1.80±1.12
    (18.89%) (26.98%) (19.08%) (23.58%)
    合计
    Total
    1.43±0.57 2.06±0.29 1.62±0.28 2.46±1.20
    (25.43%) (34.81%) (26.89%) (32.25%)
    生态系统
    NPPTotal ecosystem NPP
    5.63±2.33 5.91±0.83 6.02±0.32 7.64±1.13
    (100%) (100%) (100%) (100%)
    注:括号内百分数为该组分占森林生态系统NPP比例。Note: percentage in bracket denotes distribution proportion of the component.
    下载: 导出CSV

    表  3  不同土层不同施N处理下阔叶红松林土壤全N含量与土壤有机C浓度相关系数

    Table  3.   Correlation index between soil total nitrogen concentration and soil organic carbon concentration among different soil layers and different nitrogen treatments in the typical mixed broadleaved-Korean pine forest

    处理
    Treatment
    土层Soil layer/cm
    0~10 10~20 20~30 30~40 总体Total
    N0 0.487 0.269 0.781* 0.467 0.922**
    N1 -0.410 0.969** 0.470 0.956** 0.921**
    N2 0.488 0.853* 0.413 0.876** 0.893**
    N3 0.911** 0.992** 0.942** 0.377 0.970**
    总体Total 0.874** 0.822** 0.709** 0.802**
    注:**代表极显著相关(P < 0.01)。Note:** indicates significant correlation at P < 0.01 level.
    下载: 导出CSV
  • [1] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226. doi:  10.1007/s10533-004-0370-0
    [2] HOWARTH R W, SCHLESINGER W H, VITOUSEK P M, et al. Human alteration of the global nitrogen cycle: sources and consequences[J]. Ecological Applications, 2008, 7: 737-750. https://www.sciencedirect.com/science/article/pii/S1240130797877382
    [3] HÖGBERG P. Environmental science: nitrogen impacts on forest carbon[J]. Nature, 2007, 447: 781-782. doi:  10.1038/447781a
    [4] LIU X, LEI D, MO J, et al. Nitrogen deposition and its ecological impact in China: an overview[J]. Environmental Pollution, 2011, 159(10): 2251-2264. doi:  10.1016/j.envpol.2010.08.002
    [5] THOMAS R Q, CANHAM C D, WEATHERS K C, et al. Increased tree carbon storage in response to nitrogen deposition in the US[J]. Preventive Veterinary Medicine, 2010, 3(1): 229-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e245d86d029e5e35adaeee502a8e86dd
    [6] SILLEN W M A, DIELEMAN W I J. Effects of elevated CO2 and N fertilization on plant and soil carbon pools of managed grasslands: a meta-analysis[J]. Biogeosciences Discussions, 2012, 9(6): 2247-2258. doi:  10.5194/bg-9-2247-2012
    [7] LOVETT G M, GOODALE C L. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest[J]. Ecosystems, 2011, 14(4): 615-631. doi:  10.1007/s10021-011-9432-z
    [8] ABER J D, MAGILL A, MCNULTY S G, et al. Forest biogeochemistry and primary production altered by nitrogen saturation[J]. Water, Air & Soil Pollution, 1995, 85(3): 1665-1670. doi:  10.1007-BF00477219/
    [9] YANO Y, MCDOWELL W H, ABER J D. Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition[J]. Soil Biology & Biochemistry, 2000, 32: 1743-1751. https://harvardforest.fas.harvard.edu/sites/harvardforest.fas.harvard.edu/files/publications/pdfs/Yano_SoilBiol&Biochem_2000.pdf
    [10] MAGILL A H, ABER J D, BERNTSON G M, et al. Long-term nitrogen additions and nitrogen saturation in two temperate forests[J]. Ecosystems, 2000, 3: 238-253. doi:  10.1007/s100210000023
    [11] LOVETT G M, ARTHUR M A, WEATHERS K C, et al. Nitrogen addition increases carbon storage in soils, but not in trees, in an Eastern U.S. deciduous forest[J]. Ecosystems, 2013, 16(6): 980-1001. doi:  10.1007/s10021-013-9662-3
    [12] LIU L, GREAVER T L. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology Letters, 2010, 13(7): 819-828. doi:  10.1111/j.1461-0248.2010.01482.x
    [13] LU M, ZHOU X H, LUO Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 140(1-2): 234-244. http://cn.bing.com/academic/profile?id=5a3be51bd10f1eff505b5ce650e9231b&encoded=0&v=paper_preview&mkt=zh-cn
    [14] LIU J, FANG X, DENG Q, et al. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems[J]. Scientific Reports, 2015, 5: 7952. doi:  10.1038/srep07952
    [15] JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322. doi:  10.1038/ngeo844
    [16] FOSTER N W, HAZLETT P W, NICOLSON J A, et al. Ion leaching from a sugar maple forest in response to acidic deposition and nitrification[J]. Water, Air & Soil Pollution, 1989, 48(48): 251-261. http://cn.bing.com/academic/profile?id=e161eb4165dda375fdfb5082c4994820&encoded=0&v=paper_preview&mkt=zh-cn
    [17] 肖辉林, 卓慕宁, 万洪富.大气N沉降的不断增加对森林生态系统的影响[J].应用生态学报, 1996, 7(增刊1): 110-116. http://www.cnki.com.cn/Article/CJFDTotal-YYSB6S1.021.htm

    XIAO H L, ZHUO M N, WAN H F. Effect of increased deposition of atmospheric nitrogen on forest ecosystem[J]. Chinese Journal of Applied Ecology, 1996, 7(Suppl.1): 110-116. http://www.cnki.com.cn/Article/CJFDTotal-YYSB6S1.021.htm
    [18] 陈传国, 朱俊凤.东北主要林木生物量手册[M].北京:中国林业出版社, 1989.

    CHEN C G, ZHU J F. A handbook for main tree species biomass in Northeast China[M]. Beijing: China Forestry Publishing House, 1989.
    [19] WANG C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1): 9-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d480b7b7505f7c5bcdc3b33c43141c0f
    [20] 董利虎, 李凤日, 贾炜玮, 等.含度量误差的黑龙江省主要树种生物量相容性模型[J].应用生态学报, 2011, 2 (10): 2653-2661. http://d.old.wanfangdata.com.cn/Periodical/yystxb201110024

    DONG L H, LI F R, JIA W W, et al. Compatible biomass models for main tree species with measurement error in Heilongjiang Province of Northeast China[J]. Chinese Journal of Applied Ecology, 2011, 2 (10): 2653-2661. http://d.old.wanfangdata.com.cn/Periodical/yystxb201110024
    [21] 刘妍妍, 金光泽.地形对小兴安岭阔叶红松(Pinus koraiensis)林粗木质残体分布的影响[J].生态学报, 2009, 29(3): 1398-1407. doi:  10.3321/j.issn:1000-0933.2009.03.037

    LIU Y Y, JIN G Z. Influence of topography on coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains, China[J]. Acta Ecologica Sinica, 2009, 29(3): 1398-1407. doi:  10.3321/j.issn:1000-0933.2009.03.037
    [22] 中华人民共和国农林部. LY 208-77树木材积表[S].北京: 中国标准出版社, 1978.

    Ministry of Agriculture and Forestry of the People's Republic of China. LY 208-77 tree volume table[S]. Beijing: China Standards Press, 1978.
    [23] CLARK D A, BROWN S, KICKLIGHTER D W, et al. Measuring net primary production in forests: concepts and field methods[J]. International Journal of Heat & Mass Transfer, 2008, 46(22): 4235-4244. https://academic.oup.com/treephys
    [24] XIA J, WAN S. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytologist, 2008, 179(2): 428-439. doi:  10.1111/j.1469-8137.2008.02488.x
    [25] RUSSELL A E, LAIRD D A, PARKIN T B, et al. Impact of nitrogen fertilization and cropping system on carbon sequestration in midwestern Mollisols[J]. Soil Science Society of America Journal, 2005, 69(2): 413-422. doi:  10.2136/sssaj2005.0413
    [26] TRESEDER K K, HOLDEN S R. Fungal carbon sequestration[J]. Science, 2013, 339: 1528-1529. doi:  10.1126/science.1236338
    [27] 毛宏蕊, 陈金玲, 金光泽.氮添加对典型阔叶红松林凋落叶分解及养分释放的影响[J].北京林业大学学报, 2016, 38(3): 21-31. doi:  10.13332/j.1000-1522.20150139

    MAO H R, CHEN J L, JIN G Z. Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31. doi:  10.13332/j.1000-1522.20150139
    [28] 唐凤德, 韩士杰, 张军辉.长白山阔叶红松林生态系统碳动态及其对气候变化的响应[J].应用生态学报, 2009, 20(6): 1285-1292. http://d.old.wanfangdata.com.cn/Periodical/yystxb200906004

    TANG F D, HAN S J, ZHANG J H. Carbon dynamics of broad-leaved Korean pine forest ecosystem in Changbai Mountains and its responses to climate change[J]. Chinese Journal of Applied Ecology, 2009, 20(6): 1285-1292. http://d.old.wanfangdata.com.cn/Periodical/yystxb200906004
    [29] D'ORANGEVILLE L, HOULE D, CÔTÉ B, et al. Increased soil temperature and atmospheric N deposition have no effect on the N status and growth of a mature balsam fir forest[J]. Biogeosciences, 2013, 10: 4627-4639. doi:  10.5194/bg-10-4627-2013
    [30] LLOYD J, TAYLOR J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3): 315-323. doi:  10.2307-2389824/
    [31] NADELHOFFER K J, EMMETT B A, GUNDERSEN P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 1999, 398: 145-148. doi:  10.1038/18205
    [32] FLEISCHER K, REBEL K T, MOLEN M K V D, et al. The contribution of nitrogen deposition to the photosynthetic capacity of forests[J]. Global Biogeochemical Cycles, 2013, 27(1): 187-199. doi:  10.1002/gbc.20026
    [33] TATARINOV F A, CIENCIALA E. Application of BIOME-BGC model to managed forests (1): sensitivity analysis[J]. Forest Ecology and Management, 2007, 237(1): 267-279. http://cn.bing.com/academic/profile?id=a11b3455a2eab745fa9d12ba4b7af737&encoded=0&v=paper_preview&mkt=zh-cn
    [34] KRAUSE K, CHERUBINI P, BUGMANN H, et al. Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes[J]. Tree Physiology, 2012, 32(12): 1471-1481. doi:  10.1093/treephys/tps109
    [35] VOGT K A, GRIER C C, MEIER C E, et al. Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in Western Washington[J]. Ecology, 1982, 63(2): 370-380. doi:  10.2307/1938955
    [36] ZHAO M, XIANG W, TIAN D, et al. Effects of increased nitrogen deposition and rotation length on long-term productivity of Cunninghamia lanceolata plantation in southern China[J/OL]. PLoS ONE, 2013, 8(2): e55376[2016-09-21]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055376.
    [37] YE X, WANG A, CHEN J. Distribution and deposition characteristics of carbon and nitrogen in sediments in a semi-closed bay area, southeast China[J]. Continental Shelf Research, 2014, 90: 133-141. doi:  10.1016/j.csr.2014.07.015
    [38] LU X, GILLIAM F S, YU G, et al. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems[J]. Biogeosciences Discussions, 2013, 10(1): 1451-1481. doi:  10.5194/bgd-10-1451-2013
    [39] EDWARDS P J. Studies of mineral cycling in a montane rain forest in New Guinea (Ⅱ): the production and disappearance of litter[J]. Journal of Ecology, 1977, 65(3): 971-992. doi:  10.2307/2259388
    [40] FRANGI J L, LUGO A E. Ecosystem dynamics of a subtropical floodplain forest[J]. Ecological Monographs, 1985, 55(3): 351-369. doi:  10.2307/1942582
    [41] EISSENSTAT D M, YANAI R D. The ecology of root lifespan[J]. Advances in Ecological Research, 1997, 27: 1-60. doi:  10.1016/S0065-2504(08)60005-7
    [42] GUNDERSEN P, EMMETT B A, KJONAAS O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests:a synthesis of NITREX data[J]. Forest Ecology and Management, 1998, 101(1): 37-55 doi:  10.1016-S0378-1127(97)00124-2/
    [43] KJØNAAS O J, STUANES A O, HUSE M. Effects of weekly nitrogen additions on N cycling in a coniferous forest catchment, Gårdsjön, Sweden[J]. Forest Ecology and Management, 1998, 101: 227-249. doi:  10.1016/S0378-1127(97)00140-0
  • [1] 任玉连, 陆梅, 曹乾斌, 李聪, 冯峻, 王志胜.  南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征 . 北京林业大学学报, 2019, 41(11): 104-115. doi: 10.13332/j.1000-1522.20180319
    [2] 郭丽玲, 潘萍, 欧阳勋志, 宁金魁, 臧颢, 刘苑秋, 杨阳, 桂亚可.  赣南马尾松天然林不同生长阶段碳密度分布特征 . 北京林业大学学报, 2018, 40(1): 37-45. doi: 10.13332/j.1000-1522.20170186
    [3] 闫苏, 牟长城, 王伯炜, 王彪.  温带长白山天然阔叶林沼泽湿地生态系统碳储量 . 北京林业大学学报, 2018, 40(8): 1-11. doi: 10.13332/j.1000-1522.20180005
    [4] 高雷, 崔晓阳, 郭亚芬, 徐嘉晖.  小兴安岭地区典型红松林下不同形态土壤氮的动态变化 . 北京林业大学学报, 2017, 39(12): 52-60. doi: 10.13332/j.1000-1522.20170241
    [5] 郭鑫, 吴鹏, 韩威, 李巧燕, 杨蕾, 安海龙, 王襄平.  演替和气候对阔叶红松林土壤有机碳密度的影响 . 北京林业大学学报, 2016, 38(7): 55-63. doi: 10.13332/j.1000-1522.20160060
    [6] 汪金松, 赵秀海, 张春雨, 李化山, 王娜, 赵博.  模拟氮沉降对油松林土壤有机碳和全氮的影响 . 北京林业大学学报, 2016, 38(10): 88-94. doi: 10.13332/j.1000-1522.20140294
    [7] 何丽鸿, 王海燕, 王璐, 王岳.  长白落叶松林生态系统净初级生产力对气候变化的响应 . 北京林业大学学报, 2015, 37(9): 28-36. doi: 10.13332/j.1000-1522.20140439
    [8] 赵灿, 张宇清, 秦树高, 赖宗锐, 刘加彬, 法科宇.  3 种典型沙生灌木NPP 及其分配格局 . 北京林业大学学报, 2014, 36(5): 62-67. doi: 10.13332/j.cnki.jbfu.2014.05.013
    [9] 郭丽娟, 国庆喜.  IBIS 模拟集水区尺度的东北东部森林净初级生产力 . 北京林业大学学报, 2013, 35(5): 1-7.
    [10] 刘诗琦, 贾黎明, 杨军, 辛建华.  基于Landsat TM 数据估算山东菏泽区域杨树人工林碳储量 . 北京林业大学学报, 2013, 35(6): 36-41.
    [11] 贾炜玮, 李凤日, 董利虎, 赵鑫.  基于相容性生物量模型的樟子松林碳密度与碳储量研究 . 北京林业大学学报, 2012, 34(1): 6-13.
    [12] 胡瀞予, 陈建璋, 魏浚纮, 陈朝圳.  应用MODIS影像数据估测台湾陆域生态区之净初级生产力 . 北京林业大学学报, 2011, 33(4): 33-39.
    [13] 康瑶瑶, 刘勇, 马履一, 李国雷, 祝燕, 马跃.  施肥对长白落叶松苗木养分库氮磷吸收及利用的影响 . 北京林业大学学报, 2011, 33(2): 31-36.
    [14] 田如男, 朱敏, 孙欣欣, 刘曼, 程澄.  不同水生植物组合对水体氮磷去除效果的模拟研究 . 北京林业大学学报, 2011, 33(6): 191-195.
    [15] 宋熙龙, 毕君, 刘峰, 王超.  木兰林管局白桦次生林生物量与碳储量研究 . 北京林业大学学报, 2010, 32(6): 33-36.
    [16] 何明, 翟明普, 曹帮华.  水分胁迫下增施氮、磷对刺槐无性系苗木光合特性的影响 . 北京林业大学学报, 2009, 31(6): 116-120.
    [17] 张立华, 林益明, 叶功富, 殷亮, 周海超.  不同林分类型叶片氮磷含量、氮磷比及其内吸收率 . 北京林业大学学报, 2009, 31(5): 67-72.
    [18] 曾小平, 蔡锡安, 赵平, 饶兴权, 邹碧, 周丽霞, 林永标, 傅声雷.  南亚热带丘陵3种人工林群落的生物量及净初级生产力 . 北京林业大学学报, 2008, 30(6): 148-152.
    [19] 樊登星, 余新晓, 岳永杰, 牛丽丽, 高志亮, 马莉娅.  北京市森林碳储量及其动态变化 . 北京林业大学学报, 2008, 30(supp.2): 117-120.
    [20] 张冬梅, 李国雷, 朱小龙, 方升佐, 刘鹏举, 王立海, 耿玉清, 周传艳, 刘剑锋, 党文杰, 赵铁珍, 汪杭军1, 李雪华, 李义良, 王旭, 薛康, 李生宇, 吴丽娟, 任强, HUALi_zhong, 韦艳葵, 王兰珍, 段文霞, 刘勇, 刘勇, 尹光彩, 朱波, 杨慧敏, 苏晓华, JIANGXi_dian, 周国逸, 李建章, 李振基, 周宇飞, 雷加强, 余新晓, 何茜, 韩士杰, 高岚, 方陆明, 阎秀峰, 崔同林, 周亮, 杨娅, 宋永明, 黎明, 刘锐, 王春林, 玲, 程云清, 王新杰, 周国逸, 唐小明, 虞木奎, 李吉跃, 柯水发, 徐扬, 宗文君, 鹿振友, 孙向阳, HEXiu_bin, 徐新文, 喻理飞, 王清文, 赖志华, 张冰玉, 沈熙环, 李俊清, 国庆, 陈实, 茹广欣, 李晓兰, , 周晓梅, 宋爱琴, 张志毅, 王伟宏, 陈峻崎, 齐涛, 李丙文, 郭蓓, 温亚利, 3, 孙阁, 陈培金, 王晓静, 姚永刚, 张可栋, 唐旭利, 周玉平, 王建林, 刘志明, 王旭, 蒋德明, 长山, 宋湛谦, 关少华, 赵双荣, 王春林, 陈放, 杨伟伟, 闫俊华, 郑凌峰.  广东省森林植被恢复下的碳储量动态 . 北京林业大学学报, 2007, 29(2): 60-65.
  • 加载中
图(4) / 表 (3)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  87
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-13
  • 修回日期:  2016-12-13
  • 刊出日期:  2017-08-01

氮添加对典型阔叶红松林净初级生产力的影响

doi: 10.13332/j.1000-1522.20160193
    基金项目:

    中央高校基本科研业务费专项 2572017EA02

    国家重大科学研究计划项目 2014CB953803

    作者简介:

    毛宏蕊。主要研究方向:森林生态学。Email:damao731@126.com   地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心

    通讯作者: 金光泽,教授,博士生导师。主要研究方向:森林生态学。Email:taxus@126.com   地址:同上
  • 中图分类号: S718.55+6

摘要: 大气氮(N)浓度日益升高,N沉降对森林生态系统生产力的影响成为当前研究的热点。本研究在典型阔叶红松林内,使用尿素(CO(NH2)2)作为N源,通过向森林地表施N肥的方式对森林生态系统进行为期6年的N添加试验,探究N对森林生态系统各组分碳(C)密度及净初级生产力(NPP)的影响。施N水平分别为N0(0kg/(hm2·a))、N1(30kg/(hm2·a))、N2(60kg/(hm2·a))和N3(120kg/(hm2·a))。结果表明:N添加对森林生态系统植被C库、碎屑C库及土壤C库C密度均无显著影响(P>0.05);对整个森林生态系统的NPP无显著影响,然而对针叶NPP表现出显著抑制作用(P < 0.05),对阔叶NPP表现出显著促进作用。土壤全N含量不受施N影响,但与土壤有机C浓度呈现极显著(P < 0.01)的正相关关系,表明土壤全N含量是土壤有机C的重要影响因素。

English Abstract

毛宏蕊, 金光泽. 氮添加对典型阔叶红松林净初级生产力的影响[J]. 北京林业大学学报, 2017, 39(8): 42-49. doi: 10.13332/j.1000-1522.20160193
引用本文: 毛宏蕊, 金光泽. 氮添加对典型阔叶红松林净初级生产力的影响[J]. 北京林业大学学报, 2017, 39(8): 42-49. doi: 10.13332/j.1000-1522.20160193
MAO Hong-rui, JIN Guang-ze. Impacts of nitrogen addition on net primary productivity in the typical mixed broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2017, 39(8): 42-49. doi: 10.13332/j.1000-1522.20160193
Citation: MAO Hong-rui, JIN Guang-ze. Impacts of nitrogen addition on net primary productivity in the typical mixed broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2017, 39(8): 42-49. doi: 10.13332/j.1000-1522.20160193
  • 工业革命以来,大气氮(N)沉降大幅增加,中国成为继美国、欧洲之后全球第三大N沉降区[1]。大量的N沉降已经对环境造成了严重的影响,甚至对陆地和海洋生态系统构成破坏[2]。许多学者通过向森林生态系统施加外源N的方式模拟大气N沉降,来探索不同水平N添加对森林生态系统的影响[3]

    N与植物生长密切相关,对于N添加对森林生态系统的影响一直是研究热点[4-5],研究结果也不尽相同。一些研究曾报道,大气N沉降的增加可以刺激森林的净初级生产力(NPP)增加,增强森林固碳(C)作用[6];然而也有研究认为,大气N沉降抑制了森林生长,降低了森林NPP[7],甚至可能使森林由C汇变为C源;随着N沉降增加,美国的常绿针叶林出现生产力下降或死亡率增加的现象[8]。在欧洲的研究显示,由于去除N、S沉降而使林木生长呈加速趋势[9]。Magill等[10]认为温带森林生态系统中,中、高水平的N沉降会不同程度地抑制植物生物量的积累。模拟N沉降对土壤固C的影响一直是近年来研究的重点,但研究结果存在很大差异,具体表现为N沉降促进[11]、抑制[12]和不影响[13]土壤固C能力。

    有关N增加对森林固C影响的机理已有许多报道,外施N增加森林N的有效性水平[14],满足了植物生长对养分的需求,因而促进了林木生长;N沉降抑制土壤呼吸,降低呼吸速率[15],从而增加了土壤C库的固C能力。过量的N添加对森林固C的负面影响机理主要由于绝大部分N沉降到土壤,增加了土壤N的矿质化作用,使土壤中NO3-、NH4+浓度增加,加剧土壤酸化,盐基养分(Ca2+、Mg2+、K+等)淋失和Al3+大量溶出[16],加上植物对NH4+有优先吸收倾向,NH4+对其他所有阳离子养分来说具有强烈的拮抗作用[17],抑制根对其他阳离子的吸收,这种竞争抑制作用加强了植物体内养分的“稀释效应”,导致营养失衡。

    阔叶红松(Pinus koraiensis)林是我国东北东部山区以及俄罗斯远东地区的顶极地带性植被,具有较高的生物多样性和生产力。在黑龙江凉水国家级自然保护区典型阔叶红松林内设置固定样地,进行为期6年的试验。通过外施有机N肥,探讨阔叶红松林内不同组分的C密度及NPP对于不同水平N添加的响应,为深入了解施N对原始阔叶红松林C分配的影响提供参考。

    • 本研究样地位于黑龙江凉水国家级自然保护区(47°10′50″N,128°53′20″E)内的阔叶红松林。地处小兴安岭南坡达里带岭支脉的东坡,海拔280~707m,为低山丘陵地貌。温带大陆性季风气候,年平均气温-0.3℃,年均降水量676mm,年均蒸发量805mm。无霜期100~120d,积雪期130~150d。土壤为暗棕色森林土。该地具有较高的生物多样性,复杂并且完整的群落结构。试验样地的建群种为红松,伴生有臭冷杉(Abies nephrolepis)、紫椴(Tilia amurensis)等温带阔叶树种和寒温带针叶树种。

    • 于2008年5月在样地内建立12个20m×20m样方,分4水平对样地进行施N处理,重复3次,为防止不同水平的施N处理相互影响,每个样方之间均设置1条10m宽的隔离带。于施N处理前调查样地内所有胸径(DBH)≥2cm的木本植物,记录其种名、胸径、树高、位置坐标和生存状态(存活、倒伏或枯立)等信息,并挂牌标记,并于2014年对上述各项内容进行复查。于2008年6月开始,每年6、7、8月各施肥1次,4种水平的模拟氮沉降处理浓度分别为对照N0(0kg/(hm2·a))、低氮N1(30kg/(hm2·a))、中氮N2(60kg/(hm2·a))和高氮N3(120kg/(hm2·a))。使用尿素(CO(NH2)2)作为N源,将其溶解于水,以背式喷雾器均匀喷洒在样地表面,对照样方N0处理喷洒等量的水,防止因外加水量的变化引起试验误差。阔叶红松林各试验样地施N处理前的主要林分特征及土壤属性详见文献[27]。

    • 植被C库由乔木层、林下植被层和细根组成。乔木层C密度的测定根据2008年和2014年在样地内调查所得木本植物胸径数据,结合不同树种各组分的异速生长方程[18-20]及其相应的C含量,计算出两年不同树种各组分C密度(对于未建立异速生长方程的树种,用其同科、属树种的异速生长方程来替代)。于植被生长最旺盛时(2014年8月),在每个样方内随机设置3个2m×2m的样方,收获样方内的灌木幼树,同时在每个2m×2m样方内设置1个1m×1m的小样方,收获所有草本植物,测其鲜质量、干质量和C含量,计算生物量并推算林下层植被的C密度。细根的C密度根据细根生物量(连续跟钻法)和C含量进行计算。

    • 碎屑C库由枯落物和木质残体(woody debris, WD)组成。在每个样方内随机设置3个0.5m×0.5m小样方,采集样方内所有的枯落物,测其鲜质量、干质量及C含量,最后推算出枯落物的C密度。调查样地内所有直径≥2cm的WD。记录其种名、直径、长度(或高度)、腐烂等级、存在方式等基础特征[21]。分树种、径级(径级Ⅰ:直径<7.5cm;径级Ⅱ:7.5cm≤直径<22.5cm;径级Ⅲ:直径≥22.5cm)采集各腐烂等级的WD的样品,带回试验室测定其木材密度和C含量。参考东北地区主要乔木树种二元材积公式[22]计算WD体积,结合WD的每木调查数据、木材密度及对应C含量,计算WD的C密度。土壤C库包括0~50cm的矿物质土层所含C。在每个样方内随机挖取3个土壤剖面,地面向下每10cm一层,在0~50cm范围内,测定每层的土壤密度和土壤有机C(SOC)含量,推算土壤C库的C密度。

    • 森林生态系统的NPP由地上部NPP和地下部NPP两部分构成。地上部NPP的组分包括乔木树干、树枝、凋落物、灌木和草本的NPP;地下部NPP包括乔木的粗根、中根和细根的NPP。

    • 乔木树干和树枝NPP利用下式计算[23]

      $$ {\rm{NP}}{{\rm{P}}_i} = \frac{{{W_{{t_2}}} - {W_{{t_1}}} = {W_d} - \sum\limits_{j = 1}^n {{N_j}{W_j}} }}{{{t_2} - {t_1}}} $$ (1)

      式中:i为乔木的组分;W为调查间隔期前后样地内乔木层的C密度;t1t2分别为第1次和第2次的调查时间;d为调查间隔期内死亡个体;Nj为调查间隔期内树种j新增个体的株数;Wj为DBH=2cm时树种j的C密度。

      凋落物NPP为7年凋落物C密度的平均值。灌木层的NPP为灌木C密度与乔木幼树新枝和叶的C密度之和,整个草本层的C密度即为草本NPP。

    • 乔木粗根NPP的计算参考式(1)。采用极差法(1年内取样活细根C密度的最大、小值之差计算细根NPP。

      所有试验采集样品均利用Multi N/C 3000分析仪(Analytic Jena AG, Germany)测定C含量。

    • 采用单因素方差分析法(one-way ANOVA)和Duncan的多重检验分析施氮对阔叶红松林不同组分C密度和NPP的影响以及土壤全N含量的影响,以上统计分析利用SPSS 19.0软件进行。

    • 阔叶红松林生态系统植被C库C密度为97.8~152.7t/hm2 (表 1),约占总C库30%;碎屑C库C密度为12.3~17.9t/hm2,占总C库3%~4%;土壤C库C密度为236.3~288.5t /hm2,占总C库60%~70%。施N处理对生态系统各组分C密度无显著影响(P>0.05)。

      表 1  不同施N处理下阔叶红松林生态系统各组分的C密度及其所占比例

      Table 1.  Carbon density and distribution proportion of ecosystem components in the typical mixed broadleaved-Korean pine forest under different nitrogen treatments (mean±SE)

      生态系统组分
      Ecosystem component
      碳密度/(t ·hm-2) Carbon density/(t·ha-1)
      N0 N1 N2 N3
      植被碳库
      Vegetation carbon pool
      乔木层
      Tree layer
      94.7±36.8 102.8±21.8 99.1±34.6 149.9±23.1
      (27.26%) (25.30%) (27.89%) (34.33%)
      灌木层
      Shrub layer
      0.26±0.06 0.17±0.1 0.25±0.19 0.34±0.13
      (0.07%) (0.04%) (0.07%) (0.08%)
      草本层
      Herb layer
      0.02±0.02 0.03±0.02 0.13±0.08 0.07±0.08
      (0.01%) (0.01%) (0.04%) (0.02%)
      细根
      Fine root
      2.7±1.1 2.6±1.5 2.7±1.5 2.3±0.9
      (0.78%) (0.64%) (0.76%) (0.53%)
      合计
      Total
      97.8±36.8 105.6±22.0 102.3±34.7 152.7±22.9
      (28.15%) (25.99%) (28.79%) (34.97%)
      碎屑碳库
      Detritus carbon pool
      木质残体
      Woody debris(WD)
      8.9±8.0 7.6±9.1 8.5±7.6 12.9±2.1
      (2.56%) (1.87%) (2.39%) (2.95%)
      地被物
      Ground litter
      4.4±0.81 4.7±1.11 5.1±0.52 5.0±1.72
      (1.27%) (1.16%) (1.44%) (1.14%)
      合计
      Total
      13.3±8.8 12.3±8.0 13.62±7.2 17.9±0.4
      (3.83%) (3.03%) (3.83%) (4.10%)
      土壤碳库
      Soil carbon pool
      236.3±28.4 288.5±55.8 239.4±32.3 266.1±22.1
      (68.02%) (71.01%) (67.38%) (60.93%)
      注:N0、N1、N2、N3分别为0、30、60、120kg/(hm2·a)处理。下同。括号内百分数为该组分占森林生态系统C密度比例。Notes: N0, N1, N2, N3 indicated different levels of nitrogen addition, which means control (0kg/(ha·a)), low nitrogen (30kg/(ha·a)), medium nitrogen (60kg/(ha·a)) and high nitrogen (120kg/(ha·a)) respectively. Same below. Percentage in bracket denotes distributing proportion of the component.

      阔叶红松林乔木层树干C密度为71.38~103.96t/hm2 (图 1),占乔木层总C密度69.43%~82.14%;树枝C密度为5.98~11.32t/hm2,占乔木层总C密度6.3%~14.6%;粗根C密度为8.87~20.5t/hm2,占乔木层总C密度9.4%~15.0%;叶C密度为2.06~4.64t/hm2,占乔木层总C密度2.2%~4.5%。

      图  1  不同施N处理下阔叶红松林乔木层C密度及其分配

      Figure 1.  Carbon density and distribution of overstory in the typical mixed broadleaved-Korean pine forest under different nitrogen treatments

      不同施N处理下,阔叶红松林灌木和幼树C密度为0.17~0.34t/hm2 (表 1),各施N处理下灌木和幼树C密度、草本C密度均无显著差异(P>0.05)。灌木和幼树均为多年生植物,其C密度占阔叶红松林灌木层C库近80%,草本多为一年生植物,其C密度仅占阔叶红松林灌木层C库的20%。不同施N处理下的粗根C密度为1.66~3.69t/hm2 (图 1),N3处理下粗根的C密度显著高于对照处理(P < 0.05);细根C密度为2.33~2.75t/hm2,但各处理间差异未达显著水平(P>0.05)。

      阔叶红松林土壤C密度随土层加深呈降低趋势(图 2)。0~10cm土层C密度为66.1~83.2t/hm2,占土壤总C密度的27.6%~29.1%;10~20cm土层C密度为50.0~64.1t/hm2,占土壤总C密度的21.2%~26.8%;20~30cm土层C密度为42.4~59.3t/hm2,占土壤总C密度的17.7%~20.5%;30~40cm土层C密度为42.3~52.4t/hm2,占土壤总C密度的17.7%~20.2%;40~50cm土层C密度为24.4~29.6t/hm2,占土壤总C密度的10.2%~10.4%。相同土层,不同施N处理C密度与对照处理无显著差异,仅在20~30cm土层内,N2处理C密度显著低于N1处理(P < 0.05);4种处理随土层加深,土壤C密度显著减少(P < 0.05)。

      图  2  不同施N处理下阔叶红松林土壤C库C密度及其分配

      Figure 2.  Carbon density and distribution of soil carbon pool in the typical mixed broadleaved-Korean pine forest under different nitrogen treatments

    • 阔叶红松林生态系统NPP为5.63~7.64t/(hm2·a) (表 2),地上部分NPP为3.85~5.18t/(hm2·a),地下部分NPP为1.43~2.46t/(hm2·a)。各组分NPP占森林生态系统NPP的比例由小到大依次为:林下层(0.70%~2.84%) < 中、粗根(6.54%~8.66%) < 细根(18.89%~26.98%) < 凋落物(25.85%~32.44%) < 乔木枝干(37.88%~41.28%)。不同施N处理间,森林生态系统及各组分NPP无显著差异(P>0.05)。

      表 2  不同施N处理下阔叶红松林森林生态系统与各组分NPP及所占比例

      Table 2.  Ecosystem net primary productivity (NPP) and component NPP and distribution proportion in the typical mixed broadleaved-Korean pine forest under different nitrogen treatments (mean±SE)

      生态系统组分
      Ecosystem component
      NPP/(t·ha-1·a-1)
      N0 N1 N2 N3
      地上部分NPP
      Above-ground NPP
      乔木干、枝
      Stem and branch in overstory
      2.31±1.87 2.24±0.35 2.48±0.54 3.09±0.59
      (41.10%) (37.88%) (41.28%) (40.39%)
      林下层
      Understory
      0.06±0.03 0.04±0.02 0.17±0.12 0.12±0.10
      (1.03%) (0.70%) (2.84%) (1.51%)
      凋落物
      Litterfall
      1.83±0.27 1.57±0.19 1.74±0.12 1.98±0.24
      (32.44%) (26.61%) (28.99%) (25.85%)
      合计
      Total
      4.20±1.78 3.85±0.54 4.40±0.58 5.18±0.47
      (74.57%) (65.19%) (73.11%) (67.75%)
      地下部分
      NPPBelow-ground NPP
      中、粗根
      Middle and coarse root
      0.37±0.36 0.46±0.11 0.47±0.23 0.66±0.09
      (6.54%) (7.83%) (7.81%) (8.66%)
      细根
      Fine root
      1.06±0.23 1.60±0.24 1.15±0.50 1.80±1.12
      (18.89%) (26.98%) (19.08%) (23.58%)
      合计
      Total
      1.43±0.57 2.06±0.29 1.62±0.28 2.46±1.20
      (25.43%) (34.81%) (26.89%) (32.25%)
      生态系统
      NPPTotal ecosystem NPP
      5.63±2.33 5.91±0.83 6.02±0.32 7.64±1.13
      (100%) (100%) (100%) (100%)
      注:括号内百分数为该组分占森林生态系统NPP比例。Note: percentage in bracket denotes distribution proportion of the component.

      阔叶红松林针叶NPP为0.33~0.51t/(hm2·a) (图 3),阔叶NPP为0.70~0.95t/(hm2·a)。N1、N2、N3处理均显著抑制针叶NPP增加,3种水平施N处理分别降低针叶NPP 27.8%、35.8%和20.2%;N2、N3处理显著促进阔叶NPP增加(P < 0.05),2种施N处理增加阔叶NPP 18.7%和34.5%。

      图  3  不同施N处理下阔叶红松林针、阔叶的NPP

      Figure 3.  NPP of needle and broadleaf in the typical mixed broadleaved-Korean pine forest under different nitrogen treatments

    • 各施N处理下,随着土层深度增加,土壤全N含量呈逐渐降低趋势(图 4)。0~10cm土层的土壤全N含量为3.98~6.99g/mg,10~20cm土层土壤全N含量为2.15~4.72g/mg,20~30cm土层土壤全N含量为1.73~3.61g/mg,30~40cm土层土壤全N含量为1.63~2.86g/mg,同一土层不同施N处理下土壤全N含量无显著差异(P>0.05);相同施N处理下,土壤全N含量随土层加深显著降低(P < 0.05)(除N3处理)。

      图  4  不同施N处理下阔叶红松林各土层土壤全N含量

      Figure 4.  Soil total nitrogen concentration of different soil layers under different nitrogen treatments in the typical mixed broadleaved-Korean pine forest

      各土层的土壤全N含量与土壤有机C浓度呈极显著正相关关系(P < 0.01) (表 3),相关系数在0.709~0.874之间;相同施N处理下的土壤全N含量与土壤有机C浓度呈极显著正相关关系,相关系数在0.893~0.970。在各土层,各施N处理下,土壤全N含量与土壤有机C浓度整体上呈显著正相关关系,表明土壤全N含量是土壤C库的有机C浓度的重要影响因素。

      表 3  不同土层不同施N处理下阔叶红松林土壤全N含量与土壤有机C浓度相关系数

      Table 3.  Correlation index between soil total nitrogen concentration and soil organic carbon concentration among different soil layers and different nitrogen treatments in the typical mixed broadleaved-Korean pine forest

      处理
      Treatment
      土层Soil layer/cm
      0~10 10~20 20~30 30~40 总体Total
      N0 0.487 0.269 0.781* 0.467 0.922**
      N1 -0.410 0.969** 0.470 0.956** 0.921**
      N2 0.488 0.853* 0.413 0.876** 0.893**
      N3 0.911** 0.992** 0.942** 0.377 0.970**
      总体Total 0.874** 0.822** 0.709** 0.802**
      注:**代表极显著相关(P < 0.01)。Note:** indicates significant correlation at P < 0.01 level.
    • 本研究中,施N处理对森林生态系统各组分C密度均无显著影响(包括植被C库、土壤C库及碎屑C库)。Liu[12]和Xia[24]等的研究结果表明,施N处理能够显著促进乔木粗根C密度的增长,但对细根C密度无显著影响。可能由于森林类型、树种组成及地理位置等差异造成植被C库各组分C密度对N添加的响应方式不同,具体机理还应做进一步研究。本研究中,施N对土壤C库C密度和各土层C密度均无显著影响,Russell[25]曾在Kanawha和Nashua等地有过研究,结果指出为期12年的N添加处理并没有对土壤C库C密度产生显著影响。土壤C库的动态变化受土壤呼吸(包括自养呼吸和异养呼吸)、有机物分解和凋落物输入多重调控[26],叶凋落物是主要的C输入途径,本区域已有研究表明,施N促进了混合树种凋落叶分解[27],减少了土壤C库C储量,因此削弱了施N处理引起的凋落物来源的C输入量的增加。

      本研究阔叶红松林生态系统NPP为5.63~7.64t/(hm2·a),运用过程模型法测得长白山相同林型生态系统NPP为8.7t/(hm2·a),实际测得值为7.3t/(hm2·a)[28],具有较高的一致性。施N未能显著改变生态系统NPP,与D' Orangeville等[29]结果一致,虽然森林受N限制,在较为寒冷的森林环境下,由于微生物活动受抑制,土壤N矿化率和植物对N的利用效率都将降低[30],施N未必引起森林生态系统NPP的显著增加。另外,温带森林对外源N素的敏感性不高[31-32],是施N未能显著影响森林生态系统NPP的原因之一。本研究表明,N2、N3处理分别显著抑制了针叶NPP的增加,促进阔叶NPP增加(P < 0.05)。Tatarinov等[33]也有相似的结果,并指出与阔叶相比,针叶对外源N具有更高的敏感性,Krause等[34]指出,叶的形态对森林生产力具有重要影响。

      本研究土壤全N含量随土层深度增加而降低,并不受外源N添加的影响。Lovett等[11]曾就施N对土壤N含量的影响做出研究,其结果表明,无论在土壤的有机层或矿物质层,土壤N的净矿化和硝化速率均具有树种特异性,土壤N含量受树种影响差异显著,而不受施N水平的影响,与本研究结果相类似。本研究样地为原始阔叶红松混交林,各样方树种组成相对一致且均匀,因而土壤全N含量在相同土层深度不同施N处理下无显著差异。Vogt等[35]在3个不同地理位置所进行的施N对土壤有机C(soil organic carbon, SOC)和全N浓度的影响的研究与本文所得结果一致:施N没有改变土壤SOC、N浓度及C/N比,但在各个土层土壤SOC、N浓度均表现出很强的相关性。本研究中土壤全N含量与土壤SOC浓度存在显著的正相关关系(表 3),且土壤SOC密度在相同土层、不同施N处理下无显著差异,在相同施N处理下随土层深度增加而显著降低(P < 0.05);土壤全N含量表现出一致规律。说明有效提高土壤全N含量,提高土壤N的可得性[36],成为提高土壤C库C密度的重要途径。然而,Ye等[37]在福建利用13C和15N同位素标记示踪法得出与本文相反的结论:施N显著促进土壤全N浓度升高104%;Lu等[38]试验结果表明:在富N的老龄林,经过7年的N添加处理,使得土壤C浓度显著降低。对不同地理区域、不同土壤背景森林生态系统进行N添加试验,得到土壤C、N浓度变化的结论也不尽相同,本研究丰富了有关土壤C、N循环的研究,为解释施N对土壤C库C密度无显著影响提供依据。

      本研究调查方法存在一定的局限性,如叶凋落物的收集:Edwards[39]曾报道,在新几内亚潮湿的热带森林,直径小于1cm的枝在掉落到凋落物收集器之前就已经损失了36%~40%的干质量,相类似的,Frangi等[40]也有研究指出大片的老叶在离开树枝前就已通过分解作用损失了超过50%的质量,因此会造成对森林生态系统NPP和C密度的低估。有关细根周转周期的研究指出,细根的生命周期可能远比1年更短:Eissenstat等[41]对温带森林的多个调查显示,细根的存活周期在15~180d内,因而运用极差法估算细根NPP,可能会由于延长了周转周期而低估。另有研究指出,在成熟的针叶林内,植物根分配给菌根的NPP占整个森林NPP的15%[35],只考虑细根生物量来估算细根NPP会降低其准确性。N在森林生态系统中循环周期可达15~30年[36],其对森林固C的影响也具有一定的滞后性,如丹麦的云杉(Picea asperata)林在施N处理5年后,森林固C能力无显著变化[42];在瑞典针叶林的5年外加N处理也没有使植物生长速度发生明显改变[43]。本试验为期6年,因此需要延长监测森林C、N动态周期,以更加准确地为森林经营及深入了解温带原始林C、N循环等提供参考。

参考文献 (43)

目录

    /

    返回文章
    返回