-
种群数量结构及动态是种群生态学的研究热点,通过量化种群数量时间和空间动态规律来预测种群发展及演化趋势[1],异质生境下种群结构差异能反映出种群结构对生境变化的响应机制[2-3]。编制种群生命表和动态曲线是研究动态规律的有效手段[4-5]。通过统计存活率、死亡率和生命期望等参数,并结合生存函数来揭示和预测种群的变化特征及对环境的响应,但自然条件下由于植物世代重叠且周期长,很难直接获取完整的年龄数据,一般采用胸径或高度代替时间构建个体数量种群生命表[6]。近年来,相关研究多集中于乔灌植物[7-9],对藤类植物种群动态鲜有报道。
棕榈藤为棕榈科(Arecaceae)省藤亚科(Calamoideae)省藤族(Calameae)植物,具有重要的经济价值,为热带森林中的重要组分[10],在森林结构多样性[11]、昆虫和哺乳类动物提供食物[12]等方面发挥重要作用。海南岛为中国棕榈藤自然分布中心区之一,天然分布棕榈藤3属13种,占中国总种数的32.5%[13]。目前,已对海南岛热带雨林中的物种多样性[14-16]、结构特征[17-18]以及幼苗天然更新[19-20]等开展了大量研究,但关于棕榈藤的相关研究较少,其生态作用被长期忽视,加之加工业的过度开采以及土地变更引起的栖息地破碎化,威胁到野生藤生存。当前国内外有关棕榈藤研究仅集中于资源分布[13, 21]、生境的适应性[22-24]和生理生物学特征[25-26]等方面,曾炳山等[27]对黄藤(Daemonorops jenkinsiana)株丛结构进行了研究,建立了模型并编制了产量表,为藤林经营提供了科学依据,杨锦昌等[28-29]对人工林黄藤和单叶省藤(Calamus simplicifolius)的茎长变化进行了研究,但未涉及天然更新棕榈藤种群。本研究基于海南甘什岭天然棕榈藤种群调查,首次深入探讨天然更新棕榈藤种群年龄结构特征,揭示自然分布棕榈藤种群生长规律,旨在为棕榈藤资源保护及管理提供理论参考。
-
调查样地位于海南省甘什岭自然保护区的试验区内,属次生低地热带雨林,保护区位于三亚市与保亭县南部交界处,地理位置109°34′~109°42′E、18°20′~18°21′N,总面积2 103.44 hm2,其中试验区面积258.87 hm2。坡度3°~50°,海拔分布范围50~681 m,属热带海洋季风气候,为干湿两季,5—10月为当地雨季,年均温25.4 ℃,年降水量1 800 mm,年均日照时间2 563 h。土壤母岩为花岗岩,粗砂黏红壤且雨水冲刷严重导致土层瘠薄,岩石裸露率约10%[15]。
调查样地林冠层郁闭度0.6~0.91,高8.4~13.2 m。具有较高的植物多样性,林分植物密度高且结构复杂,主要物种包括青梅(Vatica mangachapoi)、铁凌(Hopea reticulata)、刺轴榈(Licuala spinosa)、阔叶沙拉木(Salacia amplifolia)、瓜馥木(Fissistigma oldhamii)、清香藤(Jasminum lanceolarium)、益智(Alpinia oxyphylla)、高秆珍珠茅(Scleria terrestris)等。调查样地共发现棕榈藤3属6种,分别为小钩叶藤(Plectocomia microstachys)、白藤(Calamus Tetradactylus)、杖藤(C. rhabdocladus)、多果省藤(C. walkeri)、黄藤及单叶省藤。
-
试验地位于甘什岭自然保护区试验区内,随机设置20 m×20 m标准样地45块,共1.8 hm2。以正北坡向为0°,按顺时针分4个方位,以90°为间隔将坡向划分为半阳坡、阳坡、半阴坡、阴坡,采用GPS记录每块样地的经纬度、海拔等立地因子,同时调查样地中分布的主要植物种类、密度和冠层高度等。
表 1 甘什岭调查样地概况
Table 1. Basic status of sample plots in Ganshiling Region
坡向
Slope aspect海拔
Altitude/m坡度
Slope grade/(°)林分密度/(株·hm-2)
Stand density/(plant·ha-1)凋落物厚
Litter thickness/cm郁闭度
Canopy density岩石裸露率
Exposed bedrock/%冠层高度
Canopy height/m半阳坡Semi-sunny slope 272~326 17~27 5 500~8 450 3.4~6.6 0.70~0.82 17~68 10.6~12.5 阳坡Sunny slope 201~322 3~31 5 400~19 100 2.1~7.1 0.68~0.91 0~22 8.8~17.2 半阴坡Semi-shady slope 219~335 5~30 1 200~12 500 2~7.5 0.63~0.90 0~75 8.4~12.2 阴坡Shady slope 208~278 3~31 6 050~8 000 2.4~5.9 0.60~0.82 0~50 10.4~11.9 -
调查采用相邻样方法,首先将每块调查样地划分为4个10 m×10 m小样方,开展棕榈藤调查。首先基于羽片数量和形状特征确定种类,分别对各种棕榈藤进行每木检尺,记录种类和数量。未抽条前,棕榈藤基部由叶鞘组成不规则基茎,因此,地径为藤基部随机测量3次的平均值,在攀援前以基部至展开叶最高处的垂直高度作为植株高度,攀援后以基部至茎顶端为长度。调查区域中,由于单叶省藤和小钩叶藤数量极少,因此不作为本研究对象。
-
自然条件下天然更新种群存在多世代重叠,植物年龄往往难以确定,年龄通常由胸径代替,与双子叶藤本不同,棕榈藤缺乏次生生长,在抽条后直径基本维持不变[10, 27],因此直径无法作为棕榈藤年龄替代指标。本研究采用高度/长度划分棕榈藤年龄,以2 m为龄级,采用上限排外法,由于高度 < 0.5 m藤植株数量大,将 < 0.5 m定义为Ⅰ级、0.5~2.5 m定义为Ⅱ级、2.5~4.5 m为Ⅲ级,以此类推,并进行匀滑处理[6],编制静态生命表。
$$ l_{i}=\frac{\dot{p}}{p} \times 1000 $$ (1) $$ d_{i}=l_{i}-l_{i+1} $$ (2) $$ q_{i}=\frac{d_{i}}{l_{i}} \times 100 \% $$ (3) $$ L_{i}=\frac{1}{2}\left(l_{i}+l_{i+1}\right) $$ (4) $$ T_{i}=\sum L_{i} $$ (5) $$ e_{i}=\frac{T_{i}}{l_{i}} $$ (6) $$ K_{i}=\ln l_{i}-\ln l_{i+1} $$ (7) 式中:$ \dot{p}$为i龄级植株个体数;p为i-1龄级植株个体数;di为i至i+1龄级标准死亡数;li为i龄级标准存活数量;qi为i~i+1龄级间种群死亡率;Ti则为进入i龄级后所有个体存活总寿命;Ki为i龄级个体消失率;ei为i龄级种群个体生命期望;Li为相邻间隔期平均存活数。
-
生存函数用于描述种群随时间的生存规律,本文采用生存率Si、死亡密度fi和危险率λi 3个函数来阐述,并绘制分布曲线。
$$ {S_i} = \prod\limits_{i = 1}^n {{m_i}} $$ (8) $$ f_{i}=\frac{\left(S_{i-1}-S_{i}\right)}{h_{i}}=\frac{S_{i-1} q_{i}}{h_{i}} $$ (9) $$ \lambda_{i}=\frac{2 q_{i}}{\left[h_{i}\left(1+m_{i}\right)\right]} $$ (10) 式中:mi为物种存活率;n为总龄级数;qi为死亡率;hi为龄级区间长度;Si-1为i-1龄级的生存率。
-
种群数量周期性变动采用谱分析,以揭示天然更新过程中的种群波动规律。本文通过分解Fourier级数来进行估计[9]:
$$ \omega_{k}=\frac{2 \pi k}{T} $$ (11) $$ \theta_{k}=\operatorname{arctg}\left(\frac{a_{k}}{b_{k}}\right) $$ (12) $$ {a_k} = \frac{2}{n}\sum\limits_{i = 1}^n {{X_i}} \cos \frac{{2\pi k(t - 1)}}{n} $$ (13) $$ {b_k} = \frac{2}{n}\sum\limits_{i = 1}^n {{X_i}} \sin \frac{{2\pi k(t - 1)}}{n} $$ (14) $$ A_{k}^{2}=a_{k}^{2}+b_{k}^{2} $$ (15) 式中: ωk为谐波频率;θk为谐波相角;ak和bk为参数估计值;t为时间系列;Xi为年龄序列个体数量;T为正弦波基本周期,即时间系列t最长周期;波形振幅为Ak(k=1, 2, 3, …, p, p=n/2),其中A1为基波,A2、A3、…代表谐波(其周期为基波的1/2、1/3、… 1/p)。
-
分别对4种棕榈藤种群编制静态生命表(表 2)。结果表明,4种棕榈藤个体数量随龄级增加而迅速减少,幼龄期(Ⅰ和Ⅱ龄级)约占总个体数的90.1%~97.7%,种群数量大,但成年藤种种群数量极少。杖藤、白藤的平均存活量随年龄增大减少,说明白藤和杖藤在苗期存活率极低,生长受限,而黄藤和多果省藤则呈先增后减的趋势,在幼苗期,二者相对于杖藤和白藤存活能力相对较强。生命期望值ex均呈先增加后减小,白藤具有2个峰值,分别在Ⅲ、Ⅵ龄级达到最大,多果省藤生命期望在第Ⅳ龄级达到顶峰,杖藤相对滞后,在Ⅵ龄级最大,黄藤为V龄级时最大,藤此时生长旺盛,白藤在2.5~4.5 m时生命力强,而后3种藤表现出在4.5~8.5 m时生长稳定,此时,棕榈藤开始抽条进入攀援阶段。但此后种群生命期望值逐渐减少,直至进入生理衰退,以上说明棕榈藤从开始抽茎到进入冠层前,对环境的适应性以及资源利用能力最强,可作为移植藤苗选择的尺寸参考。
表 2 棕榈藤种群静态生命表
Table 2. Static life table of four kinds of rattan population
种群
Population参数
Parameter龄级
Age gradeⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ 白藤Calamus tetradactylus p 342 14 4 1 1 2 2 1 1 1 $\dot{p} $ 342 14 5 4 3 2 2 1 1 1 li 1 000 41 15 12 9 6 6 3 3 3 di 328 9 1 1 1 0 1 0 0 — qi 1.0 0.6 0.2 0.3 0.3 0.0 0.5 0.0 0.0 — Li 178.0 9.5 4.5 3.5 2.5 2.0 1.5 1.0 1.0 1.0 Ti 204.5 26.5 17.0 12.5 9.0 6.5 4.5 3.0 2.0 1.0 ei 0.6 1.9 3.4 3.1 3.0 3.3 2.3 3.0 2.0 1.0 Ki 3.2 1.0 0.2 0.3 0.4 0.0 0.7 0.0 0.0 — 多果省藤Calamus walkeri p 456 282 44 4 5 6 2 3 3 5 $ \dot{p}$ 456 282 44 6 5 5 4 4 3 2 li 1 000 618 96 13 11 11 9 9 7 4 di 174 238 38 1 0 1 0 1 1 — qi 0.4 0.8 0.9 0.2 0.0 0.2 0.0 0.3 0.3 — Li 369.0 163.0 25.0 6.0 5.0 5.0 4.0 4.0 3.0 2.0 Ti 584.0 215.0 52.0 27.0 21.5 16.5 12.0 8.0 4.5 2.0 ei 1.3 0.8 1.2 4.5 4.3 3.3 3.0 2.0 1.5 1.0 Ki 0.5 1.9 2.0 0.2 0.0 0.2 0.0 0.3 0.4 — 杖藤Calamus rhabdocladus p 864 83 12 2 2 0 3 2 0 2 $ \dot{p}$ 864 83 13 9 6 4 3 3 2 1 lx 1 000 96 15 10 7 5 3 3 2 1 di 781 70 4 3 2 1 0 1 1 — qi 0.9 0.8 0.3 0.3 0.3 0.3 0.0 0.3 0.5 — Li 474.0 48.0 11.0 8.0 5.0 4.0 3.0 3.0 2.0 1.0 Ti 556.5 83.0 35.0 24.0 16.5 11.5 8.0 5.0 2.5 1.0 ei 0.6 1.0 2.7 2.7 2.8 2.9 2.7 1.7 1.3 1.0 Ki 2.3 1.9 0.4 0.4 0.4 0.3 0.0 0.4 0.7 — 黄藤Daemonorops jenkinsiana p 327 119 27 6 4 3 1 3 2 4 $\dot{p}$ 327 119 27 6 4 4 3 3 2 2 li 1 000 364 83 18 12 12 9 9 6 6 di 208 92 21 2 0 1 0 1 0 — qi 0.6 0.8 0.8 0.3 0.0 0.3 0.0 0.3 0.0 — Li 223.0 73.0 17.0 5.0 4.0 4.0 3.0 3.0 2.0 2.0 Ti 334.6 111.7 38.6 22.0 17.0 13.0 9.5 6.5 4.0 2.0 ei 1.0 0.9 1.4 3.7 4.3 3.3 3.2 2.2 2.0 1.0 Ki 1.0 1.5 1.5 0.4 0.0 0.3 0.0 0.4 0.0 — -
由棕榈藤种群存活曲线可知(图 1),多果省藤和黄藤种群数量在Ⅱ龄级前减少相对缓慢,此后迅速下降,至Ⅳ龄级后缓慢减少,呈现缓—快—缓的趋势;白藤和杖藤种群在Ⅲ龄级之前迅速死亡,在急剧减少后逐步稳定,白藤在Ⅶ~Ⅷ龄级种群存活数量迅速减少,之后再次维持稳定,而杖藤则在Ⅷ龄级后种群存活数量迅速下降。反映出虽然各藤种的存活能力在不同生长阶段存在一定的差异,但总体呈递减趋势。
对图 1分析发现,棕榈藤存活曲线倾向于Ⅱ型与Ⅲ型之间,因此,分别采用指数函数Nx=N0ebx和幂函数Nx=N0xb来描述Deevey-Ⅱ型和Deevey-Ⅲ型。对比结果表明(表 3),杖藤存活曲线趋于指数函数(Deevey-Ⅱ型),其余3种藤存活曲线均接近于幂函数(Deevey-Ⅲ型),4个方程拟合程度高(除杖藤外,其余R2≥0.920,P=0.000 < 0.01),能客观反映出甘什岭地区天然更新棕榈藤的生存策略。
表 3 棕榈藤存活曲线模型
Table 3. Models of rattan survival curves
藤种Rattan species 方程式
Equation曲线类型
Curve typeR2 Radj2 F P 白藤Calamus tetradactylus Nx=6.942x-0.802 Deevey-Ⅲ 0.962 0.957 200.077 0.000** 多果省藤Calamus walkeri Nx=8.143x-0.688 Deevey-Ⅲ 0.920 0.910 92.504 0.000** 杖藤Calamus rhabdocladus Nx=9.261e-0.319x Deevey-Ⅱ 0.840 0.820 42.128 0.000** 黄藤Daemonorops jenkinsiana Nx=7.783x-0.638 Deevey-Ⅲ 0.957 0.951 175.910 0.000** 注:Nx为存活率,x为龄级。Note:Nx is survival rate, x is denoted age grade. -
用3种生存函数分析天然更新棕榈藤种群随生长的生存规律(图 2)。各棕榈藤生存率在Ⅰ~Ⅲ龄级急剧下降,随后趋于稳定,这与更新植株在早期大量死亡有关,说明该区域生境显著抑制了幼苗存活。白藤、黄藤和杖藤的死亡密度均为逐渐降低,至Ⅳ龄级后趋于相对稳定,此时藤种抵御逆生境能力增强,多果省藤则先升高后急剧降低,Ⅳ龄级后与前3种相似,至Ⅳ龄级后基本稳定。棕榈藤种间危险率差异明显,波动大,早期的危险率相对高于后期,黄藤和杖藤危险率在幼苗期最高,分别达到0.92和0.82,至Ⅲ龄级过程中迅速下降,但之后呈不规律波动;其余2种藤随年龄增长危险率先升后降,均至Ⅲ龄级时达到最大,随后迅速下降,并维持一定的波动,4种藤危险率在Ⅳ龄级后保持在0.35以下。说明在该调查区域,棕榈藤早期对环境的适应性较弱,虽种群数量随生长急剧减少,但种群植株对环境的适应能力在生长到一定阶段逐渐增强。
-
本研究以4种棕榈藤龄级作为波谱级差,将龄级划分成10级,总波k=10/2=5,结果表明(表 4),4种棕榈藤天然更新的基波维持在1.3~1.8间,其中杖藤最大,白藤最小,但各藤种谐波波动差异较大,白藤相对其他3种藤波谱振幅较小,种群动态变化受自身生物学特性影响较其他藤种大,但也可能与白藤成熟植株数量少有关;多果省藤和杖藤在A3时振幅达到峰值;黄藤为A2时达到峰值。除白藤外,其余的藤种均表现为与基波间有较大的差异,由此可知其余3种藤在生长早期受生境因素干扰大,多果省藤和杖藤在4.5~6.5 m时受干扰最大,黄藤则为2.5~4.5 m,之后由于植株抗逆性增强,自身受生物学特性影响明显高于外界环境影响。由此可知,棕榈藤种群虽存在一定程度的周期性波动,但由于波谱周期较短使波动迭加的特征并不显著。
表 4 棕榈藤天然种群的周期性波动
Table 4. Periodic fluctuation of natural regeneration of rattan population
藤种Rattan species A1 A2 A3 A4 A5 白藤Calamus tetradactylus 1.168 1.435 1.131 1.223 1.362 多果省藤Calamus walkeri 1.500 3.805 4.429 4.154 1.098 杖藤Calamus rhabdocladus 1.829 3.538 3.906 2.161 2.662 黄藤Daemonorops jenkinsiana 1.343 3.118 0.692 0.208 0.686 注:A1~A5表示种群波动周期振幅,1~5表示波谱周期。Note: A1-A5 are denoted amplitudes of wave cycle of population, 1-5 are represented wave cycles. -
在自然条件下,棕榈藤种群分布受生态位特化和补充限制性影响[23, 30-31],由于种间生物特性差异以及对异质性生境的长期适应,种间生态位产生不同程度分化[32]。本研究结果表明,4种棕榈藤种群总体表现为幼苗多而成熟植株少,但随生长幼苗大量死亡,成熟藤存活能力增强,呈现锐减—渐趋平稳的种群动态变化趋势,属增长型种群,该地区棕榈藤主要通过增加繁殖个体来弥补种群存活不足的缺陷,以维持物种延续,反映了该地区棕榈藤的繁殖策略和对生境的响应特征。这与当地的生境有直接关联,甘什岭地区由于长期受雨水冲刷,土壤瘠薄,林分高密度造成林下光照条件差,不利于幼苗存活,棕榈藤通过增加繁殖个体数弥补物种存活能力的不足。棕榈藤幼苗比成熟植株更易受生境影响[23, 33],其中光照、水分影响显著,尤其幼苗期藤株受光照影响大,光照不充足或过强均能限制藤苗生长[34-35],但随年龄增长,棕榈藤对光照需求也随之变化。同时,该地区土壤砂砾含量高,保肥能力差,以上因素均会导致幼苗死亡[36-37];物种间对资源竞争也可能导致藤早期死亡,如棕榈藤分蘖随生长能迅速增殖[38-39]。但该过程加剧了丛内植株个体间对光照和空间等资源竞争,当分蘖植株达到一定数量时,植株分蘖和生长受到明显抑制,随着单丛株数越多,其抑制作用越强[28, 40],但产生分蘖的诱因则并不明晰。而攀援阶段,本文研究发现,棕榈藤生命期望值总体在攀援至林冠顶端前达到峰值,攀援过程伴随着林层空间、光照等生境因素发生相应变化,需通过调整资源分布结构来适应生境异质性[31, 38],但此时植株生长迅速,抗逆性强,种群个体数量趋于稳定。
分析现有棕榈藤种群的分布模式有利于预测在长期生长过程中种群周期性变化规律。对存活曲线建模表明,杖藤种群存活趋于Deevey-Ⅱ型,其余则均趋于Deevey-Ⅲ型,说明棕榈藤种间在相同环境条件下表现出一定程度相似的生存规律,可能与自身的生物学特性有关,这也在部分其他物种中得到一定的验证[2, 6],但棕榈藤种群的死亡率极高,危险率均在生长至2.5 m后接近1.0,此时独立物种的分布或多样性间敌对的相邻效应明显,该效应也多存在于一些小型、中型类棕榈植物中[41]。但在后期种群数量变化差异不大,此时对环境的适应能力增强,林冠层棕榈藤没有该倾向,反映出林下层和林冠层形态结构的相异生长策略[11, 23]。谱分析结果表明,白藤种群波动较小,更倾向于通过自身生物学特性调节来适应当地不利生境,而其余3种棕榈藤种群周期性波动受外界环境影响要大于自身生物学特征的作用,且波动周期差异大,这表明棕榈藤种间对生境适应能力差异明显[23-24],也说明棕榈藤在外界不利生境中更多倾向于自身调节。
本研究采用生长高度来代替年龄具有一定的局限性,这与藤种在不同时期生长速率差异性有关,在一定程度上限制了种群结构真实表达,棕榈藤藤丛植株为异龄结构,虽然部分研究从材性方面年龄判断进行了阐述[42],但无法应用于实际调查中,尤其对幼苗植株,因此如何准确判断天然更新棕榈藤年龄仍有待进一步研究。调查发现,单叶省藤和小钩叶藤更新幼苗数量少且缺乏成熟个体[43],2种藤相对于其他棕榈藤可能易受更新及环境制约,不利于种质资源保存。因此在深入探究其繁殖习性和生长规律基础上,建议加强棕榈藤现有野生资源保护,减少人为砍伐和种子收集,通过改善现有林地条件提高天然更新藤苗的存活率和生长速率。同时结合人工繁育壮苗并移植适生生境来弥补藤苗更新能力不足,该措施对于繁殖更新能力差的单叶省藤和小钩叶藤具有重要现实意义。
Population dynamics of natural regeneration of rattan in secondary lowland rain forest in Hainan Island, southern China
-
摘要:
目的本文对海南岛甘什岭地区热带次生低地雨林棕榈藤的种群数量动态及波动周期进行分析,探究天然更新棕榈藤种群的生长动态规律,为棕榈藤资源保护和后期恢复提供参考。 方法以海南岛甘什岭天然更新黄藤、杖藤、多果省藤和白藤种群为研究对象,采用空间代替时间,编制了棕榈藤种群生命表并进行动态分析;幂函数和指数函数对种群存活曲线拟合;3种生存函数预测藤种群生存概率;并通过谱分析来阐述藤种群的周期性波动规律。 结果甘什岭天然更新棕榈藤种群以幼苗和幼藤为主,约占总样本的90.1%~97.7%,成年藤株数量少。白藤、杖藤间隔期死亡率和平均存活数随年龄增加逐渐减少,多果省藤和黄藤则为先增大后减小;白藤生命期望在2.5~4.5 m达到最大值,多果省藤、黄藤和杖藤则分布在4.5~6.5 m、6.5~8.5 m、8.5~10.5 m时最大。杖藤存活曲线趋于指数函数(Deevey-Ⅱ,R2=0.840,P=0.000 < 0.01),其余3种藤存活曲线趋于幂函数(Deevey-Ⅲ,R2>0.910,P=0.000 < 0.01)。4种棕榈藤生存率在幼苗期高,随生长呈逐渐降低趋势;除多果省藤外,死亡密度均呈锐减至相对稳定的下降趋势,早期危险率高于后期。谱分析表明,白藤波动振幅差异小,其余3种藤振幅差异大,其中杖藤和多果省藤在4.5~6.5 m时波动振幅最大,黄藤在2.5~4.5 m时波动振幅最大。 结论甘什岭地区棕榈藤天然更新种群具有高繁殖和低存活率特点,反映出棕榈藤对该地区生境的适应策略,即通过高繁殖率弥补物种存活能力的不足,以提高物种保存几率。同时在攀援至林冠层过程的棕榈藤存活能力强,相对白藤,其余3种藤更易受外界环境影响。通过改善生境条件并结合人工培育壮苗措施提高更新苗存活率,有利于棕榈藤资源保护。 Abstract:ObjectiveThis paper analyzes the population dynamics and undulation periods of rattan populations in Ganshiling tropical secondary lowland rain forest, Hainan Island of southern China, explores the growth dynamic regularity of rattan populations, and provides a theoretical basis for resource protection and later restoration for rattan. MethodThe Daemonorops jenkinsiana (DJ), Calamus rhabdocladus (CR), C. walkeri (CW) and C. tetradactylus (CT) distributing in Ganshiling tropical secondary lowland rainforest were chosen for the objects in this paper. We used the method of substituting space for time to compile and analyze life tables, matching surviving curve for each species according to power function and exponential function.The study also established 3 kinds of function for predicting the survival probability, and analyzed rattan's periodic fluctuation law by spectral method. ResultThe results showed that the main constituents of rattan populations were seedling and young vines which accounted for 90.1%-97.7% of total samples, only a few of adults were tracked in the region. The interval period mortality and average survival numbers of CT and CR decreased with growing. Meanwhile, CW and DJ increased firstly and then decreased. The life expectancy of CT would be maximized at 2.5-4.5 m, CW, DJ and CR of which would be maximized at 4.5-6.5 m, 6.5-8.5 m and 8.5-10.5 m, respectively. The survival curve of CR was more closed to exponential function (Deevey-Ⅱ type, R2=0.840, P=0.000 < 0.01) than power function, and the others were more closed to power function (Deevey-Ⅲ type, R2>0.910, P=0.000 < 0.01). All rattans had a high survival rate at early stage, and then reduced with growing. The others had a sharp decline to steady situation in death density except for CW, with high mortality in early stage than the later. The spectral analysis results indicated that wave amplitudes had significant differences among DJ, CR and CW except of CT, CR and CW had the biggest amplitude fluctuation at 4.5-6.5 m, and DJ had the biggest amplitude fluctuation at 2.5-4.5 m. ConclusionOur results indicated that natural regeneration of rattan in Ganshilin Region had characteristics of high breeding potential and low survival rate, which revealed the adaptive strategy of rattans in this region, in other words, making up insufficient of survival rate by means of high reproductive rate to increase the odds of species preservation. Meanwhile, survival ability is powerful before rattan climbing to the canopy, and the others relative to CT are more affected by external environment. Therefore, the measures increasing regenerate seedling survival rate by improving environment and manual plant strong seedling will be available for the protection of rattan resources. -
Key words:
- rattan /
- natural regeneration /
- life table /
- survival curve /
- spectral analysis
-
表 1 甘什岭调查样地概况
Table 1. Basic status of sample plots in Ganshiling Region
坡向
Slope aspect海拔
Altitude/m坡度
Slope grade/(°)林分密度/(株·hm-2)
Stand density/(plant·ha-1)凋落物厚
Litter thickness/cm郁闭度
Canopy density岩石裸露率
Exposed bedrock/%冠层高度
Canopy height/m半阳坡Semi-sunny slope 272~326 17~27 5 500~8 450 3.4~6.6 0.70~0.82 17~68 10.6~12.5 阳坡Sunny slope 201~322 3~31 5 400~19 100 2.1~7.1 0.68~0.91 0~22 8.8~17.2 半阴坡Semi-shady slope 219~335 5~30 1 200~12 500 2~7.5 0.63~0.90 0~75 8.4~12.2 阴坡Shady slope 208~278 3~31 6 050~8 000 2.4~5.9 0.60~0.82 0~50 10.4~11.9 表 2 棕榈藤种群静态生命表
Table 2. Static life table of four kinds of rattan population
种群
Population参数
Parameter龄级
Age gradeⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ 白藤Calamus tetradactylus p 342 14 4 1 1 2 2 1 1 1 $\dot{p} $ 342 14 5 4 3 2 2 1 1 1 li 1 000 41 15 12 9 6 6 3 3 3 di 328 9 1 1 1 0 1 0 0 — qi 1.0 0.6 0.2 0.3 0.3 0.0 0.5 0.0 0.0 — Li 178.0 9.5 4.5 3.5 2.5 2.0 1.5 1.0 1.0 1.0 Ti 204.5 26.5 17.0 12.5 9.0 6.5 4.5 3.0 2.0 1.0 ei 0.6 1.9 3.4 3.1 3.0 3.3 2.3 3.0 2.0 1.0 Ki 3.2 1.0 0.2 0.3 0.4 0.0 0.7 0.0 0.0 — 多果省藤Calamus walkeri p 456 282 44 4 5 6 2 3 3 5 $ \dot{p}$ 456 282 44 6 5 5 4 4 3 2 li 1 000 618 96 13 11 11 9 9 7 4 di 174 238 38 1 0 1 0 1 1 — qi 0.4 0.8 0.9 0.2 0.0 0.2 0.0 0.3 0.3 — Li 369.0 163.0 25.0 6.0 5.0 5.0 4.0 4.0 3.0 2.0 Ti 584.0 215.0 52.0 27.0 21.5 16.5 12.0 8.0 4.5 2.0 ei 1.3 0.8 1.2 4.5 4.3 3.3 3.0 2.0 1.5 1.0 Ki 0.5 1.9 2.0 0.2 0.0 0.2 0.0 0.3 0.4 — 杖藤Calamus rhabdocladus p 864 83 12 2 2 0 3 2 0 2 $ \dot{p}$ 864 83 13 9 6 4 3 3 2 1 lx 1 000 96 15 10 7 5 3 3 2 1 di 781 70 4 3 2 1 0 1 1 — qi 0.9 0.8 0.3 0.3 0.3 0.3 0.0 0.3 0.5 — Li 474.0 48.0 11.0 8.0 5.0 4.0 3.0 3.0 2.0 1.0 Ti 556.5 83.0 35.0 24.0 16.5 11.5 8.0 5.0 2.5 1.0 ei 0.6 1.0 2.7 2.7 2.8 2.9 2.7 1.7 1.3 1.0 Ki 2.3 1.9 0.4 0.4 0.4 0.3 0.0 0.4 0.7 — 黄藤Daemonorops jenkinsiana p 327 119 27 6 4 3 1 3 2 4 $\dot{p}$ 327 119 27 6 4 4 3 3 2 2 li 1 000 364 83 18 12 12 9 9 6 6 di 208 92 21 2 0 1 0 1 0 — qi 0.6 0.8 0.8 0.3 0.0 0.3 0.0 0.3 0.0 — Li 223.0 73.0 17.0 5.0 4.0 4.0 3.0 3.0 2.0 2.0 Ti 334.6 111.7 38.6 22.0 17.0 13.0 9.5 6.5 4.0 2.0 ei 1.0 0.9 1.4 3.7 4.3 3.3 3.2 2.2 2.0 1.0 Ki 1.0 1.5 1.5 0.4 0.0 0.3 0.0 0.4 0.0 — 表 3 棕榈藤存活曲线模型
Table 3. Models of rattan survival curves
藤种Rattan species 方程式
Equation曲线类型
Curve typeR2 Radj2 F P 白藤Calamus tetradactylus Nx=6.942x-0.802 Deevey-Ⅲ 0.962 0.957 200.077 0.000** 多果省藤Calamus walkeri Nx=8.143x-0.688 Deevey-Ⅲ 0.920 0.910 92.504 0.000** 杖藤Calamus rhabdocladus Nx=9.261e-0.319x Deevey-Ⅱ 0.840 0.820 42.128 0.000** 黄藤Daemonorops jenkinsiana Nx=7.783x-0.638 Deevey-Ⅲ 0.957 0.951 175.910 0.000** 注:Nx为存活率,x为龄级。Note:Nx is survival rate, x is denoted age grade. 表 4 棕榈藤天然种群的周期性波动
Table 4. Periodic fluctuation of natural regeneration of rattan population
藤种Rattan species A1 A2 A3 A4 A5 白藤Calamus tetradactylus 1.168 1.435 1.131 1.223 1.362 多果省藤Calamus walkeri 1.500 3.805 4.429 4.154 1.098 杖藤Calamus rhabdocladus 1.829 3.538 3.906 2.161 2.662 黄藤Daemonorops jenkinsiana 1.343 3.118 0.692 0.208 0.686 注:A1~A5表示种群波动周期振幅,1~5表示波谱周期。Note: A1-A5 are denoted amplitudes of wave cycle of population, 1-5 are represented wave cycles. -
[1] Fuchs M A, Krannitz P G, Harestad A S. Factors affecting emergence and first-year survival of seedlings of Garry oaks (Quercus garryana) in British Columbia, Canada[J]. Forest Ecology and Management, 2000, 137(1): 209-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a73d84970d763bf476b238e50db0cd54 [2] 张悦, 易雪梅, 王远遐, 等.采伐对红松种群结构与动态的影响[J].生态学报, 2015, 35(1):38-45. doi: 10.3969/j.issn.1673-1182.2015.01.008 Zhang Y, Yi X M, Wang Y X, et al. Impact of tree harvesting on the population structure and dynamics of Pinus koraiensis (Pinaceae) [J]. Acta Ecologica Sinica, 2015, 35(1): 38-45. doi: 10.3969/j.issn.1673-1182.2015.01.008 [3] 段桂芳, 单立山, 李毅, 等.甘肃中西部地区红砂种群结构及空间格局特征[J].水土保持研究, 2016, 23(1):67-74. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201601013 Duan G F, Shan L S, Li Y, et al. Population structure and spatial pattern of Teaumuria soongorica population in midwest region of Gansu[J]. Research of Soil and Water Conservation, 2016, 23(1): 67-74. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201601013 [4] 潘丽梅, 闫志刚, 马小军, 等.广西大明山自然保护区蛇足石杉种群生命表及生存分析[J].生态科学, 2015, 34(1):25-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stkx201501004 Pan L M, Yan Z G, Ma X J, et al. Life table and survival analysis of Huperzia serrata population in Guangxi Damingshan Nature Reserve[J]. Ecological Science, 2015, 34(1): 25-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stkx201501004 [5] 张婕, 上官铁梁, 段毅豪, 等.灵空山辽东栎种群年龄结构与动态[J].应用生态学报, 2014, 25(11):3125-3130. http://d.old.wanfangdata.com.cn/Periodical/yystxb201411008 Zhang J, Shangguan T L, Duan Y H, et al. Age structure and dynamics of Quercus wutaishanica population in Lingkong Mountain of Shanxi Province, China[J]. Chinese Journal of Applied Ecology, 2014, 25(11): 3125-3130. http://d.old.wanfangdata.com.cn/Periodical/yystxb201411008 [6] 张亚芳, 李登武, 王梅, 等.黄土高原不同地区杜松种群结构与动态[J].林业科学, 2015, 51(2):1-10. http://d.old.wanfangdata.com.cn/Periodical/lykx201502001 Zhang Y F, Li D W, Wang M, et al. Population structure and dynamics of Juniperus rigida in different regions of Loess Plateau[J]. Scientia Silvae Sinicae, 2015, 51(2): 1-10. http://d.old.wanfangdata.com.cn/Periodical/lykx201502001 [7] 胡喜生, 洪伟, 吴承祯, 等.木荷天然种群生命表分析[J].广西植物, 2007, 27(3):469-474. doi: 10.3969/j.issn.1000-3142.2007.03.019 Hu X S, Hong W, Wu C Z, et al. Analysis of the life table of natural population Schima superba[J]. Guihaia, 2007, 27(3): 469-474. doi: 10.3969/j.issn.1000-3142.2007.03.019 [8] 龙成, 杨小波, 龙文兴, 等.铜鼓岭热带常绿季雨矮林5种蒲桃属植物的种群结构及空间格局[J].林业科学, 2015, 51(2):18-27. http://d.old.wanfangdata.com.cn/Periodical/lykx201502003 Long C, Yang X B, Long W X, et al. Population structure and spatial patterns of five syzygium species in tropical evergreen monsoon elfin forest, Tongguling[J]. Scientia Silvae Sinicae, 2015, 51(2): 18-27. http://d.old.wanfangdata.com.cn/Periodical/lykx201502003 [9] 汤孟平, 沈丽芬, 赵赛赛, 等.基于谱分析的天目山毛竹林生长周期[J].林业科学, 2014, 50(9):184-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201409028 Tang M P, Shen L F, Zhao S S, et al. Growth cycle of Phyllostachys edulis stand in Tianmu Mountain based on spectrum analysis[J]. Scientia Silvae Sinicae, 2014, 50(9): 184-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201409028 [10] Dransfield J, Uhl N, Asmussen C, et al. The evolution and classification of palms[M]. London: Kew Publishing, 141-204. [11] Putz F E. Growth habits and trellis requirements of climbing palms (Calamus spp.) in North-Eastern Queensland[J]. Australian Journal of Botany, 1990, 38(6): 603-608. doi: 10.1071/BT9900603 [12] Kidyoo A M, Mckey D. Flowering phenology and mimicry of the rattan Calamus castaneus(Arecaceae) in southern Thailand[J]. Botany, 2012, 90(9): 856-865. doi: 10.1139/b2012-058 [13] 王慷林.中国棕榈藤资源及其分布特征研究[J].植物科学学报, 2015, 33(3):320-325. http://d.old.wanfangdata.com.cn/Periodical/whzwxyj201503007 Wang K L. Resources and distribution of rattan in China[J]. Plant Science Journal, 2015, 33(3): 320-325. http://d.old.wanfangdata.com.cn/Periodical/whzwxyj201503007 [14] 刘晋仙, 陶建平, 王玉平, 等.海南霸王岭山地原始林与伐后林中木质藤本与支持木的多样性及其相互关系[J].林业科学, 2012, 48(5):15-19. http://d.old.wanfangdata.com.cn/Periodical/lykx201205003 Liu J X, Tao J P, Wang Y P, et al. Species diversity and tree-liana relationship in the tropical montane primary forest and post logged forest of Bawanglin, Hainan Island, China[J]. Scientia Silvae Sinicae, 2012, 48(5): 15-19. http://d.old.wanfangdata.com.cn/Periodical/lykx201205003 [15] 漆良华, 梁昌强, 毛超, 等.海南岛甘什岭热带低地次生雨林物种组成与地理成分[J].生态学杂志, 2014, 33(4):922-929. http://d.old.wanfangdata.com.cn/Periodical/stxzz201404011 Qi L H, Liang C Q, Mao C, et al. Species composition and geographic elements of the tropical lowland secondary rain forest of Ganshiling, Hainan Island, China[J]. Chinese Journal of Ecology, 2014, 33(4): 922-929. http://d.old.wanfangdata.com.cn/Periodical/stxzz201404011 [16] 王峥峰, 安树青, David G C, 等.海南岛吊罗山山地雨林物种多样性[J].生态学报, 1999, 19(1):61-67. doi: 10.3321/j.issn:1000-0933.1999.01.009 Wang Z F, An S Q, David G C, et al. Biodiverstiy of the montane rain forest in Diaoluo Mountain, Hainan[J]. Acta Ecologica Sinica, 1999, 19(1): 61-67. doi: 10.3321/j.issn:1000-0933.1999.01.009 [17] 赵科, 陶建平, 郝建辉, 等.海南岛霸王岭热带山地雨林木质藤本垂直结构特征[J].生态学报, 2010, 30(12):3178-3181. http://d.old.wanfangdata.com.cn/Periodical/stxb201012010 Zhao K, Tao J P, Hao J H, et al. Vertical structure of liana in a tropical montane rain forest in Bawangling Nature Reserve, Hainan Island, China[J]. Acta Ecologica Sinica, 2010, 30(12): 3178-3181. http://d.old.wanfangdata.com.cn/Periodical/stxb201012010 [18] 朱学雷, 安树青, 张立新, 等.海南五指山热带山地雨林主要种群结构特征分析[J].应用生态学报, 1999, 10(6):641-644. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB199906000.htm Zhu X L, An S Q, Zhang L X, et al. Population structure of tropical montane rainforest on Wuzhi Mountain of Hainan[J]. Chinese Journal of Applied Ecology, 1999, 10(6): 641-644. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB199906000.htm [19] 路兴慧, 丁易, 臧润国, 等.海南岛热带低地雨林木本植物幼苗层组成与功能群恢复动态[J].林业科学研究, 2012, 25(6):726-731. doi: 10.3969/j.issn.1001-1498.2012.06.008 Lu X H, Ding Y, Zang R G, et al. Recovery dynamic of seedling composition and functional groups in the tropical lowland rain forest on Hainan Island, China[J]. Forest Research, 2012, 25(6): 726-731. doi: 10.3969/j.issn.1001-1498.2012.06.008 [20] 臧润国, 余世孝, 刘静艳, 等.海南霸王岭热带山地雨林林隙更新规律的研究[J].生态学报, 1999, 19(2):151-158. http://d.old.wanfangdata.com.cn/Periodical/stxb199902002 Zang R G, Yu S X, Liu J Y, et al. The gap phase regeneration in a tropical montane rain forest in Bawangling, Hainan Island[J]. Acta Ecologica Sinica, 1999, 19(2): 151-158. http://d.old.wanfangdata.com.cn/Periodical/stxb199902002 [21] 星耀武, 王慷林, 杨宇明.中国省藤属(棕榈科)区系地理研究[J].云南植物研究, 2006, 28(5):461-467. doi: 10.3969/j.issn.2095-0845.2006.05.003 Xing Y W, Wang K L, Yang Y M, et al. Floristic geography of calamus (Palmae Calamoideae) in China[J]. Acta Botanica Yunnanica, 2006, 28(5): 461-467. doi: 10.3969/j.issn.2095-0845.2006.05.003 [22] Ruppert N, Mansor A, Sah S A M. Rattan (Calamoideae) abundance and above-ground biomass at a primary rainforest of Peninsular Malaysia[J]. Plant Ecology & Diversity, 2015, 9(1): 63-67. http://cn.bing.com/academic/profile?id=811defffb04f4333feebabd6f9bed57c&encoded=0&v=paper_preview&mkt=zh-cn [23] Watanabe N M, Suzuki E. Species diversity, abundance, and vertical size structure of rattans in Borneo and Java[J]. Biodiversity Conservation, 2008, 17(3): 523-538. doi: 10.1007/s10531-007-9268-1 [24] 殷谷丽, 唐建维, 杨成源, 等.四种省藤属植物的光合特征与叶片性状及生长的相关性[J].中南林业科技大学学报, 2010, 30(6):104-112. doi: 10.3969/j.issn.1673-923X.2010.06.019 Yin G L, Tang J W, Yang C Y, et al. Relationships among photosynthesis and leaf traits and growth of four rattan species seedlings[J]. Journal of Central South University of Forestry & Technology, 2010, 30(6): 104-112. doi: 10.3969/j.issn.1673-923X.2010.06.019 [25] Isnard S, Rowe N P. The climbing habit in palms: biomechanics of the cirrus and flagellum[J]. America Journal of Batany, 2008, 95(12): 1538-1547. http://cn.bing.com/academic/profile?id=0c18bcdf6690ff232187e1f898b30739&encoded=0&v=paper_preview&mkt=zh-cn [26] Isnard S, Rowe N P. Mechanical role of the leaf sheath in rattans[J]. New Phytologist, 2010, 177(3): 643-652. http://cn.bing.com/academic/profile?id=9a8a14914a1d13e1a21c5952855bb092&encoded=0&v=paper_preview&mkt=zh-cn [27] 曾炳山, 许煌灿, 尹光天, 等.黄藤藤丛结构和生长的研究[J].林业科学研究, 1993, 6(4):414-422. doi: 10.3321/j.issn:1001-1498.1993.04.001 Zeng B S, Xu H C, Yin G T, et al. A study on growth structure of clump of Daemonorops jenkinsiana[J]. Forest Research, 1993, 6(4): 414-422. doi: 10.3321/j.issn:1001-1498.1993.04.001 [28] 杨锦昌, 许煌灿, 尹光天, 等.黄藤人工林密度效应[J].林业科学, 2006, 42(4):57-61. http://d.old.wanfangdata.com.cn/Periodical/lykx200604010 Yang J C, Xu H C, Yin G T, et al. The density effect of Damonorops jenkinsiana plantation[J]. Scientia Silvae Sinicae, 2006, 42(4): 57-61. http://d.old.wanfangdata.com.cn/Periodical/lykx200604010 [29] 杨锦昌, 尹光天, 冯昌林, 等.单叶省藤人工林茎长分布模型的研制[J].浙江林业科技, 2010, 30(6):33-37. doi: 10.3969/j.issn.1001-3776.2010.06.007 Yang J C, Yin G T, Feng C L, et al. Establishment of stem length distribution model for the plantation of Calamus simplcifolius[J]. Journal of Zhejiang Por Sci & Tech, 2010, 30(6): 33-37. doi: 10.3969/j.issn.1001-3776.2010.06.007 [30] Svenning J C. Environmental heterogeneity, recruitment limitation and the mesoscale distribution of palms in a tropical montane rain forest(Maquipucuna, Ecuador) [J]. Journal of Tropical Ecology, 2001, 17: 97-113. doi: 10.1017/S0266467401001067 [31] Thonhofer J, Getto D, Straaten O V, et al. Influence of spatial and environmental variables on rattan palm (Arecaceae) assemblage composition in Central Sulawesi, Indonesia[J]. Plant Ecology, 2015, 216(1): 55-66. doi: 10.1007/s11258-014-0416-x [32] 陈瑞国, 范少辉, 刘广路, 等.海南岛次生低地雨林棕榈藤伴生群落优势种生态位研究[J].西北植物学报, 2017, 37(6): 1226-1233. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201706021 Chen R G, Fan S H, Liu G L, et al. Niche characteristics of dominant species of rattan accompanying community in secondary lowland rain forest in Hainan Island, China[J]. Acta Botany Boreal.-Occident. Sin, 2017, 37(6): 1226-1233. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201706021 [33] 尹光天, 许煌灿, 张伟良.光照与藤苗生长的初步研究[J].林业科学研究, 1988, 1(5):548-552. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKX198805012.htm Yin G T, Xu H C, Zhang W L. A preliminary study on the effect of different levels of light intensity on the growth of rattan seedlings[J]. Forest Research, 1988, 1(5): 548-552. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKX198805012.htm [34] 李建光, 李荣生, 尹光天, 等.竹柏林6年生单叶省藤的生长指标和光合特征[J].中南林业科技大学学报, 2012, 32(4):86-90. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201204018 Li J G, Li R S, Yin G T, et al. Growth index and photosynthetic characteristics of 6-year-old Calamus simplicifolius in Nageia nagi plantation[J]. Journal of Central South University of Forestry & Techology, 2012, 32(4): 86-90. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201204018 [35] 彭超, 王慷林, 李莲芳, 等.施肥对省藤移植苗木生长的影响[J].中南林业科技大学学报, 2016, 36(1):58-62. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201601010 Peng C, Wang K L, Li L F, et al. Effects of three fertilizers on growth of calamus transplanting seedlings[J]. Journal of Central South University of Forestry & Techology, 2016, 36(1): 58-62. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201601010 [36] Bøgh A. Abundance and growth of rattans in Khao Chong National Park, Thailand[J]. Forest Ecology and Management, 1996, 84: 71-80. doi: 10.1016/0378-1127(96)03738-3 [37] Li R S, Xu H C, Yang J C, et al. A review of relationship between rattan and water[J]. Forestry studies in China, 2002, 4(1): 65-68. http://en.cnki.com.cn/Article_en/CJFDTotal-BLDX200201010.htm [38] Toledo-aceves T, Swaine M D. Biomass allocation and photosynthetic responses of lianas and pioneer tree seedlings to light[J]. Acta Oecologica, 2008, 34(1): 38-49. doi: 10.1016/j.actao.2008.03.003 [39] 寇亮, 尹光天, 杨锦昌, 等.不同滴灌处理对黄藤人工林生长的影响[J].中南林业科技大学学报, 2012, 32(4):100-104. doi: 10.3969/j.issn.1673-923X.2012.04.021 Kou L, Yin G T, Yang J C, et al. Effects of different drip irrigation on growth of Daemonorops margaritae plantation[J]. Journal of Central South University of Forestry & Techology, 2012, 32(4): 100-104. doi: 10.3969/j.issn.1673-923X.2012.04.021 [40] 张伟良, 尹光天, 许煌灿.白藤丛栽试验初报[J].林业科学研究, 1990, 3(1):81-85. http://www.cnki.com.cn/Article/CJFD1990-LYKX199001018.htm Zhang W L, Yin G T, Xu H C. A preliminary report of group-planting trial of Calamus tetradactylus[J]. Forest Research, 1990, 3(1): 81-85. http://www.cnki.com.cn/Article/CJFD1990-LYKX199001018.htm [41] Svenning J C. Microhabitat specialization in a species-rich palm community in Amazonian Ecuador[J]. Journal of Ecology, 1999, 87(1): 55-65. doi: 10.1046/j.1365-2745.1999.00329.x [42] 张菲菲, 李担, 汪佑宏, 等.棕榈藤材藤龄的判断[J].东北林业大学学报, 2017, 45(6):26-29. doi: 10.3969/j.issn.1000-5382.2017.06.006 Zhang F F, Li D, Wang Y H, et al. Judgment of rattan age[J]. Journal of Northeast Forestry University, 2017, 45(6): 26-29. doi: 10.3969/j.issn.1000-5382.2017.06.006 [43] 彭超, 范少辉, 刘广路, 等.海南岛低地次生雨林棕榈藤分布及其影响因子[J].生态学杂志, 2017, 36(10):2725-2733. http://d.old.wanfangdata.com.cn/Periodical/stxzz201710006 Peng C, Fan S H, Liu G L, et al. Distribution and impact factors of rattan in lowland secondary rain forest in Hainan Island, China[J]. Chinese Journal of Ecology, 2017, 36(10): 2725-2733. http://d.old.wanfangdata.com.cn/Periodical/stxzz201710006 -