Abstract:
ObjectiveThe relationship between the evolved strategies of plant species and the material and energy cycles of ecosystems is linked by plant biomass and nutrient allocation, and the pattern of plant resources allocated to its different components is a fundamental aspect of its biological characteristics. In this paper, the scaling from components to whole plant in biomass and nitrogen content of Nitraria tangutorum seedlings was researched in the northeast of Ulan Buh Desert, Inner Mongolia of northern China.
MethodFirstly, we measured the biomass of root, stem and leaf of Nitraria tangutorum, individually, and we converted them into a value of logarithm (base 10) to get the linear fitting equation of the stem biomass or root biomass taking leaf biomass as variable. Then we measured the nitrogen concentration of each component, also, we linearly fitted the nitrogen concentration of the leaf and the stem or root for further study.
ResultThe results showed that the biomass of stem and root could be predicted accurately by giving the leaf biomass (R2 of root-leaf and stem-leaf regression equations were 0.901 2 and 0.926 4, respectively). And the nitrogen concentration of root and stem also could be predicated well by giving the leaf nitrogen concentration too (R2 of root-leaf and stem-leaf regression equations was 0.850 1 and 0.844 7, respectively). Then we obtained the prediction model of the whole plant biomass by adding the three parts of plant: Mp=ML+100.020 9ML0.845 6+100.436 9ML0.867 8, and we inferred the nitrogen content predicting model of whole plant by adding the three parts together similarly: Np =MLNL+100.020 9ML0.845 6 (0.109 4NL+0.015 6)+100.436 9ML0.867 8 (0.108 8NL+0.014 8). And through the field data verifying, it was showed that the relationship between the biomass and nitrogen content of whole plant could be predicted by the biomass and nitrogen concentration of Nitraria tangutorum leaves:lgN′p =1.075 2lgM′p-1.768 4.
ConclusionIt was showed that the biomass and nitrogen content of the whole plant of Nitraria tangutorum can be predicted by its components.