高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响

赵佳琪 牟长城 吴彬 周雪娇

赵佳琪, 牟长城, 吴彬, 周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响[J]. 北京林业大学学报, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017
引用本文: 赵佳琪, 牟长城, 吴彬, 周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响[J]. 北京林业大学学报, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017
ZHAO Jia-qi, MU Chang-cheng, WU Bin, ZHOU Xue-jiao. Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China[J]. Journal of Beijing Forestry University, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017
Citation: ZHAO Jia-qi, MU Chang-cheng, WU Bin, ZHOU Xue-jiao. Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China[J]. Journal of Beijing Forestry University, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017

造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响

doi: 10.13332/j.1000-1522.20170017
基金项目: 

国家自然科学基金重点项目 41430639

详细信息
    作者简介:

    赵佳琪。主要研究方向:森林生态学。Email: zhjiaqi2017@163.com  地址: 150040  黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心

    通讯作者:

    牟长城,教授,博士生导师。主要研究方向:森林生态学、湿地生态学。Email: muccjs@163.com   地址:同上

  • 中图分类号: S718.5

Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China

  • 摘要: 采用静态箱-气象色谱法,测定不同间伐强度温带弃耕地落叶松人工林(未间伐为对照、轻度间伐强度为25%、重度间伐强度为50%,林龄50年及间伐已20年)及相应立地上农田的土壤温室气体(CO2、CH4和N2O)排放年通量与相关环境因子(土壤温度、湿度及养分含量等),揭示造林与间伐对弃耕地土壤温室气体排放的影响规律,以便为定量评价退耕还林工程实施效果提供依据。结果表明:1)土壤CO2年均排放通量(149.44~204.82 mg/(m2·h))呈现未间伐>农田>轻度间伐>重度间伐的变化趋势,未间伐较农田提高11.6%,轻、重度间伐较农田降低11.4%~18.6%,较未间伐显著降低20.6%~27.0%;2)土壤CH4吸收通量(-0.027~-0.033 mg/(m2·h))呈现重度间伐>未间伐=农田>轻度间伐变化趋势,未间伐与农田相同,轻度间伐较农田降低12.9%,重度间伐较农田提高6.5%;3)土壤N2O排放通量(0.025~0.037 mg/(m2·h))呈现农田>重度间伐>轻度间伐>未间伐的变化趋势,未间伐较农田降低32.4%,轻、重度间伐较农田降低24.3%~29.7%;4)温带弃耕地造林与间伐经营并未改变土壤CO2、CH4、N2O排放通量与气温和土壤温度的相关性,但改变了3种温室气体与土壤湿度的相关性;5)土壤增温潜势(13.89~18.64 t/(hm2·a))呈现未间伐>农田>轻度间伐>重度间伐的变化趋势,未间伐较农田提高9.1%,轻、重度间伐较农田降低12.1%~18.7%,两者也较未间伐降低19.4%~25.5%。因此,东北温带弃耕地营造落叶松林提高了土壤增温潜势,间伐经营较大幅度降低了土壤增温潜势,故从控制气候变暖考虑对其采取强度间伐(50%)方式比较适宜。
  • 图  1  帽儿山弃耕地落叶松人工林CO2、CH4、N2O排放通量的季节变化

    Figure  1.  Seasonal variations of CO2, CH4 and N2O fluxes from planted larch forest and farmland in Maoershan Mountains in northeastern China

    表  1  温带帽儿山弃耕地不同间伐处理落叶松人工林样地状况

    Table  1.   Conditions of planted larch forest under different thinning intensity treatments in Maoershen Mountains in northeastern China

    样地
    Sample
    site
    密度/(株·hm-2)
    Stand density/
    (tree·ha-1)
    胸高断面积/(m2·hm-2)
    Basal area at breast
    height/(m2·ha-1)
    平均胸径
    Average D
    BH/cm
    胸径范围
    Range of
    DBH/cm
    林下灌木组成
    Shrub composition
    LW 2 502 52.50 16.35 3.5~25.2 卫矛Eronymus sp.
    LQ 1 867 48.54 18.20 5.6~28.3 暴马丁香Syringa reticulate
    LZ 1 283 40.77 20.12 6.2~32.8 五味子Schisandra chinesis
    注:LW.未间伐样地;LQ.轻度间伐样地;LZ.重度间伐样地。下同。Notes: LW, no thinning site; LQ, mild thinning site; LZ, severe thinning site. The same below.
    下载: 导出CSV

    表  2  温带帽儿山弃耕地不同间伐处理落叶松人工林样地土壤理化性质

    Table  2.   Soil physicochemical property of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

    土壤养分
    Soil nutrient
    土壤层
    Soil layer/cm
    样地Sample site
    NT LW LQ LZ
    硝态氮 Ammonium nitrogen/(mg·L-1) 0~10 0.63±0.06a 1.11±0.37a 1.02±0.58a 2.20±0.80a
    10~20 0.69±0.12a 0.62±0.52a 0.62±0.35a 1.13±0.37a
    20~40 0.70±0.28a 0.35±0.14a 0.40±0.21a 0.60±0.21a
    铵态氮 Nitrate nitrogen/(mg·L-1) 0~10 2.76±1.27a 3.01±0.96ab 5.01±1.59b 2.15±0.22a
    10~20 3.20±1.11a 2.46±0.50ab 4.52±1.29b 2.03±0.09a
    20~40 2.36±0.55a 3.84±1.00a 3.10±0.70a 2.93±1.17a
    全氮 Total nitrogen/(g·kg-1) 0~10 6.60±0.43b 5.27±1.27a 4.99±0.36ab 4.79±0.33a
    10~20 5.45±1.31a 3.61±1.19a 3.92±1.14a 3.92±0.34a
    20~40 3.28±0.70a 2.32±0.47a 2.79±0.48a 2.55±0.58a
    有机碳 Organic carbon/(g·kg-1) 0~10 61.21±5.67b 53.49±12.10ab 44.76±4.40a 44.17±5.62a
    10~20 47.22±15.81a 31.51±11.34a 31.79±8.65a 31.07±2.48a
    20~40 26.57±6.60b 19.46±5.08a 22.02±4.79a 18.56±5.85a
    pH 0~10 5.70±0.14a 5.88±0.53a 5.59±0.44a 5.71±0.16a
    10~20 5.82±0.17a 5.22±0.69a 5.66±0.47a 5.67±0.08a
    20~40 5.87±0.10a 5.78±0.03a 5.82±0.46a 5.60±0.51a
    含水率 Soil moisture/% 0~10 33.37±1.32b 34.69±1.07b 36.63±0.76c 25.71±0.39a
    10~20 32.76±0.04b 36.08±0.35c 35.54±0.45c 28.08±0.20a
    20~40 33.58±0.32b 36.23±0.59c 36.63±0.39c 29.11±0.43a
    温度 Temperature/℃ 0~10 5.32±0.11b 3.40±0.14a 3.59±0.30a 3.32±0.10a
    10~20 5.48±0.04b 4.24±0.03a 4.14±0.19a 4.13±0.20a
    20~40 5.59±0.11b 4.39±0.38a 4.50±0.27a 4.42±0.14a
    注:NT.农田样地。下同。Notes: NT, farmland site. The same below.
    下载: 导出CSV

    表  3  温带帽儿山弃耕地不同间伐处理落叶松人工林土壤温室气体排放通量

    Table  3.   Greenhouse gas fluxes of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

    mg·m-2·h-1
    气体
    Air
    样地
    Sample site
    温室气体平均通量Average flux of greenhouse gas
    春季 Spring 夏季 Summer 秋季 Autumn 冬季 Winter 年均通量 Annual flux
    CO2 NT 234.81±41.20Cb 361.11±63.89Da 122.06±19.09Ba 15.92±2.61Aa 183.48±29.98ab
    LW 211.14±33.24Bb 400.41±57.30Ca 169.96±19.02Bb 37.76±12.30Ab 204.82±19.61b
    LQ 176.62±23.66Cab 334.81±33.44Da 116.15±33.34Ba 22.79±4.53Aa 162.59±6.23a
    LZ 125.88±13.27Ba 356.71±65.61Ca 99.15±10.67Ba 16.02±4.15Aa 149.44±21.39a
    CH4 NT -0.044±0.028ABa -0.058±0.016Aa -0.026±0.005BCb 0.002±0.003Ca -0.031±0.009a
    LW -0.032±0.024Aa -0.069±0.018Aa -0.066±0.016Aa 0.042±0.053Ba -0.031±0.014a
    LQ -0.033±0.016Aa -0.066±0.015Aa -0.053±0.007Aa 0.045±0.065Ba -0.027±0.010a
    LZ -0.047±0.003ABa -0.053±0.007Aa -0.031±0.008Bb 0.001±0.019Ca -0.033±0.005a
    N2O NT 0.113±0.099Ba 0.019±0.008ABa 0.007±0.005Aab 0.010±0.011Ab 0.037±0.030a
    LW 0.091±0.031Ba 0.016±0.007Aa -0.003±0.004Aa -0.005±0.043Aa 0.025±0.008a
    LQ 0.060±0.020Ca 0.029±0.004Ba 0.008±0.005Aab 0.005±0.001Aab 0.026±0.005a
    LZ 0.080±0.026Ba 0.017±0.010Aa 0.010±0.008Ab 0.007±0.005Aab 0.028±0.006a
    注:表中给出的数据为平均值以及标准差,小写字母表示同一季节不同处理差异显著(P<0.05),大写字母表示同一处理不同季节差异显著(P<0.05)。Notes: data in the table are average and standard errors; different lowercase letters indicate there is a significant difference among different treatments in the same season (P<0.05); different capital letters indicate there is a significant difference among different seasons for the same treatment(P<0.05).
    下载: 导出CSV

    表  4  间伐前后弃耕地落叶松人工林土壤温室气体排放通量与温度、湿度的相关性(温度为全年、湿度为生长季)

    Table  4.   Correlation between greenhouse gas fluxes and soil temperature and moisture of planted larch forest under different thinning intensity treatments

    气体
    Air
    样地
    Sample
    site
    气温
    Air
    temperature
    土壤温度 Soil temperature 土壤含水率 Soil moisture
    5 cm 10 cm 20 cm 30 cm 40 cm 5 cm 10 cm 20 cm 30 cm 40 cm
    CO2 NT 0.91** 0.92** 0.91** 0.88** 0.85** 0.83** 0.55** 0.59** 0.16 0.12 0.06
    LW 0.81** 0.86** 0.86** 0.87** 0.85** 0.83** -0.16 0.13 0.34 0.30 0.21
    LQ 0.75** 0.84** 0.84** 0.85** 0.83** 0.81** 0.36 0.43 0.32 0.14 0.16
    LZ 0.69** 0.82** 0.83** 0.85** 0.86** 0.85** 0.17 0.08 -0.17 -0.25 -0.29
    CH4 NT -0.71** -0.68** -0.66** -0.63** -0.62** -0.59** -0.36 -0.38 0.02 0.04 0.23
    LW -0.54** -0.63** -0.63** -0.61** -0.62** -0.62** 0.14 0.29 0.26 0.32 0.37
    LQ -0.53** -0.56** -0.55** -0.52** -0.50** -0.47** 0.32 0.45* 0.22 0.20 0.20
    LZ -0.62** -0.58** -0.57** -0.55** -0.51** -0.49** -0.46* -0.50* -0.43 -0.31 -0.24
    N2O NT 0.12 -0.08 -0.09 -0.13 -0.15 -0.17 0.40 0.40 0.56** 0.51* 0.21
    LW 0.21 0.02 0.04 -0.07 -0.10 -0.13 -0.08 0.26 0.38 0.32 0.30
    LQ 0.29 0.12 0.11 0.05 0.01 -0.03 0.19 0.14 0.14 0.06 0.02
    LZ 0.19 -0.04 -0.03 -0.10 -0.13 -0.15 0.06 0.01 -0.13 -0.12 -0.16
    注:**表示在0.01水平(双侧)上相关;*表示在0.05水平(双侧)上相关。Notes: ** means extremely significant correlation at P<0.01 level(double side); * means significant correlation at P<0.05 level(double side).
    下载: 导出CSV

    表  5  温带帽儿山弃耕地不同间伐处理落叶松人工林土壤温室气体排放总量及GWP值

    Table  5.   Fluxes and GWP of greenhouse gas of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

    样地
    Sample
    site
    CO2 CH4 N2O GWP总和/
    (t·hm-2·a-1)
    Total GWP/
    (t·ha-1·yr-1)
    排放总量/
    (t·hm-2·a-1)
    Total flux/
    (t·ha-1·yr-1)
    GWPCO2/
    (t·hm-2·a-1)
    GWPCO2/
    (t·ha-1·yr-1)
    排放总量/
    (kg·hm-2·a-1)
    Total flux/
    (kg·ha-1·yr-1)
    GWPCH4/
    (t·hm-2·a-1)
    GWPCH4/
    (t·ha-1·yr-1)
    排放总量/
    (kg·hm-2·a-1)
    Total flux/
    (kg·ha-1·yr-1)
    GWPN2O/
    (t·hm-2·a-1)
    GWPN2O/
    (t·ha-1·yr-1)
    NT 16.17±2.67ab 16.17±2.67ab -2.75±0.81a -0.07±0.02a 3.29±2.71a 0.98±0.81a 17.08±3.33ab
    LW 18.07±1.73b 18.07±1.73b -2.78±1.21a -0.07±0.02a 2.16±0.68a 0.64±0.20a 18.64±1.73b
    LQ 14.41±0.52ab 14.41±0.52ab -2.34±0.89a -0.06±0.02a 2.26±0.46a 0.67±0.14a 15.02±0.61ab
    LZ 13.21±1.90a 13.21±1.90a -2.86±0.38a -0.07±0.01a 2.51±0.55a 0.75±0.60a 13.89±2.06a
    注:小写字母表示不同处理差异显著(P<0.05)。GWPCO2、GWPCH4、GWPN2O分别为CO2、CH4和N2O的增温潜势值(即CO2、CH4和N2O排放总量的1、25和298倍)。Notes: different lowercase letters indicate there is a significant difference among different treatments (P<0.05). GWPCO2, GWPCH4 and GWPN2O mean global warming potential (GWP) of CO2, CH4 and N2O, respectively (1, 25 and 298 times of CO2, CH4 and N2O total fluxes).
    下载: 导出CSV
  • [1] IPCC. Climate change 2013: the physical science basis[M]. Cambridge: Cambridge University Press, 2013.
    [2] 刘慧峰, 伍星, 李雅, 等.土地利用变化对土壤温室气体排放通量影响研究进展[J].生态学杂志, 2014, 33(7): 1960-1968. http://d.old.wanfangdata.com.cn/Periodical/stxzz201407036

    LIU H F, WU X, LI Y, et al. Effects of land use change on greenhouse gas fluxes from soils: a review[J]. Chinese Journal of Ecology, 2014, 33(7): 1960-1968. http://d.old.wanfangdata.com.cn/Periodical/stxzz201407036
    [3] ZONA D, JANSSENS I A, AUBINET M, et al. Fluxes of the greenhouse gases (CO2, CH4 and N2O) above a short-rotation poplar plantation after conversion from agricultural land[J]. Agricultural and Forest Meteorology, 2013, 169: 100-110. doi:  10.1016/j.agrformet.2012.10.008
    [4] 牟长城, 程伟, 孙晓新, 等.小兴安岭落叶松沼泽林土壤CO2、N2O和CH4的排放规律[J].林业科学, 2010, 46(7): 7-15. http://d.old.wanfangdata.com.cn/Periodical/lykx201007002

    MU C C, CHENG W, SUN X X, et al. Seasonal variation of emission fluxes of CO2, N2O and CH4 from Larix gemlinii swamps soils in Xiaoxing'an Mountains of China[J]. Scientia Silvae Sinicae, 2010, 46(7): 7-15. http://d.old.wanfangdata.com.cn/Periodical/lykx201007002
    [5] ZHU X X, LUO C Y, WANG S P, et al. Effects of warming, grazing / cutting and nitrogen fertilization on greenhouse gas fluxes during growing seasons in an alpine meadow on the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2015, 124: 506-514. http://cn.bing.com/academic/profile?id=72a5c5fe3c58191225f0125eb51f10c2&encoded=0&v=paper_preview&mkt=zh-cn
    [6] 张玉铭, 胡春胜, 张佳宝, 等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报, 2011, 19(4): 966-975. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201104041

    ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 966-975. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201104041
    [7] DAVIDSON E A, VERCHOT L V, CATTANIO H J, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J]. Biogeochemistry, 2000, 48(1): 53-69. http://cn.bing.com/academic/profile?id=51307e2203c15a63336b476cb9dd97f6&encoded=0&v=paper_preview&mkt=zh-cn
    [8] GUO J F, YANG Y S, CHEN G S, et al. Effects of clear-cutting and slash burning on soil respiration in Chinese fir and evergreen broadleaved forests in mid-subtropical China[J]. Plant & Soil, 2010, 333(1): 249-261. http://cn.bing.com/academic/profile?id=c875892e5a30a9aecf8cf2a7f2f50ad4&encoded=0&v=paper_preview&mkt=zh-cn
    [9] PEICHL M, ARAIN A M, MOORE T R, et al. Carbon and greenhouse gas balances in an age sequence of temperate pine plantations[J]. Biogeosciences, 2014, 11(19): 5399-5410. doi:  10.5194/bg-11-5399-2014
    [10] PAUL K I, POLGLASE J G, NYAKUENGAMA J G, et al. Change in soil carbon following afforestation[J]. Forest Ecology and Management, 2002, 168(1): 241-257. doi:  10.1016-S0378-1127(01)00740-X/
    [11] 赵娜, 孟平, 张劲松, 等.华北低丘山地不同土地利用条件下的土壤呼吸比较[J].林业科学, 2014, 50(2): 1-7. doi:  10.3969/j.issn.1672-8246.2014.02.001

    ZHAO N, MENG P, ZHANG J S, et al. Comparison of soil respiration under various land uses in hilly area of Northern China[J]. Scientia Silvae Sinicae, 2014, 50(2): 1-7. doi:  10.3969/j.issn.1672-8246.2014.02.001
    [12] 杨刚, 何寻阳, 王克林, 等.不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J].土壤通报, 2008, 39(1): 189-191. doi:  10.3321/j.issn:0564-3945.2008.01.036

    YANG G, HE X Y, WANG K L, et al. Effects of vegetation types on soil micro-biomass carbon, nitrogen and soil respiration[J]. Chinese Journal of Soil Science, 2008, 39(1): 189-191. doi:  10.3321/j.issn:0564-3945.2008.01.036
    [13] MERINO A, PEREZ-BATALLON P, MACIAS F. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe[J]. Soil Biology & Biochmistry, 2004, 36(6): 917-925. http://cn.bing.com/academic/profile?id=76e42f538dcfceffc3cee8136c62d608&encoded=0&v=paper_preview&mkt=zh-cn
    [14] MONTI A, BARBANTI L, ZATTA A, et al. The contribution of switchgrass in reducing GHG emissions[J]. Global Change Biology Bioenergy, 2012, 4(4): 420-434. doi:  10.1111/j.1757-1707.2011.01142.x
    [15] YAMULKI S, ANDERSON R, PEACE A, et al. Soil CO2 CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration[J]. Biogeosciences, 2013, 10(2): 1051-1065.
    [16] WU X, BRUGGEMANN N, GASCHE R, et al. Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany[J]. Environmental Pollution, 2011, 159(10): 2467-2475. doi:  10.1016/j.envpol.2011.06.025
    [17] 牟长城, 吴云霞, 李婉姝, 等.采伐对小兴安岭落叶松-泥炭藓沼泽温室气体排放的影响[J].应用生态学报, 2010, 21(2): 287-293. http://d.old.wanfangdata.com.cn/Periodical/yystxb201002004

    MU C C, WU Y X, LI W S, et al. Effects of forest cutting on greenhouse gas emissions from Larix gemlinii-sphagnum swamps in Lesser Xing'an Mountains of Heilongjiang, China[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 287-293. http://d.old.wanfangdata.com.cn/Periodical/yystxb201002004
    [18] LAPORTE M F, DUCHESNE L C, MORRISON I K. Effect of clearcutting, selection cutting, shelterwood cutting and microsites on soil surface CO2 efflux in a tolerant hardwood ecosystem of northern Ontario[J]. Forest Ecology & Management, 2003, 174(1): 565-575. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d1c9a80badaa47b2bb2143285a98d50
    [19] 左强, 何怀江, 张春雨, 等.采伐对蛟河阔叶红松混交林土壤呼吸的影响[J].北京林业大学学报, 2016, 38(4): 71-76. doi:  10.13332/j.1000-1522.20160055

    ZUO Q, HE H J, ZHANG C Y, et al.Effects of cutting on soil respiration in a mixed broadleaf-Korean pine forest in western foothill of Changbai Mountain, northeast China[J]. Journal of Beijing Forest University, 2016, 38(4): 71-76. doi:  10.13332/j.1000-1522.20160055
    [20] CONCILIO A, MA S Y, LI Q L, et al. Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests[J]. Canadian Journal of Forest Research, 2005, 35(7): 1581-1591. doi:  10.1139/x05-091
    [21] 唐晓鹿, 范少辉, 漆良华, 等.采伐对幕布山区毛竹林土壤呼吸的影响[J].林业科学研究, 2013, 26(1): 52-57. doi:  10.3969/j.issn.1001-1498.2013.01.009

    TANG X L, FAN S H, QI L H, et al. Effect of cutting on soil respiration in Phyllostachy edulis Forest, Mubushan, China[J]. Forest Research, 2013, 26(1): 52-57. doi:  10.3969/j.issn.1001-1498.2013.01.009
    [22] ZERVA A, MENCUCCINI M. Short-term effects of clearfelling on soil CO2, CH4, and N2O fluxes in a Sitka spruce plantation[J]. Soil Biology & Biochemistry, 2005, 37(11): 2025-2036. https://www.sciencedirect.com/science/article/abs/pii/S0038071705001318
    [23] LAVOIE M, KELLMAN L, RISK D. The effects of clear-cutting on soil CO2, CH4 and N2O flux, storage and concentration in two Atlantic temperate forests in Nova Scotia, Canada[J]. Forest Ecology & Management, 2013, 304: 355-369. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74fe19eb4fbc64f84fad38a0fe2068f8
    [24] YASHIRO Y, KADIR W R, OKUDA T, et al.The effects of logging on soil greenhouse gas(CO2, CH4, N2O)flux in a tropical rain forest, Peninsular Malaysia[J]. Agricultural & Forest Meteorology, 2008, 148(5): 799-806. http://cn.bing.com/academic/profile?id=827bc202ad9cec5413607aa655213331&encoded=0&v=paper_preview&mkt=zh-cn
    [25] TAKAKAI F, DESYATKIN A R, LOPEAZ C M L, et al. Influence of forest disturbance on CO2, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia[J]. Soil Science and Plant Nutrition, 2005, 54(6): 938-949. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1747-0765.2008.00309.x
    [26] 刘博杰, 张路, 逯非, 等.中国退耕还林工程温室气体排放与净固碳量[J].应用生态学报, 2016, 27(6): 1693-1707. http://d.old.wanfangdata.com.cn/Periodical/yystxb201606001

    LIU B J, ZHANG L, LU F, et al.Greenhouse gas emissions and net carbon sequestration of "Grain for Green" Program in China[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1693-1707. http://d.old.wanfangdata.com.cn/Periodical/yystxb201606001
    [27] SONG X Z, PENG C H, ZHOU G M, et al. Chinese grain for green program led to highly increased soil organic carbon levels: a meta-analysis[J]. Scientific Reports, 2013, 43(3): 1-7. http://cn.bing.com/academic/profile?id=51226711d8c14027a5ff3b7796571ebf&encoded=0&v=paper_preview&mkt=zh-cn
    [28] 侯扶江, 肖金玉, 南志标.黄土高原退耕地的生态恢复[J].应用生态学报, 2002, 13(8): 923-929. doi:  10.3321/j.issn:1001-9332.2002.08.002

    HOU F J, XIAO J Y, NAN Z B. Eco-restoration of abandoned farmland in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2002, 13(8): 923-929. doi:  10.3321/j.issn:1001-9332.2002.08.002
    [29] 彭文英, 张科利, 陈瑶, 等.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报, 2005, 20(2): 272-278. doi:  10.3321/j.issn:1000-3037.2005.02.016

    PENG W Y, ZHANG K L, CHEN Y, et al. Research on soil quality change after returning farmland to forest on the loess sloping croplands[J]. Journal of Natural Resources, 2005, 20(2): 272-278. doi:  10.3321/j.issn:1000-3037.2005.02.016
    [30] 刘实, 王传宽, 许飞. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量[J].生态学报, 2010, 30(15): 4075-4084. http://d.old.wanfangdata.com.cn/Periodical/stxb201015014

    LIU S, WANG C K, XU F.Soil effluxes of carbon dioxide, methane and nitrous oxide during non-growing season for four temperate forests in northeastern China[J]. Acta Ecologica Sinica, 2010, 30(15): 4075-4084. http://d.old.wanfangdata.com.cn/Periodical/stxb201015014
    [31] DOU X L, ZHOU W, ZHANG Q F, et al. Greenhouse gas (CO2, CH4, N2O) emissions from soils following afforestation in central China[J]. Atmospheric Environment, 2016, 126: 98-106. doi:  10.1016/j.atmosenv.2015.11.054
    [32] 孟春, 王立海, 沈微.择伐对小兴安岭针阔叶混交林土壤呼吸的影响[J].应用生态学报, 2008, 19(4): 729-734. http://d.old.wanfangdata.com.cn/Periodical/yystxb200804006

    MENG C, WANG L H, SHEN W. Effects of selective cutting on soil respiration in conifer/broad-leaved mixed forests in Xiaoxing'an Ling[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 729-734. http://d.old.wanfangdata.com.cn/Periodical/yystxb200804006
    [33] EWEL K C, CROPPER W P, GHOLZ H L, et al. Soil CO2 evolution in Florida slash pine plantations (Ⅰ): changes through time[J]. Canadian Journal of Forest Research, 1987, 17(4): 325-329. doi:  10.1139/x87-054
    [34] 杨玉盛, 陈光水, 王小国.皆伐对杉木人工林土壤呼吸的影响[J].土壤学报, 2005, 42(4): 548-590. http://d.old.wanfangdata.com.cn/Periodical/trxb200504008

    YANG Y S, CHEN G S, WANG X G. Effect of clear-cutting on soil respiration of Chinese fir plantation[J]. Acta Peologica Sinica, 2005, 42(4): 548-590. http://d.old.wanfangdata.com.cn/Periodical/trxb200504008
    [35] LARIONOVA A A, YERMLAYEV A M, BLAGODATSKY S A, et al. Soil respiration and carbon balance of gray forest soils as affected by land use[J]. Biology and Fertility of Soils, 1998, 27(3): 251-257. doi:  10.1007/s003740050429
    [36] SMITH K A, DOBBIE K E, BALL B C, et al. Oxidation of atmospheric methane in northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink[J]. Global Change Biology, 2000, 6(7): 791-803. doi:  10.1046/j.1365-2486.2000.00356.x
    [37] 孙海龙, 张彦东.采伐干扰对东北温带次生林土壤CH4通量的影响[J].应用生态学报, 2013, 24(10): 2737-2745. http://d.old.wanfangdata.com.cn/Periodical/yystxb201310005

    SUN H L, ZHANG Y D.Effects of harvest disturbance on soil CH4 flux in a secondary hardwood forest in Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2737-2745. http://d.old.wanfangdata.com.cn/Periodical/yystxb201310005
    [38] MASTEPANOV M, SIGSGAARD C, DLUGOKENCKY E J, et al. Large tundra methane burst during onset of freezing[J]. Nature, 2008, 456: 30-628. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223382846/
    [39] 宋长春, 王毅勇, 王跃思, 等.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J].环境科学, 2005, 26(7): 7-12. http://d.old.wanfangdata.com.cn/Periodical/hjkx200504002

    SONG C C, WANG Y Y, WANG Y S, et al. Dynamics of CO2, CH4 and N2O emission fluxes from mires during freezing and thawing season[J]. Environmental Science, 2005, 26 (7):7-12. http://d.old.wanfangdata.com.cn/Periodical/hjkx200504002
    [40] PRIEME A, CHRISTENSEN S. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils[J]. Soil Biology & Biochemistry, 2001, 33(15): 2083-2091. http://cn.bing.com/academic/profile?id=e39a88dd588447a783818d951f3d22c5&encoded=0&v=paper_preview&mkt=zh-cn
    [41] 柯韵, 杨红薇, 王小国, 等.紫色土坡耕地退耕还林对土壤N2O排放的影响[J].农业环境科学学报, 2015, 34(7): 1398-1406. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201507028

    KE Y, YANG H W, WANG X G, et al. Effect of returning cropland to forestland on N2O emissions from sloping purple soil[J]. Journal of Agro-Environment Science, 2005, 34 (7): 1398-1406. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201507028
    [42] LIU H, ZHAO P, LU P, et al. Greenhouse gas fluxes from soils of different land-use types in hilly area of South China[J]. Agriculture Ecosystems & Environment, 2008, 124(1): 125-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a8bcfbc769bcf67e160ae2f6c63d174d
    [43] TEEPE R, BRUMME R, BEESE F. Nitrous oxide emissions from frozen soils under agricultural, fallow and forest land[J]. Soil Biology & Biochemistry, 2000, 32(11): 1807-1810. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214345622/
    [44] HU Y G, CHANG X F, LIN X W, et al. Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan plateau[J]. Soil Biology & Biochemistry, 2010, 42(6): 944-952. https://www.sciencedirect.com/science/article/abs/pii/S0038071710000647
    [45] CLEMENT J C, DOWRICK D, COSANDEY A C, et al. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient[J]. Biogeochemistry, 2004, 67(1): 113-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c32dfa97ca6038989bdf82080f7a53d
    [46] GROFFMAN P M, HAPDY J P, DRISCOLL C T, et al. Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest[J]. Global Change Biology, 2006, 12(9): 1748-1760. doi:  10.1111/j.1365-2486.2006.01194.x
    [47] 陈哲, 韩瑞云, 杨世琦, 等.东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究[J].农业环境科学学报, 2016, 35(2): 387-395. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201602025

    CHEN Z, HAN R Y, YANG S Q, et al. Fluxes of CO2, CH4 and N2O from seasonal freeze-thaw arable soils in Northeast China[J]. Journal of Agro-Environment Science, 2016, 35(2): 387-395. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201602025
    [48] 陈哲, 杨世琦, 张晴雯, 等.冻融对土壤氮素损失及有效性的影响[J].生态学报, 2016, 36(4): 1083-1094. http://d.old.wanfangdata.com.cn/Periodical/stxb201604021

    CHEN Z, YANG S Q, ZHANG Q W, et al. Effect of freeze-thaw cycles on soil nitrogen loss and availability[J]. Acta Ecologica Sinica, 2016, 36 (4): 1083-1094. http://d.old.wanfangdata.com.cn/Periodical/stxb201604021
    [49] PEICHL M, ARAIN M A, ULLAH S, et al. Carbon dioxide, methane, and nitrous oxide exchanges in an age-sequence of temperate pine forests[J]. Global Change Biology, 2010, 16(8): 2198-2212. https://www.ingentaconnect.com/content/bsc/gcb/2010/00000016/00000008/art00005
    [50] 谢军飞, 李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象, 2002, 23(4): 387-391. http://d.old.wanfangdata.com.cn/Periodical/zgnyqx200204013

    XIE J F, LI Y E. A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils[J]. Chinese Journal of Agrometeorology, 2002, 23 (4): 387-391. http://d.old.wanfangdata.com.cn/Periodical/zgnyqx200204013
    [51] VERCHOT L V, DAVIDSON E A, CATTANIO J H, et al. Land use change and biogeochemical controls of methane fluxes in sols of eastern Amazonia[J]. Ecosystems, 2000, 3(1): 41-56. doi:  10.1007/s100210000009
    [52] 周明华.紫色土坡耕地氮素平衡的模拟研究[D].北京: 中国科学院研究生院, 2010. http://www.irgrid.ac.cn/handle/1471x/769565

    ZHOU M H. Simulation of nitrogen balance in hillslope cropland of purple soil[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010. http://www.irgrid.ac.cn/handle/1471x/769565
    [53] 孙海龙, 张彦东, 吴世义.东北温带次生林和落叶松人工林土壤CH4吸收和N2O排放通量[J].生态学报, 2013, 33(17): 5320-5328. http://d.old.wanfangdata.com.cn/Periodical/stxb201317021

    SUN H L, ZHANG Y D, WU S Y. Methane and nitrous oxide fluxes in temperate secondary forest and larch plantation in Northeastern China[J]. Acta Ecologica Sinica, 2013, 33 (17): 5320-5328. http://d.old.wanfangdata.com.cn/Periodical/stxb201317021
    [54] 李锡鹏.川中丘陵区典型农田和森林土壤温室气体排放特征及影响因素[D]成都: 西南交通大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014257756.htm

    LI X P. The characteristics and influencing factors of soil greenhouse gases emissions from typical cropland and forest in hilly areas of the central Sichuan Basin[D].Chengdu: Southwest Jiaotong University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014257756.htm
  • [1] 张健飞, 王淳, 徐雯雯, 黄选瑞, 张志东.  华北落叶松不同代际人工林土壤养分及细菌群落变化特征 . 北京林业大学学报, 2020, 42(3): 36-45. doi: 10.12171/j.1000-1522.20190256
    [2] 胡雪凡, 张会儒, 周超凡, 张晓红.  不同抚育间伐方式对蒙古栎次生林空间结构的影响 . 北京林业大学学报, 2019, 41(5): 137-147. doi: 10.13332/j.1000-1522.20190037
    [3] 白东雪, 刘强, 董利虎, 李凤日.  长白落叶松人工林有效冠高的确定及其影响因子 . 北京林业大学学报, 2019, 41(5): 76-87. doi: 10.13332/j.1000-1522.20190016
    [4] 管惠文, 董希斌.  间伐强度对落叶松次生林冠层结构和林内光环境的影响 . 北京林业大学学报, 2018, 40(10): 11-23. doi: 10.13332/j.1000-1522.20180021
    [5] 王冬至, 张冬燕, 张志东, 黄选瑞.  塞罕坝华北落叶松人工林断面积预测模型 . 北京林业大学学报, 2017, 39(7): 10-17. doi: 10.13332/j.1000-1522.20170072
    [6] 张甜, 朱玉杰, 董希斌.  抚育间伐对小兴安岭天然针阔混交次生林生境的影响 . 北京林业大学学报, 2017, 39(10): 1-12. doi: 10.13332/j.1000-1522.20170187
    [7] 邵英男, 田松岩, 刘延坤, 陈瑶, 孙志虎.  密度调控对长白落叶松人工林土壤呼吸的影响 . 北京林业大学学报, 2017, 39(6): 51-59. doi: 10.13332/j.1000-1522.20170029
    [8] 田平, 韩海荣, 康峰峰, 程小琴, 朱江, 周文嵩.  密度调整对太岳山华北落叶松人工林冠层结构及林下植被的影响 . 北京林业大学学报, 2016, 38(8): 45-53. doi: 10.13332/j.1000-1522.20160018
    [9] 张艺, 王春梅, 许可, 韩金锋, 杨欣桐, 林嘉莉.  若尔盖湿地土壤温室气体排放对模拟氮沉降增加的初期响应 . 北京林业大学学报, 2016, 38(8): 54-63. doi: 10.13332/j.1000-1522.20160048
    [10] 孙志虎, 王秀琴, 陈祥伟.  不同抚育间伐强度对落叶松人工林生态系统碳储量影响 . 北京林业大学学报, 2016, 38(12): 1-13. doi: 10.13332/j.1000-1522.20160016
    [11] 陈东升, 孙晓梅, 李凤日, 贾炜玮.  落叶松人工林节子内部特征变化规律研究 . 北京林业大学学报, 2015, 37(2): 16-23. doi: 10.13332/j.cnki.jbfu.2015.02.014
    [12] 王巍伟, 吕瑞恒, 刘勇, 陈晓, 李国雷, .  不同氮含量华北落叶松叶凋落物在不同间伐强度林内氮释放规律研究 . 北京林业大学学报, 2014, 36(3): 63-68. doi: 10.13332/j.cnki.jbfu.2014.03.009
    [13] 李丹, 戴巍, 闫志刚, 王霓虹.  基于模糊层次分析法的落叶松人工林生境评价系统 . 北京林业大学学报, 2014, 36(4): 75-81. doi: 10.13332/j.cnki.jbfu.2014.04.015
    [14] 杨小燕, 杨淼焱, 王恩姮, 夏祥友, 陈祥伟.  黑土区不同林龄落叶松人工林土壤磷的吸附与解吸特性 . 北京林业大学学报, 2014, 36(5): 39-43. doi: 10.13332/j.cnki.jbfu.2014.05.008
    [15] 范瑞英, 杨小燕, 王恩姮, 邹莉, 陈祥伟.  黑土区不同林龄落叶松人工林土壤微生物群落功能多样性的对比研究 . 北京林业大学学报, 2013, 35(2): 63-68.
    [16]
    孙志虎, 毕永娟, 牟长城, 蔡体久
    基于FORECAST模型的长白落叶松人工林经营措施对长期生产力的影响 . 北京林业大学学报, 2012, 34(6): 1-6.
    [17] 罗云建, 张小全, 王效科, 朱建华, 张治军, 孙贵生, 高峰, .  华北落叶松人工林生物量及其分配模式 . 北京林业大学学报, 2009, 31(1): 13-18.
    [18] 王雄宾, 余新晓, 徐成立, 谷建才, 周彬, 范敏锐, 贾国栋, 吕锡芝, .  间伐对华北落叶松人工林边缘效应的影响 . 北京林业大学学报, 2009, 31(5): 29-34.
    [19] 谭健晖, 崔丽娟, 张运春, 刘杏娥, 张颖, 邢韶华, 张玉兰, 陈圆, 林娅, 任云卯, 李春义, 周繇, 张仁军, 王超, 赵铁珍, 李云开, 孙阁, 王戈, 王蕾, 张秀新, 梁善庆, 王春梅, 李昌晓, 尹增芳, 林勇明, 闫德千, 金莹杉, 周海宾, 吴淑芳, 温亚利, 余养伦, 刘青林, 王莲英, 赵勃, 马履一, 江泽慧, 钟章成, 洪滔, 王以红, 黄华国, 张明, 杨培岭, 张曼胤, 樊汝汶, 吴普特, 张桥英, 马钦彦, 江泽慧, 高岚, 张志强, 罗建举, 于俊林, 刘国经, 杨远芬, 周荣伍, 徐秋芳, 刘艳红, 翟明普, 冯浩, 周国模, 汪晓峰, 崔国发, 费本华, 柯水发, 陈学政, 何春光, 安玉涛, 周国逸, 张本刚, 王希群, 殷际松, 邵彬, 罗鹏, 王小青, 吴承祯, 张晓丽, 于文吉, 刘俊昌, 田英杰, 杨海军, 王玉涛, 蔡玲, 赵景刚, 马润国, 徐昕, 康峰峰, 刘爱青, 任树梅, 费本华, 何松云, 骆有庆, 李敏, 温亚利, 徐克学, 邬奇峰, 高贤明, 魏晓华, 王九中, 洪伟, 田平, 吴宁, 安树杰, 郑万建, 赵弟行, 林斌, 胡喜生, 吴家森, 赵焕勋, 任海青, 朱高浦, 宋萍, 李永祥, 卢俊峰, 范海兰, .  抚育间伐对北京山区侧柏人工林林下植物多样性的短期影响 . 北京林业大学学报, 2007, 29(3): 60-66.
    [20] 刘鹏举, 王立海, 李雪华, 韦艳葵, 耿玉清, 刘剑锋, 朱小龙, 任强, 王兰珍, 周传艳, 薛康, 李义良, 党文杰, 汪杭军1, 李生宇, 赵铁珍, 方升佐, HUALi_zhong, 李国雷, 张冬梅, 王旭, 吴丽娟, 段文霞, 朱波, 刘勇, 苏晓华, 李建章, 黎明, 阎秀峰, 方陆明, 何茜, 刘勇, 高岚, JIANGXi_dian, 尹光彩, 崔同林, 李振基, 韩士杰, 雷加强, 周宇飞, 宋永明, 杨娅, 周亮, 周国逸, 余新晓, 杨慧敏, 柯水发, 唐小明, 赖志华, 王清文, 王新杰, 沈熙环, HEXiu_bin, 徐扬, 徐新文, 王春林, 虞木奎, 刘锐, 孙向阳, 喻理飞, 周国逸, 鹿振友, 李吉跃, 张冰玉, 宗文君, 玲, 程云清, 温亚利, , 齐涛, 李俊清, 王伟宏, 孙阁, 陈培金, 国庆, 陈峻崎, 陈实, 茹广欣, 周晓梅, 李丙文, 3, 郭蓓, 李晓兰, 宋爱琴, 张志毅, 唐旭利, 王晓静, 长山, 刘志明, 姚永刚, 蒋德明, 张可栋, 周玉平, 王建林, 王旭, 陈放, 关少华, 赵双荣, 宋湛谦, 王春林, 杨伟伟, 闫俊华, 郑凌峰.  间伐强度对油松人工林植被发育的影响 . 北京林业大学学报, 2007, 29(2): 70-75.
  • 加载中
图(1) / 表 (5)
计量
  • 文章访问数:  499
  • HTML全文浏览量:  137
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 修回日期:  2017-06-12
  • 刊出日期:  2017-10-01

造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响

doi: 10.13332/j.1000-1522.20170017
    基金项目:

    国家自然科学基金重点项目 41430639

    作者简介:

    赵佳琪。主要研究方向:森林生态学。Email: zhjiaqi2017@163.com  地址: 150040  黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心

    通讯作者: 牟长城,教授,博士生导师。主要研究方向:森林生态学、湿地生态学。Email: muccjs@163.com   地址:同上
  • 中图分类号: S718.5

摘要: 采用静态箱-气象色谱法,测定不同间伐强度温带弃耕地落叶松人工林(未间伐为对照、轻度间伐强度为25%、重度间伐强度为50%,林龄50年及间伐已20年)及相应立地上农田的土壤温室气体(CO2、CH4和N2O)排放年通量与相关环境因子(土壤温度、湿度及养分含量等),揭示造林与间伐对弃耕地土壤温室气体排放的影响规律,以便为定量评价退耕还林工程实施效果提供依据。结果表明:1)土壤CO2年均排放通量(149.44~204.82 mg/(m2·h))呈现未间伐>农田>轻度间伐>重度间伐的变化趋势,未间伐较农田提高11.6%,轻、重度间伐较农田降低11.4%~18.6%,较未间伐显著降低20.6%~27.0%;2)土壤CH4吸收通量(-0.027~-0.033 mg/(m2·h))呈现重度间伐>未间伐=农田>轻度间伐变化趋势,未间伐与农田相同,轻度间伐较农田降低12.9%,重度间伐较农田提高6.5%;3)土壤N2O排放通量(0.025~0.037 mg/(m2·h))呈现农田>重度间伐>轻度间伐>未间伐的变化趋势,未间伐较农田降低32.4%,轻、重度间伐较农田降低24.3%~29.7%;4)温带弃耕地造林与间伐经营并未改变土壤CO2、CH4、N2O排放通量与气温和土壤温度的相关性,但改变了3种温室气体与土壤湿度的相关性;5)土壤增温潜势(13.89~18.64 t/(hm2·a))呈现未间伐>农田>轻度间伐>重度间伐的变化趋势,未间伐较农田提高9.1%,轻、重度间伐较农田降低12.1%~18.7%,两者也较未间伐降低19.4%~25.5%。因此,东北温带弃耕地营造落叶松林提高了土壤增温潜势,间伐经营较大幅度降低了土壤增温潜势,故从控制气候变暖考虑对其采取强度间伐(50%)方式比较适宜。

English Abstract

赵佳琪, 牟长城, 吴彬, 周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响[J]. 北京林业大学学报, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017
引用本文: 赵佳琪, 牟长城, 吴彬, 周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响[J]. 北京林业大学学报, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017
ZHAO Jia-qi, MU Chang-cheng, WU Bin, ZHOU Xue-jiao. Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China[J]. Journal of Beijing Forestry University, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017
Citation: ZHAO Jia-qi, MU Chang-cheng, WU Bin, ZHOU Xue-jiao. Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China[J]. Journal of Beijing Forestry University, 2017, 39(10): 13-23. doi: 10.13332/j.1000-1522.20170017
  • 温室气体浓度增加对全球气候变暖和环境变化会产生巨大影响,故有关温室气体排放问题倍受关注[1]。大气圈中CO2、CH4、N2O对温室效应的总贡献率高达80%左右[2],CH4与N2O是仅次于CO2的重要温室气体,两者增温潜势为CO2的25和298倍[3],且CH4、N2O与CO2正以每年0.6%、0.3%与0.4%的速率在增长[4],如3者继续按此速度增加在本世纪末全球地表平均温度有可能升高2~7 ℃[5]。因此,如何控制温室气体排放应是减缓气候变化的关键。

    土壤是温室气体的主要排放源或吸收汇,大气中每年约有5%~20%的CO2、15%~30%的CH4和80%~90%的N2O来源于土壤[2]。森林土壤是陆地生态系统最重要的碳、氮储备库,农田土壤是温室气体的重要排放源[6],由于土壤性质不同两者温室气体排放通量有很大差异[7-8],故土地利用方式的改变是造成土壤温室气体排放通量变化的主要原因之一[2]

    退耕还林与森林采伐等土地利用方式的变化会使温室气体排放发生显著的改变[9]。现有研究结果表明:退耕还林既能降低土壤CO2排放量[10],也可能增加土壤CO2的排放量[11-12];一般会增加土壤CH4的吸收能力[13];既降低土壤N2O的排放量[13-14],也可能对其无显著影响[15]。抚育间伐是森林的主要经营方式之一,采伐能够通过改变林内微环境(土壤温度与湿度以及土壤有机质含量等),进而影响土壤温室气体的排放[16-17]。抚育间伐对土壤温室气体排放影响研究结果表明:采伐既可能降低土壤CO2排放量[18-19],也可能提高土壤CO2排放量[20-21];采伐既能够减弱土壤CH4的吸收能力[16, 22],也能够增强土壤CH4的吸收能力[23]或对其无显著影响[16];采伐既可增加土壤N2O的排放量[24],也可降低土壤N2O的排放量[25]。此外,仅有少数研究同步测定比较3种温室气体排放状况,并评价采伐对土壤增温潜势影响,如采伐对北美温带土壤增温潜势无显著影响[23]与采伐降低我国温带森林湿地土壤温室气体增温潜势[17]。因此,目前国内外有关退耕还林或森林采伐对土壤温室气体排放影响研究结果仍存在较大争议,且缺乏将退耕还林与抚育间伐或择伐经营两者结合起来探索对土壤温室气体排放及增温效果影响方面的相关研究。

    土地利用变化尤其是退耕还林对土壤温室气体的影响不容忽视[26-27],目前对退耕还林的研究,大多数是退耕还林对土壤特性的影响[28-29],而退耕还林对温室气体排放的影响研究还不够完善,针对非生长季温室气体排放的研究甚少[30],退耕还林后再间伐或择伐经营对温室气体影响研究尚未见报道。本研究选择东北温带帽儿山弃耕地50年生落叶松(Larix gmelinii)人工林作为研究对象,采用静态箱取样-气相色谱分析方法,并于2015年5月至2016年4月,原位同步连续观测了不同间伐强度处理样地(未间伐、轻度间伐强度为25%、重度间伐强度为50%,强度指蓄积比及间伐试验已20年)与相应立地上农田样地的土壤3种温室气体(CO2、CH4、N2O)全年排放通量与相应环境因子(土壤温度、土壤湿度及养分含量等),以期揭示温带弃耕地造林及间伐经营对土壤温室气体排放及增温效果的影响规律,为定量评价我国退耕还林工程实施效果及经营管理退耕还林恢复森林的碳汇提供科学依据。

    • 研究地设在黑龙江省尚志市东北林业大学帽儿山森林生态系统定位站(45°20′ N、127°34′ E),该区属于长白山系支脉张广才岭西北部小岭的余脉,境内以山区丘陵地貌为主,平均海拔400 m。属温带大陆性季风气候,夏季温热多雨年,平均气温2.8 ℃,年平均降水量约为720 mm,秋季降温迅速,冬季漫长寒冷,早霜9月中旬,晚霜5月下旬,无霜期120 d左右。土壤以暗棕壤为主,地带性植被为红松阔叶混交林。帽儿山老爷岭生态定位站于1965年在弃耕地上营造了落叶松林(林龄50年),造林密度为2 500株/hm2,株行距为2 m×2 m,1995年对该落叶松人工林进行了不同强度带状(带宽60~80 m、带长150 m)间伐试验(未间伐为对照、轻度间伐强度为25%、重度间伐强度为50%,强度指蓄积比例),目前间伐试验地仍保存完好。

    • 本项研究借助1995年所建立的落叶松人工林间伐试验地,于2015年4月下旬在弃耕地(位于海拔高度相同地势平坦谷地)落叶松林未间伐为对照(造林)、轻度间伐强度为25%、重度间伐强度为50%(蓄积比)3种间伐处理样带内及附近相应立地上的农田地(玉米地)各设置3个20 m×30 m标准地,共计设置12块标准地。间伐后落叶松人工林各处理样地均为自然生长状态(未进行水、肥管理措施);农田样地(开垦于上世纪60年代初期,一直未进行水、施管理)于2015年5月中旬播种玉米,10月上旬收获,期间无水、肥管理措施。每个标准地内各设置1个静态箱,共计设置12个静态箱(4种处理3次重复),并于2015年5月上旬至2016年4月下旬(全年尺度)对各样地土壤温室气体及环境因子进行观测,以便揭示造林与间伐对弃耕地土壤温室气体排放的影响规律。各处理样地林分状况见表 1与土壤状况见表 2

      表 1  温带帽儿山弃耕地不同间伐处理落叶松人工林样地状况

      Table 1.  Conditions of planted larch forest under different thinning intensity treatments in Maoershen Mountains in northeastern China

      样地
      Sample
      site
      密度/(株·hm-2)
      Stand density/
      (tree·ha-1)
      胸高断面积/(m2·hm-2)
      Basal area at breast
      height/(m2·ha-1)
      平均胸径
      Average D
      BH/cm
      胸径范围
      Range of
      DBH/cm
      林下灌木组成
      Shrub composition
      LW 2 502 52.50 16.35 3.5~25.2 卫矛Eronymus sp.
      LQ 1 867 48.54 18.20 5.6~28.3 暴马丁香Syringa reticulate
      LZ 1 283 40.77 20.12 6.2~32.8 五味子Schisandra chinesis
      注:LW.未间伐样地;LQ.轻度间伐样地;LZ.重度间伐样地。下同。Notes: LW, no thinning site; LQ, mild thinning site; LZ, severe thinning site. The same below.

      表 2  温带帽儿山弃耕地不同间伐处理落叶松人工林样地土壤理化性质

      Table 2.  Soil physicochemical property of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

      土壤养分
      Soil nutrient
      土壤层
      Soil layer/cm
      样地Sample site
      NT LW LQ LZ
      硝态氮 Ammonium nitrogen/(mg·L-1) 0~10 0.63±0.06a 1.11±0.37a 1.02±0.58a 2.20±0.80a
      10~20 0.69±0.12a 0.62±0.52a 0.62±0.35a 1.13±0.37a
      20~40 0.70±0.28a 0.35±0.14a 0.40±0.21a 0.60±0.21a
      铵态氮 Nitrate nitrogen/(mg·L-1) 0~10 2.76±1.27a 3.01±0.96ab 5.01±1.59b 2.15±0.22a
      10~20 3.20±1.11a 2.46±0.50ab 4.52±1.29b 2.03±0.09a
      20~40 2.36±0.55a 3.84±1.00a 3.10±0.70a 2.93±1.17a
      全氮 Total nitrogen/(g·kg-1) 0~10 6.60±0.43b 5.27±1.27a 4.99±0.36ab 4.79±0.33a
      10~20 5.45±1.31a 3.61±1.19a 3.92±1.14a 3.92±0.34a
      20~40 3.28±0.70a 2.32±0.47a 2.79±0.48a 2.55±0.58a
      有机碳 Organic carbon/(g·kg-1) 0~10 61.21±5.67b 53.49±12.10ab 44.76±4.40a 44.17±5.62a
      10~20 47.22±15.81a 31.51±11.34a 31.79±8.65a 31.07±2.48a
      20~40 26.57±6.60b 19.46±5.08a 22.02±4.79a 18.56±5.85a
      pH 0~10 5.70±0.14a 5.88±0.53a 5.59±0.44a 5.71±0.16a
      10~20 5.82±0.17a 5.22±0.69a 5.66±0.47a 5.67±0.08a
      20~40 5.87±0.10a 5.78±0.03a 5.82±0.46a 5.60±0.51a
      含水率 Soil moisture/% 0~10 33.37±1.32b 34.69±1.07b 36.63±0.76c 25.71±0.39a
      10~20 32.76±0.04b 36.08±0.35c 35.54±0.45c 28.08±0.20a
      20~40 33.58±0.32b 36.23±0.59c 36.63±0.39c 29.11±0.43a
      温度 Temperature/℃ 0~10 5.32±0.11b 3.40±0.14a 3.59±0.30a 3.32±0.10a
      10~20 5.48±0.04b 4.24±0.03a 4.14±0.19a 4.13±0.20a
      20~40 5.59±0.11b 4.39±0.38a 4.50±0.27a 4.42±0.14a
      注:NT.农田样地。下同。Notes: NT, farmland site. The same below.
    • 采用静态暗箱-气象色谱法对土壤温室气体(CO2、CH4和N2O)的采集分析,静态暗箱由不锈钢顶箱(50 cm×50 cm×50 cm)和不锈钢底座(50 cm×50 cm×10 cm)组成。为防止安插底座对样地土壤的扰动,首次取样前数天将底座插入土中10 cm,并切断底座周围根系及去除底座内植物,以确保对土壤异养呼吸的测定。采集气体样品时,各部分之间均用水密封。为减少箱内温度波动在顶箱外部设有保温材料,箱内顶部设有两个小风扇,用于使箱内的空气流通混合均匀。取样口设置在暗箱顶部直径为1 cm且内置橡胶塞。用60 mL医用注射器通过三通阀链接针头进行取样。取样时在底座的凹槽内注水密封后将顶箱插入底座凹槽内,用注射器在30 min内分别抽取0、10、20、30 min时的气体各60 mL,样品采集后装入500 mL的铝塑复合气袋中储存,并及时带入实验室,采用气相色谱仪(6820G)进行分析。取样时间为2015年5月6日至2016年4月29日的08:00—12:00,每月分上、中、下旬采样3次,共计采样36次。

      气体通量(F)的计算公式[17]如下:

      $$ F = \frac{M}{{{V_0}}} \cdot \frac{P}{{{P_0}}} \cdot \frac{T}{{{T_0}}} \cdot H \cdot \frac{{{\rm{dc}}}}{{{\rm{d}}\mathit{t}}} $$ (1)

      式中:F为气体通量(mg/(m2·h)),正值为排放,负值为吸收;M为被测气体的摩尔质量;H为采样箱高度(cm);dc/dt为采样时气体浓度随时间变化的直线斜率;PT为采样点的实际大气压和温度;V0P0T0分别为标准状态下的气体摩尔体积、标准大气压和绝对温度。

      增温潜势估算:结合100年尺度上的全球增温潜势(global warming potential, GWP), CO2、CH4和N2O的增温潜势值依次为其排放总量的1、25和298倍[3],估算各处理样地的增温效果,计算公式如下:

      $$ {\rm{GWP = }}\mathit{F}{\mathit{'}_{{\rm{C}}{{\rm{O}}_2}}} + F{\mathit{'}_{{\rm{C}}{{\rm{M}}_4}}} \times 25 + F{\mathit{'}_{{{\rm{N}}_2}{\rm{O}}}} \times 298 $$ (2)

      式中:F′代表各温室气体年排放总量。

    • 在采取气体样品的同时,用T型热电偶温度探针及用TDR土壤水分速测仪(Spectrum Technologies,USA)原位同步测定空气温度(Ta),5、10、20、30和40 cm土壤层温度及体积含水率。冬季由于土壤冻结,土壤体积含水率未进行测定。用元素分析仪(Elementar Vario EL Ⅲ, 德国)测定土壤有机碳含量及全氮,用连续流动分析仪(AutoAnalyzer Ⅲ, Bran + Luebbe GmbH, Norderstedt, Germany)测定土壤硝态氮及铵态氮含量。

    • 采用SPSS19.0(SPSS Inc.,Chicago,Illinois,USA)和Excel 2013对数据进行统计分析,检验各处理样地土壤温室气体(CO2、CH4、N2O)排放通量的差异显著性及其与环境因子的相关性,图表绘制采用Sigmaplot12.0(Systat Software Inc.,San Jose,CA,USA)完成。

    • 图 1表 3所示,造林与间伐对帽儿山弃耕地土壤CO2排放通量的影响不同。4种处理样地土壤CO2排放通量(全年观测均值)分布在149.44~204.82 mg/(m2·h)之间,未间伐(造林)样地略高于农田样地11.6%(P>0.05),轻、重度间伐样地较农田降低11.4%和18.6%(P>0.05),且两者较未间伐样地显著降低20.6%和27.0%(P<0.05)。因此,弃耕地营造落叶松林提高了土壤CO2排放通量,间伐经营后降低了土壤CO2排放通量。

      图  1  帽儿山弃耕地落叶松人工林CO2、CH4、N2O排放通量的季节变化

      Figure 1.  Seasonal variations of CO2, CH4 and N2O fluxes from planted larch forest and farmland in Maoershan Mountains in northeastern China

      表 3  温带帽儿山弃耕地不同间伐处理落叶松人工林土壤温室气体排放通量

      Table 3.  Greenhouse gas fluxes of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

      mg·m-2·h-1
      气体
      Air
      样地
      Sample site
      温室气体平均通量Average flux of greenhouse gas
      春季 Spring 夏季 Summer 秋季 Autumn 冬季 Winter 年均通量 Annual flux
      CO2 NT 234.81±41.20Cb 361.11±63.89Da 122.06±19.09Ba 15.92±2.61Aa 183.48±29.98ab
      LW 211.14±33.24Bb 400.41±57.30Ca 169.96±19.02Bb 37.76±12.30Ab 204.82±19.61b
      LQ 176.62±23.66Cab 334.81±33.44Da 116.15±33.34Ba 22.79±4.53Aa 162.59±6.23a
      LZ 125.88±13.27Ba 356.71±65.61Ca 99.15±10.67Ba 16.02±4.15Aa 149.44±21.39a
      CH4 NT -0.044±0.028ABa -0.058±0.016Aa -0.026±0.005BCb 0.002±0.003Ca -0.031±0.009a
      LW -0.032±0.024Aa -0.069±0.018Aa -0.066±0.016Aa 0.042±0.053Ba -0.031±0.014a
      LQ -0.033±0.016Aa -0.066±0.015Aa -0.053±0.007Aa 0.045±0.065Ba -0.027±0.010a
      LZ -0.047±0.003ABa -0.053±0.007Aa -0.031±0.008Bb 0.001±0.019Ca -0.033±0.005a
      N2O NT 0.113±0.099Ba 0.019±0.008ABa 0.007±0.005Aab 0.010±0.011Ab 0.037±0.030a
      LW 0.091±0.031Ba 0.016±0.007Aa -0.003±0.004Aa -0.005±0.043Aa 0.025±0.008a
      LQ 0.060±0.020Ca 0.029±0.004Ba 0.008±0.005Aab 0.005±0.001Aab 0.026±0.005a
      LZ 0.080±0.026Ba 0.017±0.010Aa 0.010±0.008Ab 0.007±0.005Aab 0.028±0.006a
      注:表中给出的数据为平均值以及标准差,小写字母表示同一季节不同处理差异显著(P<0.05),大写字母表示同一处理不同季节差异显著(P<0.05)。Notes: data in the table are average and standard errors; different lowercase letters indicate there is a significant difference among different treatments in the same season (P<0.05); different capital letters indicate there is a significant difference among different seasons for the same treatment(P<0.05).

      造林与间伐对弃耕地土壤CO2排放季节动态与季节分布也具有影响。未间伐、轻、重度间伐及农田样地土壤CO2排放季节动态趋势基本一致,均呈偏态型变化。但各处理样地土壤CO2排放峰值出现时间有所不同,未间伐与轻度间伐样地较农田提前了30~40 d,重度间伐样地较农田样地推迟了30 d。农田与轻度间伐样地土壤CO2排放通量呈现出夏>春>秋>冬的明显季节分布格局,而未间伐与重度间伐样地土壤CO2排放通量却呈现出夏>春≈秋>冬的季节分布格局。因此,营造落叶松林及对其加以间伐经营改变了弃耕地土壤CO2排放峰值的出现时间(提前或延迟)及其季节分布格局(造林与重度间伐)。

    • 图 1表 3所示,弃耕地造林与间伐对土壤CH4排放通量影响并不大。各处理样地CH4排放通量年平均值分布在-0.027~-0.033 mg/(m2·h)之间,均表现为CH4的弱吸收汇,未间伐与农田相近,轻度间伐略低于农田(-12.9%,P>0.05),重度间伐略高于农田(6.5%,P>0.05),但各处理样地间差异性均不显著。因此,温带弃耕地营造落叶松林和对其加以间伐经营对土壤CH4排放通量并无显著影响。

      造林与间伐对弃耕地土壤CH4排放季节动态及季节分布却有较大影响。农田与重度间伐样地自3月中旬至11上旬吸收CH4,11月中旬至3上旬CH4排放与吸收交替发生;未间伐样地5月下旬至12月下旬吸收CH4,1月上旬至5月中旬CH4排放与吸收交替发生;轻度间伐样地4月中旬至12月中旬吸收CH4,自12月下旬至4月上旬CH4排放与吸收交替发生。此外,各样地CH4通量均呈现出春、夏、秋季吸收及冬季排放的季节分布格局,但农田与重度间伐样地CH4吸收通量呈夏>春>秋分布格局,未间伐与轻度间伐却呈春≈夏≈秋的季分布格局,且两者冬季CH4排放通量高于前两者。因此,弃耕地造林与轻度间伐使CH4吸收过程及排放与吸收交替过程延迟1~2个月,并改变了其季节分布格局。

    • 图 1表 3所示,造林与间伐对弃耕地土壤N2O排放通量具有一定程度的影响。4种处理样地土壤N2O排放通量年平均值分布在0.025~0.037 mg/(m2·h)之间,均表现为N2O弱排放源,且未间伐、轻度间伐与重度间伐依次低于农田样地32.4%、29.7%、24.3%(P>0.05),轻、重度间伐较未间伐提高4.0%和12.0%(P>0.05)。因此,温带弃耕地营造落叶松林及对其间伐经营均较大幅度降低了土壤N2O排放源强,间伐后土壤N2O源强略有提高但不显著。

      4种处理样地土壤N2O排放季节动态趋势与季分布格局也有所不同。农田样地在春季开始时即达N2O排放峰值(3月中旬峰值0.356 mg/(m2·h)),随后逐渐降低,夏、秋、冬季均维持较低排放水平;而未间伐、轻度间伐与重度间伐样地在春季开始时N2O排放通量较低,随后迅速升高并于4月上旬达到各自排放峰值(0.350、0.170、0.263 mg/(m2·h)),随后迅速降低,且两个间伐样地在夏、秋、冬3季均维持低排放水平,而未间伐样地在夏季低排放,在秋、冬季呈现吸收与排放交替发生。此外,农田样地土壤N2O排放通量呈春≧夏≧秋≈冬的季节分布格局,未间伐、轻度间伐与重度间伐样地依次呈春>夏≈秋≈冬、春>夏>秋≈冬和春>夏≈秋≈冬的季分布格局。因此,弃耕地营造落叶松林与间伐经营改变了其土壤N2O排放季节动态趋势与季节分布格局。

    • 表 4可以得到,造林与间伐对弃耕地土壤CO2、CH4、N2O排放通量与温度和土壤含水率相关性的影响并不同。未间伐、轻度间伐、重度间伐及农田样地土壤CO2排放通量与气温、5~40 cm土壤层温度均呈现极显著正相关;CH4排放通量与气温、5~40 cm土壤层温度均存在极显著负相关;N2O排放通量与气温、5~40 cm土壤层温度相关性均不显著。故造林与间伐并未改变弃耕地土壤CO2、CH4、N2O排放通量与温度的相关性。但造林与间伐改变了弃耕地土壤3种温室气体排放与土壤含水率的相关性,即由农田CO2与5~10 cm、N2O与20~30 cm土壤含水率显著正相关转化为不相关,农田CH4与土壤含水率不相关转化为轻度间伐与10 cm、重度间伐与5~10 cm显著正/负相关。可见,造林与间伐对弃耕地土壤CO2、CH4、N2O排放与温度相关性无影响,但对3者与土壤湿度相关性的有所改变。

      表 4  间伐前后弃耕地落叶松人工林土壤温室气体排放通量与温度、湿度的相关性(温度为全年、湿度为生长季)

      Table 4.  Correlation between greenhouse gas fluxes and soil temperature and moisture of planted larch forest under different thinning intensity treatments

      气体
      Air
      样地
      Sample
      site
      气温
      Air
      temperature
      土壤温度 Soil temperature 土壤含水率 Soil moisture
      5 cm 10 cm 20 cm 30 cm 40 cm 5 cm 10 cm 20 cm 30 cm 40 cm
      CO2 NT 0.91** 0.92** 0.91** 0.88** 0.85** 0.83** 0.55** 0.59** 0.16 0.12 0.06
      LW 0.81** 0.86** 0.86** 0.87** 0.85** 0.83** -0.16 0.13 0.34 0.30 0.21
      LQ 0.75** 0.84** 0.84** 0.85** 0.83** 0.81** 0.36 0.43 0.32 0.14 0.16
      LZ 0.69** 0.82** 0.83** 0.85** 0.86** 0.85** 0.17 0.08 -0.17 -0.25 -0.29
      CH4 NT -0.71** -0.68** -0.66** -0.63** -0.62** -0.59** -0.36 -0.38 0.02 0.04 0.23
      LW -0.54** -0.63** -0.63** -0.61** -0.62** -0.62** 0.14 0.29 0.26 0.32 0.37
      LQ -0.53** -0.56** -0.55** -0.52** -0.50** -0.47** 0.32 0.45* 0.22 0.20 0.20
      LZ -0.62** -0.58** -0.57** -0.55** -0.51** -0.49** -0.46* -0.50* -0.43 -0.31 -0.24
      N2O NT 0.12 -0.08 -0.09 -0.13 -0.15 -0.17 0.40 0.40 0.56** 0.51* 0.21
      LW 0.21 0.02 0.04 -0.07 -0.10 -0.13 -0.08 0.26 0.38 0.32 0.30
      LQ 0.29 0.12 0.11 0.05 0.01 -0.03 0.19 0.14 0.14 0.06 0.02
      LZ 0.19 -0.04 -0.03 -0.10 -0.13 -0.15 0.06 0.01 -0.13 -0.12 -0.16
      注:**表示在0.01水平(双侧)上相关;*表示在0.05水平(双侧)上相关。Notes: ** means extremely significant correlation at P<0.01 level(double side); * means significant correlation at P<0.05 level(double side).
    • 表 5可以得到,造林与间伐经营对弃耕地土壤3种温室气体源/汇功能影响程度不同。4种处理样地土壤CO2年排放量分布在13.21~18.07 t/(hm2·a),均表现为CO2排放源,未间伐略高于农田11.8%(P>0.05),轻、重度间伐低于农田10.9%~18.3%(P>0.05),两者也低于未间伐20.3%~26.7%(重度间伐降低显著);CH4年排放量分布在-2.34~-2.86 kg/(hm2·a),均表现为CH4吸收汇,未间伐与轻、重度间伐较农田样地略有增减但差异性均不显著(-14.9%~4.0%,P >0.05);N2O年排放量分布在2.16~3.29 kg/(hm2·a),均表现为N2O排放源,未间伐与轻、重度间伐样地低于农田样地23.7%~34.3%(P>0.05)。因此,造林与间伐并未引起弃耕地土壤3种温室气体源/汇功能发生转化,仅对3者源/汇强度产生了影响,即造林使其土壤CO2源强有所提高,间伐则使其CO2源强有所降低,造林与间伐均使N2O源强有较大幅度的降低,但两者对CH4汇强影响相对较弱。

      表 5  温带帽儿山弃耕地不同间伐处理落叶松人工林土壤温室气体排放总量及GWP值

      Table 5.  Fluxes and GWP of greenhouse gas of planted larch forest under different thinning intensity treatments in Maoershan Mountains in northeastern China

      样地
      Sample
      site
      CO2 CH4 N2O GWP总和/
      (t·hm-2·a-1)
      Total GWP/
      (t·ha-1·yr-1)
      排放总量/
      (t·hm-2·a-1)
      Total flux/
      (t·ha-1·yr-1)
      GWPCO2/
      (t·hm-2·a-1)
      GWPCO2/
      (t·ha-1·yr-1)
      排放总量/
      (kg·hm-2·a-1)
      Total flux/
      (kg·ha-1·yr-1)
      GWPCH4/
      (t·hm-2·a-1)
      GWPCH4/
      (t·ha-1·yr-1)
      排放总量/
      (kg·hm-2·a-1)
      Total flux/
      (kg·ha-1·yr-1)
      GWPN2O/
      (t·hm-2·a-1)
      GWPN2O/
      (t·ha-1·yr-1)
      NT 16.17±2.67ab 16.17±2.67ab -2.75±0.81a -0.07±0.02a 3.29±2.71a 0.98±0.81a 17.08±3.33ab
      LW 18.07±1.73b 18.07±1.73b -2.78±1.21a -0.07±0.02a 2.16±0.68a 0.64±0.20a 18.64±1.73b
      LQ 14.41±0.52ab 14.41±0.52ab -2.34±0.89a -0.06±0.02a 2.26±0.46a 0.67±0.14a 15.02±0.61ab
      LZ 13.21±1.90a 13.21±1.90a -2.86±0.38a -0.07±0.01a 2.51±0.55a 0.75±0.60a 13.89±2.06a
      注:小写字母表示不同处理差异显著(P<0.05)。GWPCO2、GWPCH4、GWPN2O分别为CO2、CH4和N2O的增温潜势值(即CO2、CH4和N2O排放总量的1、25和298倍)。Notes: different lowercase letters indicate there is a significant difference among different treatments (P<0.05). GWPCO2, GWPCH4 and GWPN2O mean global warming potential (GWP) of CO2, CH4 and N2O, respectively (1, 25 and 298 times of CO2, CH4 and N2O total fluxes).

      造林与间伐经营对弃耕地土壤温室气体增温潜势产生了较大影响。4种处理样地土壤温室气体增温潜势分布在13.89~18.64 t/(hm2·a),未间伐样地较农田样地提高9.1%(P>0.05),轻、重度间伐样地却较农田样地降低12.1%~18.7%(P>0.05),且轻度间伐较未间伐降低19.4%(P>0.05),重度间伐较未间伐显著降低25.5%(P < 0.05)。因此,东北温带帽儿山弃耕地营造落叶松林提高了土壤温室气体增温潜势,对其加以间伐经营后则降低了其土壤温室气体增温潜势。

    • 本研究得到的东北温带弃耕地营造落叶松林50年后提高土壤CO2排放量与现有结论退耕还林增加我国亚热带与暖温带及欧洲南部温带土壤CO2排放量[11, 13, 31]相一致;但间伐(轻、重度间伐)20年后降低土壤CO2排放量与择伐初期提高我国东北阔叶红松混交林土壤CO2排放量[19, 32]并不相一致(人工林与天然林对采伐干扰的响应会不同,间伐20年后的长期效果也会不同于初期效果)。前者提高的原因可能在于退耕还林后树木根系和凋落物增加导致其土壤呼吸高于农田[11, 13], 后者降低的原因可能是由于间伐引起树木根系、凋落物及土壤微生物的减少限制了土壤呼吸速率[33-34]。本研究中的间伐样地生长季0~40 cm土壤层平均温度低于农田2.5~3.5 ℃,也可能限制了土壤微生物分解活性,导致土壤呼吸速率有所下降。

      弃耕地造林及间伐改变土壤CO2排放峰值出现时间及其季节分布格局的原因可能在于造林后植被类型发生变化,导致群落内微环境不同[12, 35]所致,本研究中弃耕地造林与间伐样地在春季0~40 cm各土壤层平均温度低于农田2.1~4.6 ℃,致使春季土壤呼吸速率低于农田,夏季土壤温度相对较高(13.2~16.7 ℃),对土壤呼吸限制作用相对较弱,加之林地储存大量凋落物的分解,春末夏初林地迅速达到CO2排放峰值,故导致土壤CO2排放季节动态与分布格局发生改变。

    • 东北温带弃耕地营造落叶松林与间伐经营对CH4吸收汇影响均不显著。前者与北美及欧洲温带农田转化为森林土壤CH4吸收汇增加[13, 36]不同;后者与德国南部温带云杉林择伐后土壤CH4通量无显著变化[16]一致,但与择伐显著降低温带次生林土壤CH4吸收汇[37]和增加温带森林土壤CH4吸收汇[23]并不一致。这些差异性可能与各研究区气候、土壤及林型不同有关,也可能与间伐时间有关,本研究为间伐20年后的中长期效果,势必会不同于间伐后的短期效果。

      至于弃耕地造林与间伐改变土壤CH4排放的季节动态趋势及分布格局的原因,可能与土壤冻融交替引起有氧环境与厌氧环境交替密切相关,如土壤解冻期间会释放出大量的CH4[38],冻融期土壤表层微生物活性增强[39],并能够促进凋落物的分解[40]。弃耕地营造落叶松林(50年后)与轻度间伐(间伐20年后)样地林冠层茂密遮阴强烈,春季升温缓慢,土壤解冻晚于农田,秋季降温慢,土壤结冻也晚于农田,故两者的土壤冻融交替过程也就不同于农田,使两者CH4吸收过程及排放与吸收交替过程较农田延迟1~2个月,并改变了其季节分布格局。而重度间伐样地林冠层稀疏遮阴或保温作用相对较弱,对土壤冻融交替过程的影响并不大,故其CH4排放的季节动态趋势及分布格局与农田相似。

    • 东北温带弃耕地营造落叶松林与间伐经营均降低了土壤N2O排放通量,且间伐后落叶松林土壤N2O源强略有提高。前者与现有退耕还林降低土壤N2O排放通量[13, 41]的研究结论相一致,后者与热带雨林采伐后N2O排放量增加[24]相一致。弃耕地造林降低土壤N2O排放量的原因可能是由于造林后不再继续施用氮肥影响土壤氮的有效性[10, 42],土壤碳氮比升高,土壤厌氧微生物的减少,也可能使土壤N2O的排放量降低[13]。间伐后由于林内土壤温度升高,增强了土壤的硝化作用,促进了N2O的排放[43-44],而且间伐所造成的树木根系死亡也可能加大土壤N2O的排放[17, 45]

      弃耕地造林与间伐同样改变了土壤N2O排放季节动态趋势及分布格局,特别是各样地在春季融冻期土壤N2O排放量迅速升高随后呈现下降趋势,这与北美阔叶林融冻期土壤N2O排放的研究结果[46]相一致,可能是由于在融冻期土壤水分呈现“固态-液态”频繁交替的状态,这种状态有利于土壤硝化作用和反硝化作用同时进行,促进土壤N2O的排放[47-48]。本研究中由于农田地空旷春季土壤升温较林地快,初春即进入冻融期并达到N2O排放峰值,随即开始呈降低趋势,而林地因林冠层遮阴升温慢,冻融过程迟缓,故土壤N2O排放呈先升高至峰值后再降低趋势。

    • 东北温带弃耕地造林与间伐对土壤CO2、CH4、N2O排放通量与气温、土壤温度的相关性并未产生影响,即各样地土壤CO2排放与气温及土壤温度显著正相关,CH4通量与土壤温度呈现极显著负相关,土壤N2O通量与温度均无显著相关性,这与目前有关温室气体主控因子影响的研究结果[17, 31, 49]相一致。其原因在于土壤呼吸主要来源于植物根系自养呼吸与土壤微生物异养呼吸,而这两个生物学过程直接受土壤温度影响[50];土壤CH4通量取决于甲烷产生菌与甲烷氧化菌综合作用,两者也受土壤温度的影响,低温会限制甲烷氧化菌活性,温度升高甲烷吸收能力随之增强[51];土壤N2O通量来源于土壤硝化作用与反硝化作用,两者的最适宜温度范围在25~35 ℃或30~67 ℃[41]。本研究中各样地的土壤年平均温度相对较低(2.9~6.6 ℃),远未达到其最适宜温度范围,可能也是土壤N2O通量与温度相关性不显著的原因之一。

      农田土壤CO2、N2O通量与土壤含水率显著正相关,这与现有农田土壤温室气体排放的研究结果[52]一致,弃耕地造林与间伐后土壤CO2、N2O排放通量与含水率无显著相关性,与大西洋温带森林及我国温带阔叶红松混交林采伐前后土壤CO2通量与含水率无相关性[19, 23]及东北次生林土壤N2O通量与含水率无相关性[53]的研究结果一致。其原因可能是本研究中弃耕地造林和间伐后土壤含水率(24.5%~37.0%)对土壤微生物活动比较适宜,并不是其主要限制因子。

    • 东北温带帽儿山弃耕地营造落叶松林50年后提高了土壤温室气体增温潜势,对其加以间伐经营20年后则降低土壤温室气体增温潜势。前者与我国亚热带农田转化为森林降低土壤温室气体增温潜势[54]不一致;后者与采伐对加拿大温带森林土壤温室气体增温潜势无影响[23]也不一致,但与采伐(择伐与皆伐)降低我国东北温带森林湿地土壤温室气体增温潜势[17]相一致。其原因在于温带帽儿山弃耕地营造落叶松林提高了占土壤温室气体增温潜势主体的CO2源强(占增温潜势的96.9%)(表 3),尽管也降低了土壤N2O源强及对土壤CH4汇强无显著影响,但因两者仅占次要地位,故对土壤温室气体增温潜势影响并不大。对其进行间伐经营后不仅降低了土壤CO2源强,而且也较大幅度地降低了土壤N2O源强,加之对土壤CH4汇强无显著影响,故间伐较大幅度地降低了土壤温室气体增温潜势。

    • 1) 东北温带弃耕地营造落叶松人工林50年后提高了土壤CO2排放量(11.6%),较大幅度地降低了土壤N2O排放量(32.4%),但对土壤CH4吸收量几乎无影响;间伐(轻、重度)经营20年后则降低了土壤CO2排放量(11.4%~18.6%)和N2O排放量(24.3%~29.7%),对土壤CH4吸收量影响也不大。

      2) 东北温带弃耕地营造落叶松林与间伐经营对土壤CO2、CH4、N2O排放通量的季节动态趋势及季节分布格局均产生了一定程度的影响,但并未改变土壤CO2、CH4、N2O排放与气温、土壤温度的相关性,却改变了3者排放通量与土壤湿度的相关性。

      3) 东北温带弃耕地营造落叶松林50年后使其土壤温室气体增温潜势(18.64 t/(hm2·a))较农田(17.08 t/(hm2·a))提高9.1%(P>0.05),间伐(轻度与重度)20年后则使土壤温室气体增温潜势(13.89~15.02 t/(hm2·a))较农田降低12.1%~18.7%(P>0.05),较未间伐林分降低19.4%~25.5%(重度间伐降低显著)。因此,从减缓温室效应角度考虑,建议东北温带弃耕地营造落叶松林后采取强度间伐方式(50%左右)比较适宜。

参考文献 (54)

目录

    /

    返回文章
    返回