-
目前沼泽湿地面临严重的问题,人类活动的干扰使得湿地资源得到破坏,出现退化、面积锐减等,沼泽湿地由原来的碳汇转变为碳源[1],全球的CO2释放量增加。有研究表明,在过去的200年中,因沼泽湿地破坏引发的CO2温室气体排放已经相当于全球总排放的1/10。目前对沼泽湿地的研究偏重于温室气体观测[2-3]、碳循环和碳储量时空分布等[4-5],而与气候变化关系的研究却很少;同时大多研究集中于北极和热带等地区,就东北沼泽湿地的研究主要集中在大、小兴安岭林区且尚属起步阶段[6-14],有关温带长白山区森林沼泽湿地碳储量研究尚未见报道[15]。对沼泽湿地碳储量进行深入研究,在很大程度上完善了我国沼泽湿地碳储量的相关资料,具有一定的生态价值和社会价值。
国内外对湿地植被碳储量的研究取得了较大进展,尤其是利用3S技术进行湿地植被生物量的估算日渐成熟[16-20]。湿地植被碳库包括地上生物量、地下生物量和枯落物生物量[5, 21]。目前对于地上生物量的估算主要有样地实测法[22]、非破坏性估算法和遥感技术等[23]。卫星遥感技术的发展为植被碳储量提供了新的估算方法,对地表物信息的提取更加方便快捷,这种方法更适用于大尺度范围内的估算,同时精度和误差将对结果产生影响。对于地下生物量的估算一般用于人工湿地,并且在很多时候都是被忽视的,目前应用最广泛的估算方法是钻土芯法和根冠比法[24]。枯落物碳储量的研究以样方采样为主[25]。牟长城等[6]研究大兴安岭南部天然沼泽湿地碳储量,得到递增规律性。康文星等[26]对洞庭湖湿地研究得出植被碳储量平均为14.95 t/hm2,并且以草本为主。
目前对土壤碳储量进行估算的方法主要有体积法、密度法和碳累积速率法,此外还有运用模型进行碳储量估算,现在使用较为成熟的有DNDC模型[27-28]、EPIC模型[29]和CENTURY模型[30-32]。与国外相比,我国仍然缺乏自主产权的适合我国国情的湿地土壤碳储量评估时空动态模型[33]。还有利用3S技术进行估算,最常用的方法是基于土壤类型和连续序列进行估算。Pouyat等[34]、杜华强等[35]用国家土壤调查数据库估算总土壤碳储量。湿地土壤是湿地生态系统的主要碳库。由于湿地长时间处于淹水状态,植被及微生物等分解速率极低,因此土壤中累积的有机碳较多[36]。史小红等[37]利用3S技术对呼伦贝尔市生态系统碳储量进行估算,得到湿地总碳储量为26 031.21×104 t。
本文以分布在我国温带长白山沿沼泽至森林方向湿地过渡带环境梯度的白桦沼泽、毛赤杨沼泽、灌丛沼泽、草丛沼泽为研究对象,采用树木年轮分析仪及相对生长方程法,用碳/氮分析仪测定,对其年净固碳量、净初级生产力和生态系统碳储量(植被和土壤)进行精确的计算;并分析了这4类沼泽,沿湿地过渡带水分环境梯度的空间分布格局。总结出其景观尺度空间变异规律性。
-
我们在吉林省长白山二道白河镇展开了研究。其地理位置42°01′~42°48′N、127°53′~128°34′E,坡度5°~10°。最低平均温度在每年的1月, 为-32.0 ℃,属温带大陆性季风气候, 平均海拔800 m。最高27.9 ℃。年均降水量714 mm,无霜期110 d。土壤为暗棕壤,植被为温带针阔混交林。实验地乔木树种为毛赤杨(Alnus sibirica)、落叶松(Larix gmelinii)和白桦(Betula platyphylla)。灌木层有细叶杜香(Ledum palustre)、笃斯越橘(Vaccinium uliginosum)和油桦(Betula ovalifolia)。草本层有小叶章(Calamagrostis angustifolia)、白毛羊胡子草(Eriophorum vaginatum)和臌囊苔草(Carexschmidtii)。
从谷地到高地的过渡带,水位越来越低,积水量变少,每一次积水的时间越来越短,泥炭层变薄。植物依次生长为白桦沼泽、毛赤杨沼泽、灌丛沼泽和草丛沼泽。
-
在2016年8月上旬(生长季末期)设置样地,在长白山白河林业局自湿地至森林方向沿着过渡带水分环境梯度,依次设置12块标准地,每个沼泽类型3次重复样地,每块标准地面积20 m×30 m。其中包括草丛沼泽(地下水位6~10 cm)、灌丛沼泽(地下水位12~19 cm)、毛赤杨沼泽(地下水位20~28 cm)和白桦沼泽(地下水位25~38 cm)。并于8月中旬对植被、土壤调查取样。
表 1 温带长白山2种阔叶林沼泽湿地类型乔木统计特征
Table 1. Characteristics of two kinds of forested swamp wetland types in Changbai Mountain of northeastern China
湿地类型
Wetland type树种
Tree species密度/(株·hm-2)
Stand density/(plant·ha-1)胸高断面积/(m2·hm-2)
Basal area at breast height/(m2·ha-1)平均胸
Average DBH/cm胸径范围
Range of DBH/cm毛赤杨沼泽Alnus sibirica swamp 毛赤杨Alnus sibirica 1 567 10.7 11.1 4.6~28.8 白桦Betula platypyhlla 217 4.2 13.4 5.3~26.3 落叶松Larix gmelinii 83 2.7 19.0 7.9~28.8 其他Others 333 2.2 8.1 4~24.8 白桦沼泽Betula platyphylla swamp 白桦Betula platypyhlla 994 12.6 13.7 5.2~41.2 落叶松Larix gmelinii 128 4.6 19.0 5.7~41.2 毛赤杨Alnus sibirica 78 0.6 9.3 6.6~15.2 其他Others 56 0.7 12.0 5.3~24.8 -
乔木层生物量:首先,测量各标准地中胸径≥4 cm(小于4 cm的乔木算作灌木)的林木胸径。然后,每间隔2 cm将树种划分径级,并且在每个划分好的径级里选取2~3株标准木,利用生长锥钻取年轮样芯,选择白桦和毛赤杨等标准木各72株,再利用树木年轮分析仪测定近5年胸径生长量,用于测定乔木净初级生产力。最后,利用现有白桦和毛赤杨等树种胸径与各组分生物量的回归方程(见表 2)[38],并结合林分径级分布调查数据,估算出各沼泽湿地类型的乔木层生物量。
表 2 长白山天然白桦沼泽和毛赤杨沼泽乔木生物量方程[38]
Table 2. Allometric equations relating biomass components for Betula platyphylla and Alnus sibirica of forested swamp wetlands in Changbai Mountain of northeastern China
树种Tree species 组分Component 生物量方程Biomass equation R2 MSE 毛赤杨Alnus sibirica 干Trunk B=101.836D2.471 0.993 0.008 根Root B=100.992D2.563 0.996 0.005 枝Branch B=100.129D3.224 0.971 0.062 叶Leaf B=100.567D2.182 0.795 0.243 白桦Betula platyphylla 干Trunk B=102.141D2.278 0.988 0.006 根Root B=101.319D2.53 0.993 0.004 枝Branch B=100.952D2.783 0.956 0.035 叶Leaf B=101.176D1.942 0.918 0.033 灌木层生物量测定是在每个实验地里随机设置3个2 m×2 m的样方。草本层生物量测定是通过计算含水率得到的。在每个实验地里分别随机设置5个2 m×2 m样方, 采取收获法,收集生物量鲜质量,包括草本层地上及地下(深度约0.1~0.2 m)和灌木层干、枝、叶、根(深度为0.1~0.2 m),并分别取样,在75 ℃下烘干至恒质量(烘干时间是大于24 h)。
凋落物生物量测定:选择在第2年雪化之后在每个实验地分别收集10个20 cm×20 cm小样方的凋落物进行处理,在75 ℃下烘干至恒质量。
植被碳储量测定:使用碳/氮分析仪EA4000利用1 300 ℃干烧法干烧各个样品得到有机碳含量,再将碳含量分别乘对应的生物量,结果就是灌木层、草本层与凋落物层的碳储量。乔木层的碳储量根据Zhang等[39]的研究结果求得,计算公式见表 3[39]。4种碳储量之和即为植被的碳储量。
表 3 长白山天然白桦沼泽和毛赤杨沼泽乔木碳储量方程[39]
Table 3. Equations relating carbon storage components for Betula platyphylla and Alnus sibirica of forested swamp wetlands in Changbai Mountain of northeastern China
树种Tree species 组分Component 干Trunk 根Root 枝Branch 叶Leaf 毛赤杨Alnus sibirica W=B×0.434 W=B×0.435 W=B×0.465 W=B×0.471 白桦Betula platyphylla W=B×0.459 W=B×0.457 W=B×0.498 W=B×0.489 注:W为生物量,kg/m2;B为碳储量,t/hm2。Notes: W is biomass, kg/m2; B is carbon storage, t/ha. -
设置36个土壤剖面,每个样地要以“品”字形设置3个土壤剖面,共计调查36个土壤剖面。由于土层较浅,灌木80 cm以下、白桦60 cm以下、草丛100 cm以下、毛赤杨60 cm以下即为母质层。用土壤环刀(100 cm3)取样,测定土壤密度。设定每10 cm为一取样层,装在铝盒中,并烘干至恒质量; 在同一土层深度取土样500 g,自然风干后,挑出其中大于2 mm的根系或岩石,在70 ℃下烘干至恒质量,研磨粉碎后过2 mm土壤筛,利用碳/氮分析仪EA4000测定土壤有机碳含量,并利用以下公式计算土壤有机碳储量。
某一土层i的有机碳密度(SOCi,kg/m2)的计算公式为:
$$ {\rm{SO}}{{\rm{C}}_i} = {C_i}{D_i}{E_i}\left( {1 - {G_i}} \right)/100 $$ 式中:Di为土壤密度(g/cm3); Ci为土壤有机碳含量(g/kg); Gi为直径大于2 mm的石砾所占的体积百分数(%),Ei为土层厚度(cm)。
-
草本层净初级生产力就是本年的全部生物量。每个沼泽类型的植被净初级生产力就是将三者加和。考虑到灌木层净初级生产力为其近5年的积累量,所以取5年平均值[9-10]。乔木层净初级生产力是将近5年的年轮宽度平均值作为当年的年轮宽度,再将样地实测胸径减去年轮宽度作为前1年胸径,分别代入生长方程得到生物量,两者相减得到净初级生产力。分别将各自净初级生产力乘以相应的碳密度,加和即可得到植被的年净固碳量。
-
我们将用SPSS 20.0软件分析了单因素方差(one-way ANOVA),并且分析不同数据组间的差异性,采用最小显著差异法(LSD),显著性水平设置为α=0.05。
-
由表 4可知,长白山4种典型天然沼泽类型的植被碳储量存在显著差异。4种沼泽类型碳储量分布在(3.18±0.17) t/hm2~(54.04±23.76) t/hm2,其中2种阔叶林沼泽毛赤杨沼泽和白桦沼泽的植被碳储量显著高于草丛沼泽和灌丛沼泽15.9~16.0倍和9.3~9.4倍(P < 0.05),且灌丛沼泽高于草丛沼泽0.63倍(P>0.05)。最后得出结论:沿着沼泽至森林方向过渡带,植被碳储量是呈现递增趋势的。
表 4 长白山4种典型天然沼泽湿地类型的植被碳储量及其分配
Table 4. Carbon storage and allocation proportion of four kinds of natural swamp wetland vegetation in Changbai Mountain of northeastern China
处理
Treatment碳储量/(t·hm-2)
Carbon storage/(t·ha-1)分配比Allocation/% 乔木层
Tree layer灌木层
Shrub layer草本层
Herb layer凋落物层
Litter layer植被
Vegetation乔木层
Tree layer灌木层
Shrub layer草本层
Herb layer凋落物层
Litter layer草丛沼泽M 2.44
(0.04)A0.74
(0.01)A3.18
(0.17)A76.73
(0.24)23.27
(0.06)灌丛沼泽S 2.22
(0.01)A2.27
(0.14)A0.70
(0.01)A5.19
(1.37)A42.77
(0.05)43.74
(0.13)13.49
(0.09)毛赤杨沼泽C 46.90
(1.56)A2.57
(0.10)A2.15
(0.04)A2.42
(0.05)B54.04
(23.76)B86.79
(0.21)4.75
(0.06)3.98
(0.04)4.48
(0.05)白桦沼泽H 46.61
(0.90)A2.18
(0.08)A2.33
(0.04)A2.49
(0.02)B53.61
(5.35)B86.94
(0.09)4.07
(0.08)4.35
(0.04)4.64
(0.02)注:表中给出数据是平均值,括号内为标准差; 不同大写字母表示不同湿地类型植被碳储量差异显著(P < 0.05)。Notes: data in the table is the mean and the data in the bracket is standard deviation. Different capital letters indicate significant difference in carbon storage of different wetland types (P < 0.05). M, marsh swamp; S, shrub swamp; C, Alnus sibirica swamp; H, Betula platyphylla swamp; the same below. 此外,发现这4种天然沼泽植被碳储量的空间分配格局也不同。主要体现在,垂直空间上,草丛沼泽植被碳储量以草本层占优势(76.73%),凋落物次之(23.27%);灌丛沼泽植被碳储量以灌木层和草本层占优势且相近(42.77%和43.74%),凋落物层占比最小(13.49%);而2种阔叶林沼泽植被碳储量均以乔木层占绝对优势(86.79%~86.94%),灌木层、草本层和凋落物层占比小且相近(3.98%~ 4.75%),详见表 4。在水平空间上,4种天然沼泽类型草本层碳储量变化幅度不大(5.6%~13.5%,P>0.05);灌木层(除草丛沼泽缺失外)碳储量变化幅度也不大(1.8%~17.9%,P>0.05);2种阔叶林沼泽乔木层(草丛沼泽、灌丛沼泽缺失)碳储量也相近(0.6%,P>0.05);但2种阔叶林沼泽凋落物层碳储量却显著高于草丛沼泽和灌丛沼泽(227.0%~ 236.5%和245.7%~255.7%,P < 0.05)。因此,长白山4种天然沼泽湿地的植被碳储量在过渡带上存在较大的空间异质性。
-
由表 5可以看出,4种天然森林沼泽湿地类型在草本层生物量上没有显著差异,生物量分别为(0.57±0.08)kg/m2、(0.55±0.31)kg/m2、(0.55±0.05) kg/m2和(0.62±0.11) kg/m2。4种天然森林沼泽湿地草本层地上、地下生物量差异性并不显著,同时地下草本层生物量明显高于地上生物量。在地上的草本层中,灌丛沼泽湿地生物量最低,为0.04 kg/m2,毛赤杨沼泽湿地次之,生物量为0.08 kg/m2,第3低的为草丛沼泽湿地,为0.11 kg/m2,白桦沼泽湿地草本层地上生物量最高,为0.17 kg/m2。在地下的草本层中,白桦沼泽湿地生物量最低,为0.45 kg/m2,草丛沼泽湿地次之,生物量为0.46 kg/m2,第3低的为毛赤杨沼泽湿地,为0.47 kg/m2,灌丛沼泽湿地草本层地下生物量最高,为0.52 kg/m2。
表 5 长白山4种沼泽湿地草本层生物量及其分配
Table 5. Biomass and allocation proportion of componengts in herb layer of four kinds of swamp wetlands in Changbai Mountain of northeastern China
组分
Component生物量Biomass/(kg·m-2) 分配比Allocation/% 草丛沼泽M 灌丛沼泽S 毛赤杨沼泽C 白桦沼泽H 草丛沼泽M 灌丛沼泽S 毛赤杨沼泽C 白桦沼泽H 地上
Aboveground0.11(0.02)a 0.04(0.02)a 0.08(0.02)a 0.17(0.24)a 19.36(0.02) 6.69(0.02) 13.70(0.04) 24.94(0.31) 地下
Underground0.46(0.07)a 0.52(0.30)a 0.47(0.04)a 0.45(0.15)a 80.64(0.02) 93.31(0.02) 86.30(0.04) 75.06(0.31) 合计Total 0.57(0.08)a 0.55(0.31)a 0.55(0.05)a 0.62(0.11)a 100 100 100 100 通过对4种阔叶林沼泽湿地草本层生物量组成分配进一步分析,可以发现组成分配规律基本保持一致,地上生物量远远低于地下生物量,大多数草本层生物量属于地下生物量。地下分配比为74.75%~ 93.33%,地上分配比为6.67%~25.25%。
由表 6可以看出,4种天然森林沼泽湿地类型在草本层碳储量上没有显著差异(P>0.05),碳储量分别为(2.28±0.15)t/hm2、(2.27±1.40)t/hm2、(2.15±0.37)t/hm2和(2.33±0.43)t/hm2,沿着过渡带的变化趋势不太明显。4种天然森林沼泽湿地草本层地上、地下碳储量差异性不显著(P>0.05),地下草本层碳储量高于地上碳储量。地上草本层碳储量从大到小排列为白桦沼泽湿地(0.27~0.99) t/hm2>草丛沼泽湿地(0.38~0.50) t/hm2>毛赤杨沼泽湿地(0.18~0.44) t/hm2>灌丛沼泽湿地(0.09~0.21) t/hm2。在地下的草本层中,白桦沼泽湿地生碳储量最低,为1.70 t/hm2,毛赤杨沼泽湿地次之,碳储量为1.83 t/hm2,其次为草丛沼泽湿地,为1.84 t/hm2,灌丛沼泽湿地草本层地下碳储量最高,为2.12 t/hm2。
表 6 长白山4种阔叶林沼泽湿地草木层碳储量及其分配
Table 6. Carbon storage and allocation proportion of components in herb layer of four kinds of swamp wetlands in Changbai Mountain of northeastern China
组分
Component碳储量/(t·hm-2) Carbon storage/(t·ha-1) 分配比Allocation/% 草丛沼泽M 灌丛沼泽S 毛赤杨沼泽C 白桦沼泽H 草丛沼泽M 灌丛沼泽S 毛赤杨沼泽C 白桦沼泽H 地上
Aboveground0.44(0.06)a 0.15(0.06)a 0.31(0.13)a 0.63(0.36)a 19.41(0.03) 7.41(0.03) 14.58(0.05) 24.01(0.31) 地下
Underground1.84(0.16)a 2.12(1.35)a 1.83(0.31)a 1.70(0.56)a 80.59(0.03) 92.59(0.03) 85.42(0.05) 76.0(0.31) 合计Total 2.28(0.15)a 2.27(1.40)a 2.15(0.37)a 2.33(0.43)a 100 100 100 100 通过对4种阔叶林沼泽湿地草本层碳储量组成分配进一步分析,可以发现组成分配规律基本保持一致,地下碳储量占据草本层碳储量的绝大部分,分配比为75.69%~92.62%,灌丛沼泽湿地草本层碳储量地上分配比为7.38%~24.32%。
-
从表 7可知,4种沼泽类型的土壤碳储量分布在(459.67±7.11) t/hm2~(824.5±50.79) t/hm2。其中,草丛沼泽土壤碳储量显著高于灌丛沼泽、毛赤杨沼泽和白桦沼泽30.8%、57.4%和79.4%(P < 0.05);灌丛沼泽显著高于毛赤杨沼和白桦沼泽20.4%和37.1%(P < 0.05);毛赤杨沼泽略高于白桦沼泽13.9%(P>0.05)。因此,从沼泽到森林方向过渡带沿着水分环境梯度,长白山4种天然沼泽湿地的土壤碳储量属于递减趋势。
表 7 长白山4种典型天然沼泽湿地类型土壤有机碳储量及其分布特征 t·hm-2
Table 7. Soil organic carbon storage and its spatial distribution of four kinds of swamp wetlands in Changbai Mountain of northeastern China t·ha-1
土壤深度
Soil depth/cm处理Treatment 草丛沼泽M 灌丛沼泽S 毛赤杨沼泽C 白桦沼泽H 0~10 63.30(5.11)ABa 61.87(3.97)Aa 77.00(8.17)Ba 71.84(6.89)Ba 10~20 77.55(8.39)Aab 81.76(12.66)Ab 90.76(11.90)Aa 89.20(10.58)Aa 20~30 80.61(4.29)Aab 85.65(5.26)Ab 73.96(25.47)Aa 71.83(6.50)Aa 30~40 89.07(16.42)Ab 86.00(7.95)Ab 88.11(4.59)Aa 75.03(10.24)Aa 40~50 84.30(4.55)Aab 86.29(1.61)Ab 91.64(21.26)Aa 66.11(13.21)Aa 50~60 83.08(15.00)Aab 75.53(12.29)Aab 102.23(57.47)Aa 85.66(25.29)Aa 60~70 80.13(8.15)Aab 82.05(17.30)Ab 70~80 88.18(3.82)Ab 71.28(10.70)Aab 80~90 99.56(20.69)b 90~100 78.72(14.66)ab 合计Total 824.50(50.79)C 630.43(24.08)B 523.70(65.60)A 459.67(7.11)A 注:不同大写字母表示不同湿地类型土壤有机碳储量差异显著(P < 0.05), 不同小写字母表示不同土壤深度土壤有机碳储量差异显著(P < 0.05)。Notes: different capital letters indicate significant difference in soil organic carbon storage in different wetland types(P < 0.05); different lowercase letters indicate significant difference between soil organic carbon storage of different soil depths(P < 0.05). 此外,4种天然沼泽类型土壤碳储量的空间分布格局也有所不同。在垂直空间上,各沼泽类型土壤层厚度不同,草丛沼泽最厚可分10层(100 cm)、灌丛沼泽较厚分8层(80 cm)、毛赤杨沼泽与白桦沼泽相对较薄分6层(60 cm)。同时,草丛沼泽(10~100) cm土壤层较上层(0~10 cm)高22.5%~57.3%(其中,30~40 cm和70~90 cm土壤层显著高39.3%~57.3%,P < 0.05),灌丛沼泽10~80 cm土壤层较上层高15.2%~39.5%(其中,10~50 cm和60~70 cm土壤层显著高32.1%~39.5%,P < 0.05),但2种阔叶林沼泽各土壤层碳密度却无显著差异性(-3.9%~32.8%和-8.0%~24.2%,P>0.05)。在水平空间上,各沼泽类型碳密度在土壤上层与下层存在明显差异,2种阔叶林沼泽0~10 cm土壤层高于灌丛沼泽和草丛沼泽16.1%~24.5%(P < 0.05)和13.5%~21.6%(P >0.05)。可能原因是地上凋落物引起的误差,在10~60 cm土壤层中各沼泽类型间差异性均不显著(3.0%~38.5%,P>0.05),但60~80 cm土壤层仅有草丛沼泽和灌丛沼泽,80~100 cm土壤层仅有草丛沼泽。由此可见,在过渡带空间上,很大的异质性存在于4种天然沼泽类型土壤碳储量。
-
从表 8中看出,生态系统碳储量分布在(513.28± 6.44) t/hm2~(827.68±50.96) t/hm2,这是沿过渡带环境梯度的分布,并且具有显著差异性。其中,草丛沼泽最高,显著高于白桦沼泽、毛赤杨沼泽和灌丛沼泽61.3%、43.3%和30.2%(P < 0.05);灌丛沼泽次之,高于白桦沼泽和毛赤杨沼泽23.8%(P < 0.05)和10.0%(P>0.05);毛赤杨沼泽高于白桦沼泽12.6%(P>0.05)。由此可见,在过渡带空间上,很大的异质性存在于4种天然沼泽类型生态系统碳储量。
表 8 长白山4种天然沼泽湿地类型生态系统有机碳储量及其分配
Table 8. Ecosystem organic carbon storage and allocation proportion of four kinds of natural swamp wetlands in Changbai Mountain of northeastern China
处理Treatment 碳储量/(t·hm-2) Carbon storage/(t·ha-1) 分配比Allocation/% 植被Vegetation 土壤Soil 生态系统Ecosystem 植被Vegetation 土壤Soil 草丛沼泽M 3.18(0.17)A 824.50(50.79)C 827.68(50.96)C 0.38(0.30) 99.62(1.19) 灌丛沼泽S 5.19(1.37)A 630.43(24.08)B 635.62(25.24)B 0.82(1.37) 99.18(0.97) 毛赤杨沼泽C 54.04(23.76)B 523.70(65.60)A 577.74(45.12)AB 9.35(0.12) 90.65(1.11) 白桦沼泽H 53.61(5.35)B 459.67(7.11)A 513.28(6.44)A 11.44(1.67) 89.56(1.24) 注:不同大写字母表示不同湿地类型生态系统有机碳储量差异显著(P < 0.05)。Note: different capital letters indicate significant difference in ecosystem organic carbon storage in different wetland types (P < 0.05). 此外,在组成结构方面,也发现了4种沼泽类型生态系统碳储量的差异。2种阔叶林沼泽的生态系统碳储量虽以土壤碳储量占优势地位(89.56%~90.65%),而草丛沼泽和灌丛沼泽的生态系统碳储量则以土壤碳储量占主导地位(99.18%~99.62%),植被碳储量相对不主要(0.38%~0.82%)。这说明森林沼泽与草丛沼泽及灌丛沼泽是以不一样的方式来发挥碳汇功能的,即森林沼泽是以形成泥炭与积累植被生物量2种方式,而草丛沼泽和灌丛沼泽发挥碳汇功能的方式主要是以形成泥炭的方式。
-
从表 9可以看出,长白山4种天然沼泽类型植被年净固碳量和净初级生产力存在显著差异性。各沼泽类型的植被净初级生产力分布在(5.74±0.08) t/(hm2·a)~(15.90±1.35) t/(hm2·a),其中毛赤杨沼泽和白桦沼泽的净初级生产力相对较高,显著高于草丛沼泽1.6和1.8倍(P < 0.05),显著高于灌丛沼泽1.3和1.4倍(P < 0.05);但草丛沼泽与灌丛沼泽之间及2种森林沼泽之间植被净初级生产力差异性均不显著。4者的植被年净固碳量分布在(2.44±0.03) t/(hm2·a)~(6.36±0.53) t/(hm2·a),其中毛赤杨沼泽和白桦沼泽的年净固碳量相对较高,显著高于草丛沼泽1.4和1.6倍(P < 0.05),显著高于灌丛沼泽1.3和1.4倍(P < 0.05);但草丛沼泽与灌丛沼泽间及2种森林沼泽间年净固碳量的差异性也均不显著。可见,在过渡带空间上,很大的异质性存在于4种天然沼泽类型的植被固碳能力和净初级生产力。
表 9 长白山4种天然沼泽湿地植被净初级生产力与年净固碳量 t·hm-2·a-1
Table 9. Net primary productivity (NPP) and net carbon sequestration (NCS) of four kinds of natural swamp wetlands in Changbai Mountain of northeastern China t·ha-1·a-1
处理
Treatment净初级生产力NPP 年净固碳量NCS 乔木Tree 灌木Shrub 草本Herb 植被Vegetation 乔木Tree 灌木Shrub 草本Herb 植被Vegetation 草丛沼泽M 5.74(0.08)A 5.74(0.08)A 2.44(0.03)A 2.44(0.03)A 灌丛沼泽S 0.89(0.06)A 5.50(0.31)A 6.57(3.47)A 0.36(0.04)A 2.27(0.12)A 2.63(0.10)A 毛赤杨沼泽C 8.20(1.78)A 1.02(0.38)A 5.49(0.53)A 14.92(4.13)B 3.28(0.71)A 0.41(0.39)A 2.15(0.21)A 5.97(0.32)B 白桦沼泽H 8.60(1.94)A 1.03(0.34)A 6.24(0.11)A 15.90(1.35)B 3.44(0.78)A 0.41(0.30)A 2.33(0.04)A 6.36(0.53)B 注:不同大写字母表示不同湿地类型土壤有机碳储量差异显著(P < 0.05)。Note: different capital letters indicate significant difference in soil organic carbon storage in different wetland types (P < 0.05). -
本研究得到温带长白山4种天然沼泽类型的植被碳储量(3.2~54 t/hm2)沿湿地过渡带环境梯度呈递增趋势,即森林沼泽>灌丛沼泽>草丛沼泽,与现有结论我国寒温带大兴安岭天然沼泽植被碳储量(4.8~83.3 t/hm2)沿过渡带环境梯度呈递增规律[10]一致。其原因可能是,从沼泽到森林方向过渡带存在着水分环境梯度,这个水分环境梯度的规律体现在:随着地势缓慢降低,地下水位逐渐升高,植被顺势生长为落叶松沼泽、白桦沼泽、毛赤杨沼泽、灌丛沼泽以及草丛沼泽等湿地群落类型。由于乔木层的缺失导致草丛沼泽和灌丛沼泽的植被碳储量较低,森林沼泽群落建群种为乔木/亚乔木树种且寿命相对较长,能够积累更多的生物量及碳量[6]。但温带长白山沼泽植被碳储量的上限值却低于寒温带大兴安岭约1/3(35.2%),这可能与2地森林沼泽的林分密度及林龄不同有关。
此外,长白山天然沼泽植被碳储量,灌丛沼泽和草丛沼泽仅为北方森林植被固碳估计值(40~64 t/hm2)[6]其下限值的8.0%~13.0%,毛赤杨沼泽和白桦沼泽则高于其下限值(35.0%),低于其上限值(15.6%)。故长白山天然阔叶林沼泽植被碳储量与北方森林相近,但草丛沼泽和灌丛沼泽植被碳储量却远低于北方森林。
-
在垂直空间上,4种天然沼泽类型土壤碳储量的空间分布格局有所不同。草丛沼泽10~100 cm土壤层较上层0~10 cm高22.5%~57.3%,其原因可能是上层土壤中微生物活性强,分解导致上层土壤碳储量偏低;但2种阔叶林沼泽各土壤层碳密度却无显著差异性(-3.9%~32.8%和-8.0%~24.2%,P>0.05)。
长白山4种天然沼泽类型的土壤碳储量(460~ 825 t/hm2)沿湿地过渡带环境梯度呈递减趋势(草丛沼泽>灌丛沼泽>森林沼泽),与现有结论我国寒温带大兴安岭沼泽湿地土壤碳储量(192~383 t/hm2)沿过渡带呈递减规律[6]基本一致。温带长白山4种沼泽类型的土壤碳储量均高于寒温带大兴安岭相应沼泽类型0.8~1.4倍;其原因在于水位是控制泥炭地碳循环的重要因子,高水位诱发厌氧环境能够降低土壤矿化速率,而低水位易形成有氧环境一般会增加土壤矿化速率[41-43]。本区降水充沛(714 mm)易形成有利于泥炭积累的水淹厌氧环境(生长季水位草丛沼泽、灌丛沼泽0~19 cm,森林沼泽20~38 cm),故泥炭层相对较厚60~100 m且能够积累相对较多的碳素。
进一步与我国北方森林土壤碳储量85 t/hm2[6]及天然林土壤碳储量109 t/hm2[45]对比,长白山4种天然沼泽湿地土壤碳储量为前者的4.2~7.6倍,后者的5.4~9.7倍。说明沼泽湿地类型的土壤碳汇功能远强于森林土壤。
-
长白山4种典型天然沼泽湿地生态系统碳储量(513~828 t/hm2)沿着过渡带环境梯度呈递减趋势(草丛沼泽>灌丛沼泽>森林沼泽),与现有结论我国寒温带大兴安岭沼泽湿地生态系统碳储量(275~388 t/hm2)沿过渡带呈恒定型分布[6]则不同,且前者高于后者0.3~2.0倍。其原因是沿沼泽至森林方向过渡带水分环境梯度土壤碳储量呈递减趋势,植被碳储量呈递增趋势。而长白山区这4个沼泽类型的土壤碳储量均占生态系统碳储量的绝对优势地位89.6%~99.6%,故导致生态系统碳储量势必随之呈递减趋势。这也说明温带长白山沼泽湿地土壤碳库远大于其植被碳库(约为10 :0或9 :1)。
此外,长白山4种天然沼泽湿地的生态系统碳储量高于北方森林生态系统碳储量(125~149 t/hm2)[40]上限值2.4~4.6倍,且高于北方泥炭地生态系统碳储量(390~1 340 t/hm2)下限值0.3~1.1倍,但低于其上限值0.4~0.6倍。因此,温带长白山这4种典型天然沼泽湿地碳汇作用强于北方森林,但在北方泥炭湿地中应属于中等碳汇类型。
-
长白山4种天然沼泽类型的植被净初级生产力(5.7~15.9 t/(hm2·a))与年净固碳量(2.4~6.4 t/(hm2·a))沿湿地过渡带环境梯度呈阶梯式递增趋势(毛赤杨沼泽与白桦沼泽>草丛沼泽与灌丛沼泽),与我国寒温带大兴安岭沼泽湿地植被净初级生产力(6.8~10.8 t/(hm2·a))与年净固碳量(3.2~ 5.1 t/(hm2·a))呈现落叶松沼泽 < 草丛沼泽、灌丛沼泽及白桦沼泽 < 毛赤杨沼泽结论[6]一致。只是前者植被固碳上限值较后者有所提升,可能与温带长白山的水热条件优于寒温带大兴安岭,进而促进了毛赤杨与白桦的生长有关。
温带长白山毛赤杨沼泽和白桦沼泽的植被净初级生产力(15~16 t/(hm2·a))已达到中国东北植被净初级生产力(6~14 t/(hm2·a))[45-47]及温带森林沼泽植被净初级生产力(10~15 t/(hm2· a))[48-49]的上限值;且两者植被固碳能力(6~64 t/(hm2·a))已超过中国陆地植被年均固碳4.9 t/(hm2·a)[50]和全球植被年均固碳4.1 t/(hm2·a)[51]22.4%~30.6%和46.3%~56.1%。说明长白山2种阔叶林沼泽应属于高固碳型沼泽湿地类型。
Carbon storage of natural broadleaved forested marsh wetland ecosystem in temperate Changbai Mountain of northeastern China
-
摘要:
目的数据性分析了几种沼泽类型的长期碳汇作用、碳储量和固碳能力。目的是为了揭示几种沼泽类型的空间变异规律。 方法采用年轮分析仪及相对生长方程法与碳/氮分析仪测定法,研究了生态系统的植被年净固碳量及净初级生产力,主要研究温带长白山沿湿地过渡带环境梯度顺序分布的4种天然沼泽的生态系统碳储量(土壤和植被),这4种沼泽类型包括:白桦沼泽、毛赤杨沼泽、灌丛沼泽和草丛沼泽。并分析了这几种类型的沼泽沿过渡带水分环境梯度的分布格局。 结果(1) 各个不同的沼泽植被碳储量分布((3.18±0.17) t/m2~(54.04± 23.76)t/m2)沿过渡带环境梯度呈递增趋势,2种阔叶林沼泽显著高于草丛沼泽和灌丛沼泽15.9~16.0倍和9.3~ 9.4倍(P < 0.05),且灌丛沼泽高于草丛沼泽0.63倍(P >0.05)。(2)土壤碳储量为((459.67±7.11) t/hm2~(824.5±50.79) t/hm2)跟随过渡带环境梯度出现递减趋势,草丛沼泽显著高于2种森林沼泽和灌丛沼泽30.8%~79.4%(P < 0.05),灌丛沼泽显著高于2种森林沼泽20.4%~37.1%(P < 0.05)。(3)生态系统碳储量((516.71±6.44) t/hm2~(827.52±50.96) t/hm2)的草丛沼泽显著高于灌丛沼泽与森林沼泽30.2%~61.3%(P < 0.05),这表明沿过渡带环境梯度生态系统碳储量总体上也呈递减趋势,灌丛沼泽高于白桦沼泽23.8%(P < 0.05)和毛赤杨沼泽10.0%(P>0.05)。(4)植被年净固碳量((2.44±0.03) t/(hm2·a)~(6.36±0.53) t/(hm2·a))沿过渡带环境梯度呈现出阶梯式递增趋势,2种森林沼泽显著高于草丛沼泽与灌丛沼泽1.4~1.6倍和1.3~1.4倍(P < 0.05),且高于中国陆地植被年均固碳量20%~30%及全球植被年均固碳量45%~55%。 结论这表明森林沼泽湿地的固碳量远远高于陆地植被固碳量,故温带长白山2种阔叶林沼泽应属于高固碳湿地类型。 Abstract:ObjectiveThis paper dataly analyzed the long-term carbon sequestration, carbon storage and carbon sequestration capacity of several swamp types. The aim is to reveal the spatial variability of several types of swamp. MethodUsing the Ring analyzer and the relative growth equation method and the carbon/Nitrogen Analyzer Determination method, the annual net carbon sequestration and net primary productivity of vegetation in the ecosystem were studied, and the carbon reserves (soil and vegetation) of 4 natural swamp ecosystems with gradient sequence distribution of environmental gradients in the temperate Changbai Mountain from the wetland transition zone were studied, and the 4 types of marsh included: birch swamp, Mauchian swamp, thickets of swamp, and grassy swamp. The distribution pattern of the water environment gradients along the transitional zone of these types of swamp was analyzed. Result (1) The vegetation carbon storage(VCS) of four wetland types varied from (3.02±0.17) t/ha to (57.04±5.35) t/ha, which took on an increasing trend along the water environmental gradient. VCS of two broadleaved forested wetlands was significantly higher than that of marsh and shrub wetland by 15.9-16.0 and 9.3-9.4 times (P < 0.05), and VCS of shrub wetland was 0.63 times higher thanmarsh wetland(P>0.05). (2)The soil carbon storage(SCS) of four wetland types varied from (459.67± 7.11) t/ha to (824.5±50.79) t/ha, which showed a decreasing trend along the environmental gradient. SCS of marsh wetland was significantly higher than shrub wetland and two forested wetland by 30.8%-79.4% (P < 0.05), and SCS of shrub wetland was higher than two forested wetland by 20.4%-37.1% (P < 0.05). (3) The ecosystem carbon storage (ECS) of four wetland types varied from (516.71±6.44) t/ha to (827.52±50.96) t/ha, which also showed a decreasing trend along the environmental gradient. ECS of marsh wetland was significantly higher than shrub wetland and forested wetland by 30.2%-61.3% (P < 0.05), and ECS of shrub wetland was significantly higher than birch wetland by 23.8% (P < 0.05) and Alnus sibirica wetland by 10.0%(P>0.05). (4)The vegetation net carbon sequestration (VNCS) of four wetland types varied from (2.44±0.03) t/(ha·a) to (6.36±0.53) t/(ha·a), which showed a gradual upward trend along the environmental gradient. VNCS of two kinds of forested wetlands was significantly higher than marsh and shrub wetland by 1.4-1.6 and 1.3-1.4 times (P < 0.05), respectively, and also was higher than the average of Chinese vegetation VNCS and global vegetation VNCS by 20%-30% and 45%-55%. ConclusionIt shows that the carbon sequestration in forest marsh is much higher than that of terrestrial vegetation. Therefore, two broadleaved forested wetlands in temperate Changbai Mountain should belong to the high-carbon-fixing wetland type. -
表 1 温带长白山2种阔叶林沼泽湿地类型乔木统计特征
Table 1. Characteristics of two kinds of forested swamp wetland types in Changbai Mountain of northeastern China
湿地类型
Wetland type树种
Tree species密度/(株·hm-2)
Stand density/(plant·ha-1)胸高断面积/(m2·hm-2)
Basal area at breast height/(m2·ha-1)平均胸
Average DBH/cm胸径范围
Range of DBH/cm毛赤杨沼泽Alnus sibirica swamp 毛赤杨Alnus sibirica 1 567 10.7 11.1 4.6~28.8 白桦Betula platypyhlla 217 4.2 13.4 5.3~26.3 落叶松Larix gmelinii 83 2.7 19.0 7.9~28.8 其他Others 333 2.2 8.1 4~24.8 白桦沼泽Betula platyphylla swamp 白桦Betula platypyhlla 994 12.6 13.7 5.2~41.2 落叶松Larix gmelinii 128 4.6 19.0 5.7~41.2 毛赤杨Alnus sibirica 78 0.6 9.3 6.6~15.2 其他Others 56 0.7 12.0 5.3~24.8 表 2 长白山天然白桦沼泽和毛赤杨沼泽乔木生物量方程[38]
Table 2. Allometric equations relating biomass components for Betula platyphylla and Alnus sibirica of forested swamp wetlands in Changbai Mountain of northeastern China
树种Tree species 组分Component 生物量方程Biomass equation R2 MSE 毛赤杨Alnus sibirica 干Trunk B=101.836D2.471 0.993 0.008 根Root B=100.992D2.563 0.996 0.005 枝Branch B=100.129D3.224 0.971 0.062 叶Leaf B=100.567D2.182 0.795 0.243 白桦Betula platyphylla 干Trunk B=102.141D2.278 0.988 0.006 根Root B=101.319D2.53 0.993 0.004 枝Branch B=100.952D2.783 0.956 0.035 叶Leaf B=101.176D1.942 0.918 0.033 表 3 长白山天然白桦沼泽和毛赤杨沼泽乔木碳储量方程[39]
Table 3. Equations relating carbon storage components for Betula platyphylla and Alnus sibirica of forested swamp wetlands in Changbai Mountain of northeastern China
树种Tree species 组分Component 干Trunk 根Root 枝Branch 叶Leaf 毛赤杨Alnus sibirica W=B×0.434 W=B×0.435 W=B×0.465 W=B×0.471 白桦Betula platyphylla W=B×0.459 W=B×0.457 W=B×0.498 W=B×0.489 注:W为生物量,kg/m2;B为碳储量,t/hm2。Notes: W is biomass, kg/m2; B is carbon storage, t/ha. 表 4 长白山4种典型天然沼泽湿地类型的植被碳储量及其分配
Table 4. Carbon storage and allocation proportion of four kinds of natural swamp wetland vegetation in Changbai Mountain of northeastern China
处理
Treatment碳储量/(t·hm-2)
Carbon storage/(t·ha-1)分配比Allocation/% 乔木层
Tree layer灌木层
Shrub layer草本层
Herb layer凋落物层
Litter layer植被
Vegetation乔木层
Tree layer灌木层
Shrub layer草本层
Herb layer凋落物层
Litter layer草丛沼泽M 2.44
(0.04)A0.74
(0.01)A3.18
(0.17)A76.73
(0.24)23.27
(0.06)灌丛沼泽S 2.22
(0.01)A2.27
(0.14)A0.70
(0.01)A5.19
(1.37)A42.77
(0.05)43.74
(0.13)13.49
(0.09)毛赤杨沼泽C 46.90
(1.56)A2.57
(0.10)A2.15
(0.04)A2.42
(0.05)B54.04
(23.76)B86.79
(0.21)4.75
(0.06)3.98
(0.04)4.48
(0.05)白桦沼泽H 46.61
(0.90)A2.18
(0.08)A2.33
(0.04)A2.49
(0.02)B53.61
(5.35)B86.94
(0.09)4.07
(0.08)4.35
(0.04)4.64
(0.02)注:表中给出数据是平均值,括号内为标准差; 不同大写字母表示不同湿地类型植被碳储量差异显著(P < 0.05)。Notes: data in the table is the mean and the data in the bracket is standard deviation. Different capital letters indicate significant difference in carbon storage of different wetland types (P < 0.05). M, marsh swamp; S, shrub swamp; C, Alnus sibirica swamp; H, Betula platyphylla swamp; the same below. 表 5 长白山4种沼泽湿地草本层生物量及其分配
Table 5. Biomass and allocation proportion of componengts in herb layer of four kinds of swamp wetlands in Changbai Mountain of northeastern China
组分
Component生物量Biomass/(kg·m-2) 分配比Allocation/% 草丛沼泽M 灌丛沼泽S 毛赤杨沼泽C 白桦沼泽H 草丛沼泽M 灌丛沼泽S 毛赤杨沼泽C 白桦沼泽H 地上
Aboveground0.11(0.02)a 0.04(0.02)a 0.08(0.02)a 0.17(0.24)a 19.36(0.02) 6.69(0.02) 13.70(0.04) 24.94(0.31) 地下
Underground0.46(0.07)a 0.52(0.30)a 0.47(0.04)a 0.45(0.15)a 80.64(0.02) 93.31(0.02) 86.30(0.04) 75.06(0.31) 合计Total 0.57(0.08)a 0.55(0.31)a 0.55(0.05)a 0.62(0.11)a 100 100 100 100 表 6 长白山4种阔叶林沼泽湿地草木层碳储量及其分配
Table 6. Carbon storage and allocation proportion of components in herb layer of four kinds of swamp wetlands in Changbai Mountain of northeastern China
组分
Component碳储量/(t·hm-2) Carbon storage/(t·ha-1) 分配比Allocation/% 草丛沼泽M 灌丛沼泽S 毛赤杨沼泽C 白桦沼泽H 草丛沼泽M 灌丛沼泽S 毛赤杨沼泽C 白桦沼泽H 地上
Aboveground0.44(0.06)a 0.15(0.06)a 0.31(0.13)a 0.63(0.36)a 19.41(0.03) 7.41(0.03) 14.58(0.05) 24.01(0.31) 地下
Underground1.84(0.16)a 2.12(1.35)a 1.83(0.31)a 1.70(0.56)a 80.59(0.03) 92.59(0.03) 85.42(0.05) 76.0(0.31) 合计Total 2.28(0.15)a 2.27(1.40)a 2.15(0.37)a 2.33(0.43)a 100 100 100 100 表 7 长白山4种典型天然沼泽湿地类型土壤有机碳储量及其分布特征 t·hm-2
Table 7. Soil organic carbon storage and its spatial distribution of four kinds of swamp wetlands in Changbai Mountain of northeastern China t·ha-1
土壤深度
Soil depth/cm处理Treatment 草丛沼泽M 灌丛沼泽S 毛赤杨沼泽C 白桦沼泽H 0~10 63.30(5.11)ABa 61.87(3.97)Aa 77.00(8.17)Ba 71.84(6.89)Ba 10~20 77.55(8.39)Aab 81.76(12.66)Ab 90.76(11.90)Aa 89.20(10.58)Aa 20~30 80.61(4.29)Aab 85.65(5.26)Ab 73.96(25.47)Aa 71.83(6.50)Aa 30~40 89.07(16.42)Ab 86.00(7.95)Ab 88.11(4.59)Aa 75.03(10.24)Aa 40~50 84.30(4.55)Aab 86.29(1.61)Ab 91.64(21.26)Aa 66.11(13.21)Aa 50~60 83.08(15.00)Aab 75.53(12.29)Aab 102.23(57.47)Aa 85.66(25.29)Aa 60~70 80.13(8.15)Aab 82.05(17.30)Ab 70~80 88.18(3.82)Ab 71.28(10.70)Aab 80~90 99.56(20.69)b 90~100 78.72(14.66)ab 合计Total 824.50(50.79)C 630.43(24.08)B 523.70(65.60)A 459.67(7.11)A 注:不同大写字母表示不同湿地类型土壤有机碳储量差异显著(P < 0.05), 不同小写字母表示不同土壤深度土壤有机碳储量差异显著(P < 0.05)。Notes: different capital letters indicate significant difference in soil organic carbon storage in different wetland types(P < 0.05); different lowercase letters indicate significant difference between soil organic carbon storage of different soil depths(P < 0.05). 表 8 长白山4种天然沼泽湿地类型生态系统有机碳储量及其分配
Table 8. Ecosystem organic carbon storage and allocation proportion of four kinds of natural swamp wetlands in Changbai Mountain of northeastern China
处理Treatment 碳储量/(t·hm-2) Carbon storage/(t·ha-1) 分配比Allocation/% 植被Vegetation 土壤Soil 生态系统Ecosystem 植被Vegetation 土壤Soil 草丛沼泽M 3.18(0.17)A 824.50(50.79)C 827.68(50.96)C 0.38(0.30) 99.62(1.19) 灌丛沼泽S 5.19(1.37)A 630.43(24.08)B 635.62(25.24)B 0.82(1.37) 99.18(0.97) 毛赤杨沼泽C 54.04(23.76)B 523.70(65.60)A 577.74(45.12)AB 9.35(0.12) 90.65(1.11) 白桦沼泽H 53.61(5.35)B 459.67(7.11)A 513.28(6.44)A 11.44(1.67) 89.56(1.24) 注:不同大写字母表示不同湿地类型生态系统有机碳储量差异显著(P < 0.05)。Note: different capital letters indicate significant difference in ecosystem organic carbon storage in different wetland types (P < 0.05). 表 9 长白山4种天然沼泽湿地植被净初级生产力与年净固碳量 t·hm-2·a-1
Table 9. Net primary productivity (NPP) and net carbon sequestration (NCS) of four kinds of natural swamp wetlands in Changbai Mountain of northeastern China t·ha-1·a-1
处理
Treatment净初级生产力NPP 年净固碳量NCS 乔木Tree 灌木Shrub 草本Herb 植被Vegetation 乔木Tree 灌木Shrub 草本Herb 植被Vegetation 草丛沼泽M 5.74(0.08)A 5.74(0.08)A 2.44(0.03)A 2.44(0.03)A 灌丛沼泽S 0.89(0.06)A 5.50(0.31)A 6.57(3.47)A 0.36(0.04)A 2.27(0.12)A 2.63(0.10)A 毛赤杨沼泽C 8.20(1.78)A 1.02(0.38)A 5.49(0.53)A 14.92(4.13)B 3.28(0.71)A 0.41(0.39)A 2.15(0.21)A 5.97(0.32)B 白桦沼泽H 8.60(1.94)A 1.03(0.34)A 6.24(0.11)A 15.90(1.35)B 3.44(0.78)A 0.41(0.30)A 2.33(0.04)A 6.36(0.53)B 注:不同大写字母表示不同湿地类型土壤有机碳储量差异显著(P < 0.05)。Note: different capital letters indicate significant difference in soil organic carbon storage in different wetland types (P < 0.05). -
[1] 吕宪国.中国湿地与湿地研究[M].石家庄:河北科学技术出版社, 2008. Lü X G. Study on wetlands and wetlands in China[M]. Shijiazhuang: Hebei Science and Technology Press, 2008. [2] Zhu X, Song C, Guo Y, et al. Methane emissions from temperate herbaceous peatland in the Sanjiang Plain of northeast China[J]. Atmospheric Environment, 2014, 92:478-483. doi: 10.1016/j.atmosenv.2014.04.061 [3] Song C, Xiaofeng X U, Tian H, et al. Ecosystem-atmosphere exchange of CH— and N—O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China[J]. Global Change Biology, 2009, 15(3):692-705. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e43db64d1f12876e1f84fbdb6025f89f [4] Lucchese M, Waddington J M, Poulin M, et al. Organic matter accumulation in a restored peatland: evaluating restoration success[J]. Ecological Engineering, 2010, 36(4):482-488. doi: 10.1016/j.ecoleng.2009.11.017 [5] 崔丽娟, 马琼芳, 宋洪涛, 等.湿地生态系统碳储量估算方法综述[J].生态学杂志, 2012, 31(10):2673-2680. http://d.old.wanfangdata.com.cn/Periodical/stxzz201210036 Cui L J, Ma Q F, Song H T, et al. Review on estimation methods of carbon storage in wetland ecosystem[J]. Chinese Journal of Ecology, 2012, 31(10):2673-2680. http://d.old.wanfangdata.com.cn/Periodical/stxzz201210036 [6] 牟长城, 王彪, 卢慧翠, 等.大兴安岭天然沼泽湿地生态系统碳储量[J].生态学报, 2013, 33(16):4956-4965. http://d.old.wanfangdata.com.cn/Periodical/stxb201316015 Mu C C, Wang B, Lu H C, et al. Carbon storage in natural marsh wetland ecosystem of Daxinganling Mountains[J]. Acta Ecologica Sinica, 2013, 33(16):4956-4965. http://d.old.wanfangdata.com.cn/Periodical/stxb201316015 [7] Mu C, Lu H C, Wang B, et al. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii-Carex schmidtii, forested wetlands in Daxing'anling, northeast China[J]. Forest Ecology & Management, 2013, 293(4):140-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=526dea3557c83188f56f852c9f816ef8 [8] 李婉姝, 牟长城, 吴云霞, 等.小兴安岭地区天然沼泽林生产力与植被碳密度[J].东北林业大学学报, 2010, 38(8):39-44. doi: 10.3969/j.issn.1000-5382.2010.08.013 Li W S, Mu C C, Wu Y X, et al. Productivity and vegetation carbon density of natural swamp forests in Lesser Xing'an Mountains, Heilongjiang[J]. Journal of Northeast Forestry University, 2010, 38(8): 39-44. doi: 10.3969/j.issn.1000-5382.2010.08.013 [9] 周文昌, 牟长城, 刘复, 等.火干拢对小兴安岭白桦沼泽和落叶松-苔草沼泽凋落物和土壤碳储量的影响[J].生态学报, 2012, 32(20):6387-6395. http://www.cnki.com.cn/Article/CJFDTotal-STXB201220014.htm Zhou W C, Mu C C, Liu X, et al. Effects of fire disturbance on litter mass and soil carbon storage of Betula platyphylla and Larix gmelinii-Carex schmidtii swamps in the Xiaoxing'an Mountains of Northeast China[J]. Acta Ecologica Sinica, 2012, 32(20): 6387-6395. http://www.cnki.com.cn/Article/CJFDTotal-STXB201220014.htm [10] 牟长城, 包旭, 卢慧翠, 等.火干扰对大兴安岭兴安落叶松瘤囊苔草湿地生态系统碳储量的短期影响[J].林业科学, 2013, 49(2):8-14. doi: 10.3969/j.issn.1672-8246.2013.02.002 Mu C C, Bao X, Lu H C, et al. Short-term effects of fire disturbance on carbon storage in Larix gmelinii-Carex schmidtii wetland ecosystem in Daxinganling[J]. Scientia Silvae Sinicae, 2013, 49(2):8-14. doi: 10.3969/j.issn.1672-8246.2013.02.002 [11] 刘夏, 牟长城, 周文昌, 等.采伐对小兴安岭森林沼泽土壤碳质量分数和碳密度的影响[J].东北林业大学学报, 2013, 41(1):42-47. doi: 10.3969/j.issn.1000-5382.2013.01.011 Liu X, Mu C C, Zhou W C, et al. Effects of logging on soil carbon content and carbon density in forest swamp of Xiaoxing'an Mountains[J]. Journal of Northeast Forestry University, 2013, 41(1):42-47. doi: 10.3969/j.issn.1000-5382.2013.01.011 [12] 牟长城, 卢慧翠, 包旭, 等.采伐干扰对大兴安岭落叶松苔草沼泽湿地植被碳储量的影响[J].生态学报, 2013, 33(17):5286-5298. http://cdmd.cnki.com.cn/Article/CDMD-10225-1013366876.htm Mu C C, Lu H C, Bao X, et al. Effect of cutting disturbance on carbon storage in larch carex marsh wetland in Daxinganling[J]. Acta Ecologica Sinica, 2013, 33(17):5286-5298. http://cdmd.cnki.com.cn/Article/CDMD-10225-1013366876.htm [13] 卢慧翠, 牟长城, 王彪, 等.采伐对大兴安岭落叶松-苔草沼泽土壤有机碳储量的影响[J].林业科学研究, 2013, 26(4): 459-466. doi: 10.3969/j.issn.1001-1498.2013.04.011 Lu H C, Mu C C, Wang B, et al. Effects of cutting on soil organic carbon storage in larch-carex marsh of Daxinganling Mountains[J]. Forest Research, 2013, 26(4):459-466. doi: 10.3969/j.issn.1001-1498.2013.04.011 [14] 崔巍, 牟长城, 卢慧翠, 等.排水造林对大兴安岭沼泽湿地生态系统碳储量的影响[J].北京林业大学学报, 2013, 35(5): 28-36. http://cdmd.cnki.com.cn/Article/CDMD-10225-1013366998.htm Cui W, Mu C C, Lu H C, et al. Effects of drainage afforestation on carbon storage in marsh wetland ecosystem of Daxinganling Mountains[J]. Journal of Beijing Forestry University, 2013, 35(5): 28-36. http://cdmd.cnki.com.cn/Article/CDMD-10225-1013366998.htm [15] Xing W, Bao K, Gallego-Sala A V, et al. Climate controls on carbon accumulation in peatlands of Northeast China[J]. Quaternary Science Reviews, 2015, 115(9):78-88. http://cn.bing.com/academic/profile?id=024615232c6ac5e35778d751ac971df3&encoded=0&v=paper_preview&mkt=zh-cn [16] 李慧仁, 王立中, 刘学爽, 等.基于3S技术的南瓮河国家级自然保护区植被地上生物量初步估计[J].防护林科技, 2016(4):64-66. http://d.old.wanfangdata.com.cn/Periodical/fhlkj201604022 Li H R, Wang L Z, Liu X S, et al. Preliminary estimation of vegetation aboveground biomass in Nanwenghe National Nature Reserve based on 3S technology[J]. Protection Forest Science and Technology, 2016(4):64-66. http://d.old.wanfangdata.com.cn/Periodical/fhlkj201604022 [17] 陈中如, 何瑞珍, 孟庆法, 等.利用3S技术估测森林生物量:以河南省商城县黄柏山林场为例[J].河南科学, 2013, 31(10):1624-1627. doi: 10.3969/j.issn.1004-3918.2013.10.014 Chen Z R, He R Z, Meng Q F, et al. Estimation of forest biomass by 3S technology: a case study of Phellodendron amurense forest farm in Shangcheng County, Henan Province[J]. Henan Science, 2013, 31(10):1624-1627. doi: 10.3969/j.issn.1004-3918.2013.10.014 [18] 李德仁, 王长委, 胡月明, 等.遥感技术估算森林生物量的研究进展[J].武汉大学学报(信息科学版), 2012, 37(6):631-635. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201206001 Li D R, Wang C W, Hu Y M, et al. Research progress on forest biomass estimation by remote sensing technology[J]. Journal of Wuhan University Information Science Edition, 2012, 37(6):631-635. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201206001 [19] 薛巍, 张秋良, 赵鹏翔, 等.基于遥感技术的森林生物量估算应用[J].水土保持研究, 2009, 16(2):209-211. http://d.old.wanfangdata.com.cn/Periodical/stbcyj200902045 Xue W, Zhang Q L, Zhao P X, et al. Application of forest biomass estimation based on remote sensing technology[J]. Study on Soil and Water Conservation, 2009, 16(2):209-211. http://d.old.wanfangdata.com.cn/Periodical/stbcyj200902045 [20] 周晓敏, 郑南山, 祁云, 等.利用GPS-R遥感技术反演植被生物量[J].测绘通报, 2018(1):129-132. http://d.old.wanfangdata.com.cn/Periodical/chtb201801025 Zhou X M, Zheng N S, Qi S, et al. Retrieval of vegetation biomass using GPS-r remote sensing technology[J]. Bulletin of Surveying and Mapping, 2018(1):129-132. http://d.old.wanfangdata.com.cn/Periodical/chtb201801025 [21] Penman J, Gytarsky M, Hiraishi T, et al. Good practice guidance for land use, land-use change and forestry[J]. Intergovernmental Panel on Climate Change, 2003, 35(5):103-105. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC024719367/ [22] Bayley S E, Guimond J K. Aboveground biomass and nutrient limitation in relation to river connectivity in montane floodplain marshes[J]. Wetlands, 2009, 29(4):1243-1254. doi: 10.1672/08-227.1 [23] Estornell J, Ruiz L A, Velázquezmartí B, et al. Estimation of shrub biomass by airborne LiDAR data in small forest stands[J]. Forest Ecology & Management, 2011, 262(9):1697-1703. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b7bd1b5bdcdc5b4f9afb56be67009fc6 [24] Turner R E, Swenson E M, Milan C S, et al. Below-ground biomass in healthy and impaired salt marshes[J]. Ecological Research, 2004, 19(1):29-35. doi: 10.1111/ere.2004.19.issue-1 [25] Dorrepaal E, Cornelissen J H C, Aerts R, et al. Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient[J]. Journal of Ecology, 2005, 93(4):817-828. doi: 10.1111/j.1365-2745.2005.01024.x [26] 康文星, 田徽, 何介南, 等.洞庭湖湿地植被系统的碳贮量及其分配[J].水土保持学报, 2009, 23(6):129-133. doi: 10.3321/j.issn:1009-2242.2009.06.029 Kang W X, Tian H, He J N, et al. Carbon storage and its distribution in Dongting Lake wetland vegetation system[J]. Journal of Soil and Water Conservation, 2009, 23(6):129-133. doi: 10.3321/j.issn:1009-2242.2009.06.029 [27] 韩冰, 王效科, 欧阳志云, 等.中国东北地区农田生态系统中碳库的分布格局及其变化[J].土壤通报, 2004, 35(4):401-407. doi: 10.3321/j.issn:0564-3945.2004.04.004 Han B, Wang X K, Ouyang Z Y, et al. Distribution pattern and change of carbon pool in farmland ecosystem in northeast China[J]. Soil Bulletin, 2004, 35(4):401-407. doi: 10.3321/j.issn:0564-3945.2004.04.004 [28] 崔永琴, 马剑英, 刘小宁, 等.人类活动对土壤有机碳库的影响研究进展[J].中国沙漠, 2011, 31(2):407-414. http://d.old.wanfangdata.com.cn/Conference/7449554 Cui Y Q, Ma J Y, Liu X N, et al. Research progress on effects of human activities on soil organic carbon pool[J]. Chinese Desert, 2011, 31(2):407-414. http://d.old.wanfangdata.com.cn/Conference/7449554 [29] 范兰, 吕昌河, 陈朝. EPIC模型及其应用[J].地理科学进展, 2012, 31(5):584-592. http://d.old.wanfangdata.com.cn/Thesis/D01099715 Fan L, Lü C H, Chen C. Epic model and its application[J]. Advances in Geographic Science, 2012, 31(5):584-592. http://d.old.wanfangdata.com.cn/Thesis/D01099715 [30] 刘晓彬. Century模型在江西省大岗山地区杉木人工林植被碳储量研究中的适用性分析[D].北京: 中国林业科学研究院, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D603072 Liu X B. Applicability of century model to study on carbon storage of Chinese fir plantation in Dagangshan Area, Jiangxi Province[D]. Beijing: Chinese Academy of Forestry, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D603072 [31] 孙涛, 马全林, 李银科, 等.基于CENTURY模型模拟研究次生盐碱地枸杞林土壤有机碳的变化[J].安徽农业科学, 2015(13):202-206. doi: 10.3969/j.issn.0517-6611.2015.13.071 Sun T, Ma Q L, Li Y K, et al. Study on soil organic carbon change of Lycium barbarum forest in secondary saline - alkali soil based on century model[J]. Anhui Agricultural Science, 2015(13):202-206. doi: 10.3969/j.issn.0517-6611.2015.13.071 [32] 李东, 黄耀, 吴琴, 等.青藏高原高寒草甸生态系统土壤有机碳动态模拟研究[J].草业学报, 2010, 19(2):160-168. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201002023 Li D, Huang Y, Wu Q, et al. Dynamic simulation of soil organic carbon in alpine meadow ecosystem of Qinghai - Tibet Plateau[J]. Journal of Pratacultural Science, 2010, 19(2):160-168. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201002023 [33] 蔡倩倩.若尔盖高寒嵩草草甸湿地土壤碳储量研究[D].北京: 中国林业科学研究院, 2012. http://cdmd.cnki.com.cn/Article/CDMD-82201-1012423677.htm Cai Q Q. Study on soil carbon storage of KOBRESIA humilis meadow wetland in Ruoergai[D]. Beijing: Chinese Academy of Forestry, 2012. http://cdmd.cnki.com.cn/Article/CDMD-82201-1012423677.htm [34] Pouyat R V, Yesilonis I D, Nowak D J. Carbon storage by urban soils in the United States[J]. Journal of Environmental Quality, 2006, 35(4):1566-1575. http://cn.bing.com/academic/profile?id=423e468699b54135e30f89ed0dc7620a&encoded=0&v=paper_preview&mkt=zh-cn [35] 杜华强, 孙晓艳, 韩凝, 等.综合面向对象与决策树的毛竹林调查因子及碳储量遥感估算[J].应用生态学报, 2017, 28(10):3163-3173. http://d.old.wanfangdata.com.cn/Periodical/yystxb201710007 Du H Q, Sun X Y, Han N, et al. Investigation factors and remote sensing estimation of carbon storage in Phyllostachys pubescens forest based on object - oriented and decision tree[J]. Journal of Applied Ecology, 2017, 28(10):3163-3173. http://d.old.wanfangdata.com.cn/Periodical/yystxb201710007 [36] 邹文涛, 陈绍志, 赵荣.森林生态系统碳储量及碳通量遥感监测研究进展[J].世界林业研究, 2017, 30(5):1-7. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201705001 Zou W T, Chen S Z, Zhao R. Advances in remote sensing monitoring of carbon storage and flux in forest ecosystems[J]. World Forestry Research, 2017, 30(5):1-7. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201705001 [37] 史小红, 赵胜男, 李畅游, 等.呼伦贝尔市湿地碳储量及分配格局研究[J].生态科学, 2015, 34(1):110-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stkx201501017 Shi X H, Zhao S N, Li C Y, et al. Study on the carbon stock and distribution pattern of wetland in Hulunbeier City[J]. Ecological Science, 2015, 34(1):110-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stkx201501017 [38] Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology & Management, 2006, 222(1):9-16. http://cn.bing.com/academic/profile?id=4807649b3764fc739ce0321687b1b039&encoded=0&v=paper_preview&mkt=zh-cn [39] Zhang Q Z, Wang C K, Wang X C, et al. Carbon concentration variability of 10 Chinese temperate tree species[J]. Forest Ecology and Management, 2009, 258(5):722-727. doi: 10.1016/j.foreco.2009.05.009 [40] Blais A M, Lorrain S, Plourde Y, et al.Organic carbon densities of soils and vegetation of tropical, temperate and boreal forests[M].Berlin: Springer-Verlag, 2005: 155-185. [41] Silvola J, Alm J, Ahlholm U, et al. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions[J]. Journal of Ecology, 1996, 84: 219-228. doi: 10.2307/2261357 [42] Chimner R A, Cooper D J. Influence of water table position on emissions in a Colorado subalpine fen: an in situ microcosm study[J]. Soil Biology and Biogeochemistry, 2003, 35: 345-351. doi: 10.1016/S0038-0717(02)00284-5 [43] Blodau C, Moore T R. Experimental response of peatland carbon dynamics to a water table fluctuation[J]. Aquatic Sciences, 2003, 65: 47-62. doi: 10.1007/s000270300004 [44] 刘世荣, 王晖, 栾军伟.中国森林土壤碳储量与土壤碳过程研究进展[J].生态学报, 2011, 31(19): 5437-5448. http://d.old.wanfangdata.com.cn/Periodical/stxb201119005 Liu S R, Wang H, Luan J W.A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J].Acta Ecologica Sinica, 2011, 31(19): 5437-5448. http://d.old.wanfangdata.com.cn/Periodical/stxb201119005 [45] 张宪洲.我国自然植被净第一性生产力的估算与分布[J].自然资源, 1993, 18(1): 15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004046488 Zhang X Z.Estimating and distribution of the vegetation net primary productivity in China[J]. Resources Science, 1993, 18(1): 15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004046488 [46] 周广胜, 张新时.全球气候变化的中国自然植被的净第一性生产力研究[J].植物生态学报, 1996, 20(1): 11-19. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB601.001.htm Zhou G S, Zhang X S.Study on NPP of natural vegetation in China under global climate change[J]. Acta Phytoecologica Sinica, 1996, 20(1): 11-19. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB601.001.htm [47] 毛德华, 王宗明, 罗玲, 等.1982—2009年东北多年冻土区植被净初级生产力动态及其对全球变化的响应[J].应用生态学报, 2012, 23(6): 1511-1519. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201206013.htm Mao D H, Wang Z M, Luo L, et al.Dynamic changes of vegetation net primary productivity in permafrost zone of Northeast China in 1982-2009 in response to global change[J].Chinese Journal of Applied Ecology, 2012, 23(6): 1511-1519. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201206013.htm [48] Campbell C, Vitt D H, Halsey L A, et al. Net primary production and standing biomass in northern continental wetlands[M]. Edmonton: Natural Resources Canada, 2000. [49] Trettin C C, Jurgensen M F, Gale M R, et al.Soil carbon in northern forested wetlands: impacts of silvicultural practices[J/OL].Carbon forms and functions in forest soils, 1995: 437-461(1995-01-11)[2016-12-10]. https:dl.sciencesocieties.org/publications/books/abstracts/acsess publicati/carbonformsanaf/437/preview/pdf. [50] 何浩, 潘耀忠, 朱文泉, 等.中国陆地生态系统服务价值测量[J].应用生态学报, 2005, 16(6): 1122-1127. doi: 10.3321/j.issn:1001-9332.2005.06.029 He H, Pan Y Z, Zhu W Q, et al.Measurement of terrestrial ecosystem service value in China[J].Chinese Journal of Applied Ecology, 2005, 16(6): 1122-1127. doi: 10.3321/j.issn:1001-9332.2005.06.029 [51] 李银鹏, 季劲钧.全球陆地生态系统与大气之间碳交换的模拟研究[J].地理学报, 2001, 56(4): 379-389. http://d.old.wanfangdata.com.cn/Periodical/dlxb200104001 Li Y P, Ji J J.Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere[J].Acta Geographica Sinica, 2001, 56(4): 379-389. http://d.old.wanfangdata.com.cn/Periodical/dlxb200104001 -