-
现代月季(Rosa hybrida)形态优美,色彩丰富,是当今世界上最重要的观赏植物之一,是由中国古老月季(R. chinensis)、法国玫瑰(R. gallica)及其他蔷薇属植物经多年反复杂交和回交培育而来[1]。目前,全球已有25 000多个月季栽培品种,其中80%是通过品种间杂交获得的[2-3]。然而,仅通过品种间杂交的育种方法已无法向现代月季引入新的遗传信息,育种潜力十分受限;与此同时,育种家们过于注重花色、花型、株型等观赏特性的提高而忽略了抗寒、抗旱、抗病虫害等内在品质的改良,致使现代月季品种的综合抗性越来越差[4-5]。中国原产的蔷薇属植物具有抗寒、抗旱、耐盐碱、抗病、芳香等优良特性,是培育新型月季品种重要的基因来源,对其进行深入研究和合理利用对现代月季新品种培育具有重要意义[6-7]。通过现代月季品种与蔷薇属植物远缘杂交,可以最有效、最直接地将这些优异的遗传信息资源引入现代月季[8]。我国在这方面已有多年的研究工作,如马燕和陈俊愉利用单瓣黄刺玫(R. xanthina)、报春刺玫(R. primula)等蔷薇属种类、中国古老月季品种(‘秋水芙蓉’‘月月粉’(R. chinensis ‘Old Blush’)等)和现代月季进行远缘杂交,得到了‘雪山娇霞’‘一片冰心’‘春芙蓉’等多个抗逆性强且兼具观赏性的新品种[9-11]。为培育抗寒、抗病性强、芳香的月季品种,赵红霞等[12]、丁晓六等[13]先后以现代月季品种和香水月季(R. odorata )为母本,以抗逆性强的蔷薇属种、变种、变型和玫瑰(R. rugosa)品种为父本进行远缘杂交,筛选出14个亲和性较好的杂交组合。黄善武等[14]用弯刺蔷薇(R. beggeriana)、疏花蔷薇(R. laxa)与现代月季杂交,培育出耐低温、抗病性强的品种‘天山之光’‘天山之星’‘天香’等。可见,在未来很长一段时间内,远缘杂交将是月季育种可以产生突破性进展的重要途径[8]。
远缘杂交具有打破种、属间杂交障碍、扩大遗传变异范围、创造丰富变异类型的重要作用,但在此过程中,常存在杂交不亲和、杂交结实率低、人为操作误差等问题。为了提高远缘杂交育种效率,对后代进行杂种鉴定显得尤为重要[15-16]。目前,杂种鉴定的方法主要有形态学、流式细胞术、细胞学和分子标记鉴定等,不同鉴定方法存在各自的优缺点。形态学鉴定是最传统的方法,简单直观,经济方便,但准确性低;流式细胞术简单便捷,数据重复性好,尤其适用于不同倍性亲本杂交获得大量样本的检测鉴定[17];细胞学方法可以更准确直观的鉴定细胞染色体数量,但是操作过程复杂,费时费力[18]。随着分子生物学的发展,利用SSR标记等方法从分子水平进行杂种鉴定得到越来越广泛的应用。王辉等选用40对SSR引物对92个F1杂交后代进行杂种鉴定,结果得到真杂种49个,而形态学鉴定得到62个真杂种[19],证明分子标记在杂种鉴定中的必要性。
粉团蔷薇(R. multiflora var. cathayensis)为野蔷薇的变种,具有抗寒、抗病性极强且花量大的优良特性,是改良现代月季品种的理想材料[20-21]。为此,本研究以四倍体现代月季品种‘赞歌’(R. ‘Sanka’)为母本,与二倍体的粉团蔷薇进行远缘杂交,旨在提高现代月季品种的抗性。同时通过形态学观察、流式细胞仪倍性检测、核型分析和SSR标记对杂交后代的杂种真实性进行鉴定,探讨不同方法对其的鉴定效率,并对杂交后代表型特性进行评价,为利用野蔷薇改良现代月季品种提供重要依据。
-
2013年春,以现代月季品种‘赞歌’(R. ‘Sanka’, 2n = 4x = 28,简称:ZG)为母本,粉团蔷薇(R. multiflora var. cathayensis, 2n = 2x = 14,简称:FT)为父本进行远缘杂交,获得91株杂交后代。2014年栽植于国家花卉工程技术研究中心小汤山种质资源圃,行距0.5 m,株距0.3 m,正常养护管理。
-
2015年5月到8月,根据《植物新品种特异性、一致性、稳定性测试指南——蔷薇属》(标准编号:LY/T 1868-2010),参考赵红霞[22]的方法,对杂交后代的表型性状进行测定,包括株型、节间长、株高、冠幅、节间刺量、叶长、叶宽、花着生方式、着花量、花型、花色、花直径以及香味等性状,每个性状在同一单株上重复测量3次。为便于统计分析,将株型分为直立型、半直立型、开张型、半匍匐型和匍匐型五类,依次赋值1 ~ 5。利用SPSS 19.0软件对表型性状进行描述性分析及变异系数计算。
-
参考李亚齐等[23]的方法,用Beckman-Coulter公司的Epics Altra流式细胞仪测定父、母本及杂交后代的染色体倍性,光源为15 mW 488 nm氩离子激光。以已知染色体数目的母本‘赞歌’(2n = 4x = 28)和父本粉团蔷薇(2n = 2x = 14)为对照,分别设置其DNA含量荧光强度峰值为100和50,测定杂交后代的细胞核DNA含量,初步确定杂种后代的倍性。
-
2015年7月到8月选晴朗天气,在上午9点到10点及下午3点到4点间,选取正常生长植株上的成熟健壮枝条,取顶芽或侧芽,剥去外部叶片仅保留茎尖作为材料,参照罗乐等[24]的方法对材料进行固定、漂洗、解离、染色、压片和染色体观察。利用Karyo 3.1、Image-Pro Plus 6.0、Photoshop CS6等软件对染色体图片进行图片处理和数据采集,采用李懋学等[25]的标准进行核型分析,核型分类依据Stebbins[26]的标准,采用Arano[27]的方法计算核不对称系数,染色体相对长度系数根据Kuo[28]的方法计算。
-
采集幼嫩的叶片,用干净的纸巾包裹置于硅胶中,− 20 ℃保存备用。采用TIANGEN新型植物基因组DNA提取试剂盒(离心柱型,DP320)提取基因组DNA。从公开发表的文献[22,29]中选取26对SSR引物对亲本进行PCR扩增,筛选出7对多态性引物,以杂交后代DNA为模板,参照白锦荣等[30]的PCR反应体系及扩增条件进行PCR扩增。扩增产物的检测在ABI377全自动DNA遗传分析仪上进行,荧光引物合成和PCR扩增产物的检测均由北京睿博兴科生物技术有限公司完成。用GeneMarker V2.2.0软件进行图像分析与数据采集。
-
在91个杂交后代中,70个后代的DNA荧光强度峰值位于75左右,确定为三倍体;而18个后代(ZF-3、ZF-16、ZF-18、ZF-21、ZF-22、ZF-57、ZF-58、ZF-71、ZF-72、ZF-73、ZF-75、ZF-86、ZF-87、ZF-100、ZF-112、ZF-151、ZF-164、ZF-193)的DNA荧光强度峰值位于100左右,可能为四倍体;1个后代(ZF-157)的DNA荧光强度峰值位于150左右,可能为六倍体;2个后代(ZF-14和ZF-80)的流式图出现2个峰值,不能确定倍性(图1)。流式细胞仪测定为三倍体的个体可判定为真杂种,而测定为四倍体、六倍体和不能确定倍性的个体是否为真杂种尚需进一步分析。
-
由于杂交群体的母本‘赞歌’为四倍体,四季开花,父本粉团蔷薇为二倍体,单季开花,染色体计数结果为三倍体的后代个体可确定为真杂种。结合表型数据选择流式细胞术测定为三倍体,且连续开花的3个杂交后代(ZF-8、ZF-9、ZF-156)、18个可能为四倍体的后代、1个可能为六倍体和2个不知倍性的后代进行染色体计数,结果如图2、表1所示。流式细胞术测定为三倍体的3个后代染色体计数均为三倍体;流式细胞术检测为四倍体的4个后代(ZF-21、ZF-86、ZF-87、ZF-112)的染色体计数结果为三倍体;流式细胞术检测为四倍体的14个个体(ZF-3、ZF-16、ZF-18、ZF-22、ZF-57、ZF-58、ZF-71、ZF-72、ZF-73、ZF-75、ZF-100、ZF-151、ZF-164、ZF-193)的染色体计数结果也均为四倍体;2个流式细胞术没有确定结果的杂交后代(ZF-14、ZF-80)染色体计数结果为三倍体。从染色体计数结合流式细胞术的结果看,91个杂交后代中有三倍体76个、四倍体14个、六倍体1个,其中85个杂交后代(70个三倍体、14个四倍体和1个六倍体)的流式细胞术结果与染色体计数结果一致,流式细胞术测定倍性的准确率为93.41%。
表 1 流式细胞术和染色体计数结果的对比
Table 1. Comparative results of flow cytometry and chromosome count
编号No. 倍性(流式细胞
术结果)Ploidy
(flow cytometry)倍性(染色体计
数结果)Ploidy
(chromosome count)一致性Consistency 编号No. 倍性(流式细胞术
结果)Ploidy (flow
cytometry)倍性(染色体计数
结果)Ploidy
(chromosome count)一致性Consistency ZG 4 × 4 × √ ZF-72 4 × 4 × √ FT 2 × 2 × √ ZF-73 4 × 4 × √ ZF-8 3 × 3 × √ ZF-75 4 × 4 × √ ZF-9 3 × 3 × √ ZF-86 4 × 3 × × ZF-156 3 × 3 × √ ZF-87 4 × 3 × × ZF-3 4 × 4 × √ ZF-100 4 × 4 × √ ZF-16 4 × 4 × √ ZF-112 4 × 3 × × ZF-18 4 × 4 × √ ZF-151 4 × 4 × √ ZF-21 4 × 3 × × ZF-164 4 × 4 × √ ZF-22 4 × 4 × √ ZF-193 4 × 4 × √ ZF-57 4 × 4 × √ ZF-157 6 × 6 × √ ZF-58 4 × 4 × √ ZF-14 — 3 × × ZF-71 4 × 4 × √ ZF-80 — 3 × × 注:2 × 代表二倍体;3 × 代表三倍体;4 × 代表四倍体;6 × 代表六倍体;√ 代表检测结果一致;× 代表检测结果不一致;“—”表示流式细胞术未检测出倍性。Notes: 2 × represents diploid; 3 × represents triploid; 4 × represents tetraploid; 6 × represents hexaploid; √ represents the result is consistent; × represents the result does not match, “—” represents unknown ploidy by flow cytometry. 由表2可知,多数杂交后代的核型参数介于父、母本之间:以m型染色体和sm型染色体为主,少数个体有st型染色体,未发现t型染色体;相对长度更接近父本,其中ZF-157为六倍体,染色体相对长度略小于父母本;核不对称系数较高,着丝点位于中部至近中部,少数位于近端部;11个后代含有随体,占45.83%,多为四倍体和六倍体,三倍体仅有2个(ZF-14、ZF-112);16.67%的个体核型分类与母本相同,75%个体核型分类与父本相同。
表 2 杂交亲本和杂种后代的核型参数
Table 2. Karyotype parameters of twenty-four hybrids and their parents
编号 No. 相对长度
Relative length/%臂比
Arm ratio最长/最短体
The longest chromosome/
the shortest
chromosome核型不对
称系数
Asymmetry coefficient/%着丝粒指数
Centromere index/%染色体相对长
度组成 Constitution
of relative length
of chromosome核型公式
Formula
of karyotype核型分类
Karyotype
classificationZG 2.01 ~ 4.63 1.01 ~ 2.19 2.31 57.99 31.37 ~ 53.41 3S + 9M1 + 15M2 + 1L 2n = 4x = 28 = 15m + 7sm 2B FT 5.63 ~ 9.99 1.04 ~ 3.35 1.78 61.97 22.99 ~ 48.89 8M1 + 5M2 + 1L 2n = 2x = 14 = 8m + 5sm + 1st 2A ZF-3 2.18 ~ 5.07 1.01 ~ 2.69 2.33 61.05 27.61 ~ 49.67 3S + 9M1 + 14M2 + 2L 2n = 4x = 28 = 4m + 24sm 2B ZF-9 2.75 ~ 8.18 1.00 ~ 5.25 2.98 61.43 15.99 ~ 45.98 5S + 7M1 + 5M2 + 4L 2n = 3x = 21 = 3M + 12m + 6sm 2B ZF-8 2.86 ~ 8.66 1.00 ~ 2.98 3.03 60.75 25.09 ~ 51.14 4S + 8M1 + 6M2 + 3L 2n = 3x = 21 = 3M + 9m + 9sm 2B ZF-14 3.00 ~ 7.51 1.04 ~ 3.54 2.50 62.30 22.05 ~ 49.08 2S + 10M1 + 5M2 + 4L 2n = 3x = 21 = 12m + 7sm + 2st(SAT) 2B ZF-16 2.63 ~ 4.45 1.14 ~ 4.35 1.69 64.45 22.30 ~ 37.55 1S + 13M1 + 14M2 2n = 4x = 28 = 14m + 10sm + 4st 2A ZF-18 2.48 ~ 5.38 0.91 ~ 4.33 2.17 59.91 18.75 ~ 52.37 4S + 12M1 + 8M2 + 4L 2n = 4x = 28 = 4M + 15m + 7sm + 2st(SAT) 2B ZF-21 3.68 ~ 6.11 1.39 ~ 7.51 1.66 73.58 11.75 ~ 41.89 10M1 + 10M2 + 1L 2n = 3x = 21 = 4m + 7sm + 8st + 2t 3A ZF-22 2.57 ~ 4.90 1.00 ~ 5.94 1.91 68.06 14.41 ~ 49.83 4S + 10M1 + 11M2 + 3L 2n = 4x = 28 = 10m + 10sm + 8st 3A ZF-57 2.05 ~ 5.63 1.00 ~ 5.15 2.75 66.43 16.26 ~ 52.20 7S + 8M1 + 6M2 + 7L 2n = 4x = 28 = 1M + 8m + 12sm + 7st 3B ZF-58 2.43 ~ 5.08 1.00 ~ 4.06 2.09 59.85 19.77 ~ 52.65 5S + 10M1 + 8M2 + 5L 2n = 4x = 28 = 4M + 14m + 8sm + 2st(SAT) 2B ZF-71 2.18 ~ 5.15 1.00 ~ 6.37 2.37 60.56 13.56 ~ 51.39 3S + 10M1 + 11M2 + 4L 2n = 4x = 28 = 1M + 19m + 6sm + 2st(SAT) 2B ZF-72 2.63 ~ 5.09 1.09 ~ 2.42 1.93 61.09 29.25 ~ 47.85 3S + 11M1 + 12M2 + 2L 2n = 4x = 28 = 8m + 20sm 2A ZF-73 2.19 ~ 4.80 1.02 ~ 5.90 2.19 59.29 14.71 ~ 52.97 5S + 10M1 + 8M2 + 5L 2n = 4x = 28 = 15m + 12sm + 1st(SAT) 2B ZF-75 2.17 ~ 5.28 1.00 ~ 4.20 2.44 65.56 19.24 ~ 51.25 5S + 10M1 + 8M2 + 5L 2n = 4x = 28 = 1M + 9m + 13sm + 5st(SAT) 2B ZF-80 2.32 ~ 6.72 1.15 ~ 3.98 2.90 61.08 20.07 ~ 46.52 4S + 7M1 + 6M2 + 4L 2n = 3x = 21 = 13m + 7sm + 1st 2B ZF-86 2.69 ~ 6.51 1.00 ~ 2.14 2.42 56.27 31.80 ~ 51.58 2S + 8M1 + 10M2 + 1L 2n = 3x = 21 = 2M + 15m + 4sm 2B ZF-87 3.52 ~ 5.95 1.00 ~ 2.83 1.69 58.54 26.08 ~ 52.49 1S + 9M1 + 11M2 2n = 3x = 21 = 1M + 15m + 5sm 2A ZF-100 2.51 ~ 4.66 1.00 ~ 2.62 1.86 62.76 27.65 ~ 50.12 1S + 18M1 + 6M2 + 3L 2n = 4x = 28 = 1M + 12m + 15sm 2A ZF-112 2.82 ~ 6.93 1.00 ~ 5.10 2.45 66.01 16.4 ~ 52.13 4S + 7M1 + 7M2 + 3L 2n = 3x = 21 = 1M + 7m + 6sm + 7st(SAT) 2B ZF-151 1.69 ~ 5.11 1.06 ~ 3.68 3.02 60.91 21.38 ~ 48.60 3S + 12M1 + 8M2 + 5L 2n = 4x = 28 = 10m + 14sm + 4st(SAT) 2B ZF-156 3.13 ~ 6.43 1.28 ~ 4.43 2.05 63.12 18.43 ~ 43.90 2S + 10M1 + 6M2 + 3L 2n = 3x = 21 = 12m + 7sm + 2st 2B ZF-157 1.57 ~ 3.24 1.04 ~ 3.13 2.07 60.34 24.24 ~ 48.91 5S + 16M1 + 17M2 + 4L 2n = 6x = 42 = 27m + 14sm + 1st(SAT) 2B ZF-164 1.69 ~ 6.14 1.13 ~ 2.92 3.61 62.34 25.51 ~ 46.99 6S + 9M1 + 7M2 + 6L 2n = 4x = 28 = 15m + 13sm(SAT) 2B ZF-193 2.36 ~ 5.08 1.02 ~ 5.40 2.15 63.50 15.63 ~ 52.87 3S + 13M1 + 8M2 + 4L 2n = 4x = 28 = 14m + 9sm + 5st(SAT) 2B 注:S代表相对长度指数小于0.75的短染色体;M1代表相对长度指数为0.76 ~ 1.00的中短染色体;M2代表相对长度指数为1.01 ~ 1.25的中长染色体;L代表相对长度指数大于1.25的长染色体;M代表着丝点位于正中部的染色体;m代表着丝点位于中部区域的染色体;sm代表着丝点位于近中部的染色体;st代表着丝点位于近端部的染色体;t代表着丝点位于端部区域的染色体;随体(SAT)长度计入短臂长度(有的在长臂上)。Notes: S represents short chromosome with relative length index of less than 0.75; M1 represents medium-short chromosome with relative length index from 0.76 to 1.00; M2 represents medium-long chromosome with a relative length index from 1.01 to 1.25; L represents long chromosome with relative length index greater than 1.25; M represents the chromosome with median point, m represents the chromosome with median region point; sm represents the chromosome with submedian region point; st represents the chromosome with subterminal region point; t represents the chromosome with terminal region point; the length of the satellite was included in short arms (some in longarms). -
利用26对SSR引物对亲本进行多态性分析,选择条带清晰、多态性强的引物用于杂种鉴定(图3),共筛选得到7对多态性较好的引物(552、555、Rh60、Rh93、Rh98、RhAB9-2、RhABT12),多态性比例为26.92%,引物信息见表3。
表 3 用于杂种鉴定的7对SSR引物信息
Table 3. Information of 10 SSR markers for F1 progeny identification
名称
Name重复基序
Repeat motif退火温度
Annealing
temperature/℃目标片段大小
Target fragment/bp上游引物(5′→3′)
Forward primer (5′→3′)下游引物(5′→3′)
Resversed primer (5′→3′)552 (TCC)6 59 153 ATTTCCAAAAATGGCACCAC GTTGAAAGTGGAGAGCTCGG 555 (GAGCA)3 59 131 AAAGCAAGAAGCAGTTTCAGTG CCTCTCAATCGGGACTTCTG Rh60 (CT)rich 50 234 TCTCTTTTCACGGCCACCACT TGAATCCAAGGCCGTATAGTTAGA Rh93 (CT)rich 50 242 GCTTTGCTGCATGGTTAGGTTG TTCTTTTTGTCGTTCTGGGATGTG Rh98 (CT)rich 50 154 GGCCTCTAGAGTTTGGGATAGCAG ACGACGTCAATAACTCCATCAGTC RhAB9-2 (CT)rich 50 100 GTCAATTTGTGCATAAGCTC GTGAGAACAGATGAGAAATG RhABT12 (CT)rich 50 172 CAAGTTTGTCTCCTTGGACC CATAGATGATTATCCTAGAGCC 为确保结果的准确性,每个杂交后代至少选用两对引物进行扩增,同时扩增出父、母本条带的为真杂种。根据染色体计数结果,任选四倍体后代ZF-164和ZF-3及六倍体后代ZF-157为材料,进行PCR扩增。结果显示,ZF-3、ZF-164只出现了母本的特异性条带,无父本的条带,确定为假杂种;ZF-157既出现了母本的特异性条带,又出现了父本的特异性条带,为真杂种(表4)。
表 4 7对SSR引物对亲本及子代的检测结果
Table 4. Results of amplification for parents and individuals using 7 SSR markers
SSR 位点
SSR locus亲本 Parent 子代 F1 individual ZG FT ZF-3 ZF-157 ZF-164 552 150:153 153 153 153 150:153 555 126:131 131 126:131 126:131 126 Rh60 222:234 222:228 222:234 222:228:234 222:234 Rh93 236:268 242 236 236:242:268 236:268 Rh98 146:156 154:162 146:156 146:154:156:162 146:156 RhAB9-2 104:108:112 98:100 108:112 98:100:112 108 RhABT12 172:174 162:164 172:174 162:164:172:174 172:174 -
去掉已证实的2个假杂种和没有确定杂种真实性的12个四倍体后代,对亲本及杂种后代的表型性状统计分析发现,77个杂种后代的冠幅、株型、节间长、节间刺量等性状都介于两亲本之间,变异系数为19.71% ~ 67.13%,变异广泛(表5)。其中,着花量变异幅度最大,节间刺量次之。72个后代的节间刺量大于父本,偏向于母本,占93.51%,说明刺量呈现偏多遗传趋势。叶长、叶宽的遗传变异系数最小,均值小于父、母本,说明叶长、叶宽有偏小遗传趋势。其株高均值低于两亲本(表5)。
表 5 现代月季‘赞歌’与粉团蔷薇杂交后代的表型性状
Table 5. Morphological traits of R.‘Sanka’×R. multiflora var. cathayensis hybrids and their parents
性状 Trait 亲本 Parent 子代 Progeny ZG FT 均值
Mean变异系数
Coefficient of variation株高 Plant height/cm 139.67 ± 12.28 217.33 ± 10.65 119.94 ± 48.27 40.24% 冠幅 Crown diameter/cm 53.67 ± 6.59 205.33 ± 9.46 133.81 ± 76.21 56.24% 节间长 Internode length/mm 50.26 ± 6.70 46.69 ± 5.97 37.26 ± 7.87 21.13% 小叶长 Leaflet length/mm 53.92 ± 5.16 51.55 ± 3.93 46.87 ± 9.24 19.71% 小叶宽 Leaflet width/mm 39.10 ± 1.33 36.18 ± 2.07 27.72 ± 5.75 20.74% 节间刺量 Internode prickle number 5 ~ 6 1 ~ 3 5.60 ± 5.74 60.02% 花径 Flower diameter/mm 135.34 ± 1.44 43.74 ± 3.09 54.75 ± 11.41 20.56% 着花量 Flower number 1 ~ 2 5 ~ 7 5.41 ± 4.24 67.13% 株型 Plant type 1 5 2.22 ± 1.04 46.89% 在77个杂种后代中,有3株表现为连续开花习性,分别为ZF-8、ZF-9和ZF-156,花径均介于两亲本之间,偏向于父本,变异系数小;全部呈圆锥花序,平均着花5朵,与父本相似;其中ZF-8和ZF-9有明显香味,与父本相似。ZF-8为粉色单瓣花,ZF-9和ZF-156均为粉色重瓣花。
-
杂交亲本的倍性在一定程度上会直接影响杂交亲和性,相同倍性的亲本杂交更容易成功,获得的杂交苗成活率也更高[23]。赵丹等[31]和徐顺超等[32]对杂交亲和性与杂交亲本倍性之间的相关性进行了研究,结果表明,相同倍性的亲本杂交亲和性大于倍性不同的亲本。本实验利用四倍体的现代月季‘赞歌’和二倍体的粉团蔷薇杂交,结实率高达76.74%[22],说明影响蔷薇属植物杂交亲和性的主要因素并非亲本的染色体倍性。在杂交后代中出现了六倍体杂种,推测父、母本在减数分裂过程中出现了异常情况,产生2n配子,或者发生了细胞融合现象。但仅根据倍性分析结果不能判定2n配子的产生是导致后代倍性变化的因素[33]。Van等[34]认为三倍体月季在减数分裂时可以产生单倍(n)和二倍(2n)雌性或雄性配子,其产生的2n花粉比n花粉更具竞争优势。本研究得到大量三倍体杂交后代,可作为中间材料与二倍体或四倍体的蔷薇属植株杂交,为下一步培育抗寒、抗病月季新品种提供重要的育种材料。
目前,杂种鉴定常用形态学、细胞学和DNA分子标记等方法,不同的鉴定方法存在各自的优缺点。表型特征受环境条件影响较大,表型数据采集时也存在一定主观性,在短时间内无法准确地进行杂种鉴定。也有研究结果表明,植物的倍性与表型并不一定呈正相关关系[35-36],本实验获得的六倍体后代ZF-157的表型相比三倍体后代也没有表现出明显的巨大性。本实验中母本‘赞歌’为连续开花类型,父本粉团蔷薇为单季开花类型,而77株杂种后代中仅出现3株连续开花类型,这一分离比与孟德尔遗传规律中两对等位基因控制同一性状的比例接近,与Shubin等[37]发现的蔷薇属植物连续开花性状由双隐性基因控制的结论相符。本研究得到的杂交后代变异广泛,性状多介于亲本之间,获得的3株连续开花后代的花色、花香、花着生方式等性状都与父本极相似,说明利用粉团蔷薇改良现代月季是可行的。
细胞学鉴定可以精准地鉴定细胞核染色体数目,尤其适用于倍性不同或染色体结构和形态差异较大的远缘杂交后代的鉴定;流式细胞术可快速鉴定染色体倍性,两种方法均适用于父、母本倍性不同的杂交组合。从本实验结果来看,流式细胞术测定月季倍性的准确率为93.41%,虽存在一定的误差,但可作为初步快速鉴定的方法。本实验获得的染色体类型、着丝点位置、核型分类、臂比值等参数与已有的研究结果相似[13,24,29,38-39],为月季育种研究提供了细胞学遗传依据。另外,蹇洪英等[39]和陈瑞阳[40]在现代月季、古老月季中发现随体出现的几率较低,仅在少数品种中存在,而本实验中,45.83%的杂交后代含有随体,这可能是因为两个亲本间的遗传差异较大所致。
本研究利用现代月季与粉团蔷薇杂交,获得的杂交后代遗传多样、倍性特殊,可作为新的种质材料运用到改良现代月季品种的育种工作中。同时,本研究通过采用不同杂种鉴定方法对不同倍性蔷薇属植物杂交后代的鉴定结果表明,核型分析和SSR标记法与形态学观察和流式细胞术相比准确性更高。SSR分子标记能够从DNA水平准确地鉴定杂交后代的真实性,缩短杂种鉴定周期,极大提高了后代选择的效率[18,41]。本研究中,利用SSR标记方法鉴定的2个四倍体杂交后代均为假杂种,但获得的14株四倍体杂交后代除ZF-3为四季开花外,其他后代均为单季开花植株,这些四倍体后代是否为真杂种尚需采用SSR分子标记进行检测。
Identification and evaluation of F1 hybrids between Rosa ‘Sanka’×R. multiflora var. cathayensis
-
摘要:
目的本研究通过对现代月季品种‘赞歌’(2n = 4x = 28)和野蔷薇变种粉团蔷薇(2n = 2x = 14)的杂交后代群体进行杂种鉴定和评价,为利用野蔷薇改良现代月季品种提供重要的理论依据和材料基础。 方法以现代月季品种‘赞歌’ × 粉团蔷薇的91株杂交后代为材料,综合利用形态学观察、流式细胞仪倍性检测、核型分析和SSR标记对杂交后代进行杂种鉴定和评价,并分析了不同方法对蔷薇属杂交后代鉴定的效率。 结果杂交后代的表型参数多介于两亲本之间,变异系数为19.71% ~ 67.13%,变异广泛;流式细胞仪检测结果显示91个杂交后代中有70个三倍体(2n = 3x = 21),18个四倍体,1个六倍体(2n = 6x = 42),2个不能确定倍性;对21个流式细胞仪检测为非三倍体的后代和3个连续开花的三倍体后代进行染色体核型分析,发现18个后代的分析结果与细胞流式仪倍性检测结果一致,确定流式细胞仪测定倍性的准确率为93.41%;从26对SSR引物中筛选出7对多态性引物对2个四倍体和1个六倍体后代进行扩增,结果显示2个四倍体的杂交后代为假杂种,六倍体后代为真杂种。 结论在鉴定不同倍性蔷薇属植物杂交后代时,核型分析和SSR标记法比形态学观察和流式细胞术更准确。本研究获得的三倍体杂交后代为利用野蔷薇改良现代月季品种提供了新的种质材料。 Abstract:ObjectiveIn this study, we used modern rose cultivars ‘Sanka’ (2n = 4x = 28) and R. multiflora var. cathayensis (2n = 2x = 14) as parents to obtain F1 population through hybridization, and the hybrids were identified and evaluated. This will provide an important basis for improving the modern rose by R. multiflora var. cathayensis. MethodWe obtained 91 F1 hybrids derived from the combination of R. ‘Sanka’ × R. multiflora var. cathayensis. The hybrids were identified by morphological observation, flow cytometry, karyotype analysis and SSR markers. ResultThe results showed that, F1 hybrids integrated the morphological characteristics of both ‘Sanka’ and R. multiflora var. cathayensis, and the coefficient of variation ranged from 19.71% to 67.13%. Flow cytometry analysis showed that the 70 of the 91 hybrids were triploids (2n = 3x = 21), 18 were tetraploid, 1 was hexaploid (2n = 6x = 42), and 2 unable to be determined. Karyotype analysis of 21 non-triploid identified by flow cytometry analysis and 3 triploid hybrids of continuous flowering revealed that the chromosome number of 18 hybrids were consistent with the results of flow cytometry analysis. The accuracy of flow cytometry for measuring ploidy was 93.41%. From 26 pairs of SSR primers, 7 pairs of polymorphic primers were selected to amplify 2 tetraploids and 1 hexaploid, and found that the two tetraploid hybrids were false hybrids, and the hexaploid were true hybrids. ConclusionKaryotype analysis and SSR analysis were more accurate than morphological observation and flow cytometry to identify hybrids. The results provide important basis for rose polyploidy breeding, and provide new germplasm materials for the improvement of modern rose using R. multiflora var. cathayensis. -
Key words:
- Rosa /
- distant hybridization /
- flow cytometry /
- karyotype /
- SSR /
- hybrid identification
-
图 1 杂交亲本和部分杂交后代细胞流式图
ZG为杂交母本‘赞歌’(2n = 4x = 28);FT为杂交父本粉团蔷薇(2n = 2x = 14);ZF-8为三倍体后代;ZF-21为四倍体后代;ZF-157为六倍体后代;ZF-14为不知倍性后代。下同。ZG is hybrid female parent R. ‘Sanka’ (2n = 4x = 28); FT is hybrid male parent R. multiflora var. cathayensis (2n = 2x = 14); ZF-8 is triploid progeny; ZF-21 is tetraploid progeny; ZF-157 is hexaploid progeny; ZF-14 is an unknown ploid progeny. The same below.
Figure 1. Flow cytometry figures of several hybrids and their parents
表 1 流式细胞术和染色体计数结果的对比
Table 1. Comparative results of flow cytometry and chromosome count
编号No. 倍性(流式细胞
术结果)Ploidy
(flow cytometry)倍性(染色体计
数结果)Ploidy
(chromosome count)一致性Consistency 编号No. 倍性(流式细胞术
结果)Ploidy (flow
cytometry)倍性(染色体计数
结果)Ploidy
(chromosome count)一致性Consistency ZG 4 × 4 × √ ZF-72 4 × 4 × √ FT 2 × 2 × √ ZF-73 4 × 4 × √ ZF-8 3 × 3 × √ ZF-75 4 × 4 × √ ZF-9 3 × 3 × √ ZF-86 4 × 3 × × ZF-156 3 × 3 × √ ZF-87 4 × 3 × × ZF-3 4 × 4 × √ ZF-100 4 × 4 × √ ZF-16 4 × 4 × √ ZF-112 4 × 3 × × ZF-18 4 × 4 × √ ZF-151 4 × 4 × √ ZF-21 4 × 3 × × ZF-164 4 × 4 × √ ZF-22 4 × 4 × √ ZF-193 4 × 4 × √ ZF-57 4 × 4 × √ ZF-157 6 × 6 × √ ZF-58 4 × 4 × √ ZF-14 — 3 × × ZF-71 4 × 4 × √ ZF-80 — 3 × × 注:2 × 代表二倍体;3 × 代表三倍体;4 × 代表四倍体;6 × 代表六倍体;√ 代表检测结果一致;× 代表检测结果不一致;“—”表示流式细胞术未检测出倍性。Notes: 2 × represents diploid; 3 × represents triploid; 4 × represents tetraploid; 6 × represents hexaploid; √ represents the result is consistent; × represents the result does not match, “—” represents unknown ploidy by flow cytometry. 表 2 杂交亲本和杂种后代的核型参数
Table 2. Karyotype parameters of twenty-four hybrids and their parents
编号 No. 相对长度
Relative length/%臂比
Arm ratio最长/最短体
The longest chromosome/
the shortest
chromosome核型不对
称系数
Asymmetry coefficient/%着丝粒指数
Centromere index/%染色体相对长
度组成 Constitution
of relative length
of chromosome核型公式
Formula
of karyotype核型分类
Karyotype
classificationZG 2.01 ~ 4.63 1.01 ~ 2.19 2.31 57.99 31.37 ~ 53.41 3S + 9M1 + 15M2 + 1L 2n = 4x = 28 = 15m + 7sm 2B FT 5.63 ~ 9.99 1.04 ~ 3.35 1.78 61.97 22.99 ~ 48.89 8M1 + 5M2 + 1L 2n = 2x = 14 = 8m + 5sm + 1st 2A ZF-3 2.18 ~ 5.07 1.01 ~ 2.69 2.33 61.05 27.61 ~ 49.67 3S + 9M1 + 14M2 + 2L 2n = 4x = 28 = 4m + 24sm 2B ZF-9 2.75 ~ 8.18 1.00 ~ 5.25 2.98 61.43 15.99 ~ 45.98 5S + 7M1 + 5M2 + 4L 2n = 3x = 21 = 3M + 12m + 6sm 2B ZF-8 2.86 ~ 8.66 1.00 ~ 2.98 3.03 60.75 25.09 ~ 51.14 4S + 8M1 + 6M2 + 3L 2n = 3x = 21 = 3M + 9m + 9sm 2B ZF-14 3.00 ~ 7.51 1.04 ~ 3.54 2.50 62.30 22.05 ~ 49.08 2S + 10M1 + 5M2 + 4L 2n = 3x = 21 = 12m + 7sm + 2st(SAT) 2B ZF-16 2.63 ~ 4.45 1.14 ~ 4.35 1.69 64.45 22.30 ~ 37.55 1S + 13M1 + 14M2 2n = 4x = 28 = 14m + 10sm + 4st 2A ZF-18 2.48 ~ 5.38 0.91 ~ 4.33 2.17 59.91 18.75 ~ 52.37 4S + 12M1 + 8M2 + 4L 2n = 4x = 28 = 4M + 15m + 7sm + 2st(SAT) 2B ZF-21 3.68 ~ 6.11 1.39 ~ 7.51 1.66 73.58 11.75 ~ 41.89 10M1 + 10M2 + 1L 2n = 3x = 21 = 4m + 7sm + 8st + 2t 3A ZF-22 2.57 ~ 4.90 1.00 ~ 5.94 1.91 68.06 14.41 ~ 49.83 4S + 10M1 + 11M2 + 3L 2n = 4x = 28 = 10m + 10sm + 8st 3A ZF-57 2.05 ~ 5.63 1.00 ~ 5.15 2.75 66.43 16.26 ~ 52.20 7S + 8M1 + 6M2 + 7L 2n = 4x = 28 = 1M + 8m + 12sm + 7st 3B ZF-58 2.43 ~ 5.08 1.00 ~ 4.06 2.09 59.85 19.77 ~ 52.65 5S + 10M1 + 8M2 + 5L 2n = 4x = 28 = 4M + 14m + 8sm + 2st(SAT) 2B ZF-71 2.18 ~ 5.15 1.00 ~ 6.37 2.37 60.56 13.56 ~ 51.39 3S + 10M1 + 11M2 + 4L 2n = 4x = 28 = 1M + 19m + 6sm + 2st(SAT) 2B ZF-72 2.63 ~ 5.09 1.09 ~ 2.42 1.93 61.09 29.25 ~ 47.85 3S + 11M1 + 12M2 + 2L 2n = 4x = 28 = 8m + 20sm 2A ZF-73 2.19 ~ 4.80 1.02 ~ 5.90 2.19 59.29 14.71 ~ 52.97 5S + 10M1 + 8M2 + 5L 2n = 4x = 28 = 15m + 12sm + 1st(SAT) 2B ZF-75 2.17 ~ 5.28 1.00 ~ 4.20 2.44 65.56 19.24 ~ 51.25 5S + 10M1 + 8M2 + 5L 2n = 4x = 28 = 1M + 9m + 13sm + 5st(SAT) 2B ZF-80 2.32 ~ 6.72 1.15 ~ 3.98 2.90 61.08 20.07 ~ 46.52 4S + 7M1 + 6M2 + 4L 2n = 3x = 21 = 13m + 7sm + 1st 2B ZF-86 2.69 ~ 6.51 1.00 ~ 2.14 2.42 56.27 31.80 ~ 51.58 2S + 8M1 + 10M2 + 1L 2n = 3x = 21 = 2M + 15m + 4sm 2B ZF-87 3.52 ~ 5.95 1.00 ~ 2.83 1.69 58.54 26.08 ~ 52.49 1S + 9M1 + 11M2 2n = 3x = 21 = 1M + 15m + 5sm 2A ZF-100 2.51 ~ 4.66 1.00 ~ 2.62 1.86 62.76 27.65 ~ 50.12 1S + 18M1 + 6M2 + 3L 2n = 4x = 28 = 1M + 12m + 15sm 2A ZF-112 2.82 ~ 6.93 1.00 ~ 5.10 2.45 66.01 16.4 ~ 52.13 4S + 7M1 + 7M2 + 3L 2n = 3x = 21 = 1M + 7m + 6sm + 7st(SAT) 2B ZF-151 1.69 ~ 5.11 1.06 ~ 3.68 3.02 60.91 21.38 ~ 48.60 3S + 12M1 + 8M2 + 5L 2n = 4x = 28 = 10m + 14sm + 4st(SAT) 2B ZF-156 3.13 ~ 6.43 1.28 ~ 4.43 2.05 63.12 18.43 ~ 43.90 2S + 10M1 + 6M2 + 3L 2n = 3x = 21 = 12m + 7sm + 2st 2B ZF-157 1.57 ~ 3.24 1.04 ~ 3.13 2.07 60.34 24.24 ~ 48.91 5S + 16M1 + 17M2 + 4L 2n = 6x = 42 = 27m + 14sm + 1st(SAT) 2B ZF-164 1.69 ~ 6.14 1.13 ~ 2.92 3.61 62.34 25.51 ~ 46.99 6S + 9M1 + 7M2 + 6L 2n = 4x = 28 = 15m + 13sm(SAT) 2B ZF-193 2.36 ~ 5.08 1.02 ~ 5.40 2.15 63.50 15.63 ~ 52.87 3S + 13M1 + 8M2 + 4L 2n = 4x = 28 = 14m + 9sm + 5st(SAT) 2B 注:S代表相对长度指数小于0.75的短染色体;M1代表相对长度指数为0.76 ~ 1.00的中短染色体;M2代表相对长度指数为1.01 ~ 1.25的中长染色体;L代表相对长度指数大于1.25的长染色体;M代表着丝点位于正中部的染色体;m代表着丝点位于中部区域的染色体;sm代表着丝点位于近中部的染色体;st代表着丝点位于近端部的染色体;t代表着丝点位于端部区域的染色体;随体(SAT)长度计入短臂长度(有的在长臂上)。Notes: S represents short chromosome with relative length index of less than 0.75; M1 represents medium-short chromosome with relative length index from 0.76 to 1.00; M2 represents medium-long chromosome with a relative length index from 1.01 to 1.25; L represents long chromosome with relative length index greater than 1.25; M represents the chromosome with median point, m represents the chromosome with median region point; sm represents the chromosome with submedian region point; st represents the chromosome with subterminal region point; t represents the chromosome with terminal region point; the length of the satellite was included in short arms (some in longarms). 表 3 用于杂种鉴定的7对SSR引物信息
Table 3. Information of 10 SSR markers for F1 progeny identification
名称
Name重复基序
Repeat motif退火温度
Annealing
temperature/℃目标片段大小
Target fragment/bp上游引物(5′→3′)
Forward primer (5′→3′)下游引物(5′→3′)
Resversed primer (5′→3′)552 (TCC)6 59 153 ATTTCCAAAAATGGCACCAC GTTGAAAGTGGAGAGCTCGG 555 (GAGCA)3 59 131 AAAGCAAGAAGCAGTTTCAGTG CCTCTCAATCGGGACTTCTG Rh60 (CT)rich 50 234 TCTCTTTTCACGGCCACCACT TGAATCCAAGGCCGTATAGTTAGA Rh93 (CT)rich 50 242 GCTTTGCTGCATGGTTAGGTTG TTCTTTTTGTCGTTCTGGGATGTG Rh98 (CT)rich 50 154 GGCCTCTAGAGTTTGGGATAGCAG ACGACGTCAATAACTCCATCAGTC RhAB9-2 (CT)rich 50 100 GTCAATTTGTGCATAAGCTC GTGAGAACAGATGAGAAATG RhABT12 (CT)rich 50 172 CAAGTTTGTCTCCTTGGACC CATAGATGATTATCCTAGAGCC 表 4 7对SSR引物对亲本及子代的检测结果
Table 4. Results of amplification for parents and individuals using 7 SSR markers
SSR 位点
SSR locus亲本 Parent 子代 F1 individual ZG FT ZF-3 ZF-157 ZF-164 552 150:153 153 153 153 150:153 555 126:131 131 126:131 126:131 126 Rh60 222:234 222:228 222:234 222:228:234 222:234 Rh93 236:268 242 236 236:242:268 236:268 Rh98 146:156 154:162 146:156 146:154:156:162 146:156 RhAB9-2 104:108:112 98:100 108:112 98:100:112 108 RhABT12 172:174 162:164 172:174 162:164:172:174 172:174 表 5 现代月季‘赞歌’与粉团蔷薇杂交后代的表型性状
Table 5. Morphological traits of R.‘Sanka’×R. multiflora var. cathayensis hybrids and their parents
性状 Trait 亲本 Parent 子代 Progeny ZG FT 均值
Mean变异系数
Coefficient of variation株高 Plant height/cm 139.67 ± 12.28 217.33 ± 10.65 119.94 ± 48.27 40.24% 冠幅 Crown diameter/cm 53.67 ± 6.59 205.33 ± 9.46 133.81 ± 76.21 56.24% 节间长 Internode length/mm 50.26 ± 6.70 46.69 ± 5.97 37.26 ± 7.87 21.13% 小叶长 Leaflet length/mm 53.92 ± 5.16 51.55 ± 3.93 46.87 ± 9.24 19.71% 小叶宽 Leaflet width/mm 39.10 ± 1.33 36.18 ± 2.07 27.72 ± 5.75 20.74% 节间刺量 Internode prickle number 5 ~ 6 1 ~ 3 5.60 ± 5.74 60.02% 花径 Flower diameter/mm 135.34 ± 1.44 43.74 ± 3.09 54.75 ± 11.41 20.56% 着花量 Flower number 1 ~ 2 5 ~ 7 5.41 ± 4.24 67.13% 株型 Plant type 1 5 2.22 ± 1.04 46.89% -
[1] 陈俊愉. 月季花史话[J]. 世界农业, 1986(8):51−53. Chen J Y. Rose history[J]. World Agriculture, 1986(8): 51−53. [2] American Rose Society. Modern roses 12 [M]. Louisiana: Pediment Publishing, 2007. [3] Thomas C. Modern roses XI: the world encyclopedia of roses [M]. San Diego: Academic Press, 2000. [4] 刘永刚, 刘青林. 月季遗传资源的评价与利用[J]. 植物遗传资源学报, 2004, 5(1):87−90. doi: 10.3969/j.issn.1672-1810.2004.01.019 Liu Y G, Liu Q L. Evaluation and exploitation of genetic resources in roses[J]. Journal of Plant Genetic Resources, 2004, 5(1): 87−90. doi: 10.3969/j.issn.1672-1810.2004.01.019 [5] 杨涛, 宋丹, 张晓莹, 等. 部分蔷薇属植物远缘杂交亲和性评价[J]. 东北农业大学学报, 2015, 46(2):72−77. doi: 10.3969/j.issn.1005-9369.2015.02.011 Yang T, Song D, Zhang X Y, et al. Evaluation on compatibility of interspecific cross in part of the genus Rosa[J]. Journal of Northeast Agricultural University, 2015, 46(2): 72−77. doi: 10.3969/j.issn.1005-9369.2015.02.011 [6] De Vries D P, Dubois L A M. Developments in breeding for horizontal and vertical fungus resistance in roses[J]. Acta Horticulturae, 2001(552): 103−112. [7] Gudin S. Improvement of rose varietal creation in world[J]. Acta Horticulturae, 1999(495): 285−291. [8] Gudin S. Rose breeding technologies[J]. Acta Horticulturae, 2001(547): 23−26. [9] 马燕, 陈俊愉. 我国西北的薔薇属种质资源[J]. 中国园林, 1990(1):50−51. Ma Y, Chen J Y. Germplasm resources of Rose genus in Northwest of China[J]. Chinese Landscape Architecture, 1990(1): 50−51. [10] 马燕. 培育刺玫月季新品种的初步研究[D]. 北京: 北京林业大学, 1989. Ma Y. A preliminary study on breeding cultivars for establishing a new rose group [D]. Beijing: Beijing Forestry University, 1989. [11] 马燕, 陈俊愉. 培育刺玫月季新品种的初步研究(Ⅰ)——月季远缘杂交不亲和性与不育性的探讨[J]. 北京林业大学学报, 1990, 12(3):18−25, 125. Ma Y, Chen J Y. A preliminary study on breeding cultivars for establishing a new rose group: rejuvenation rose group (Rj.)[J]. Journal of Beijing Forestry University, 1990, 12(3): 18−25, 125. [12] 赵红霞, 王晶, 丁晓六, 等. 蔷薇属植物与现代月季品种杂交亲和性研究[J]. 西北植物学报, 2015, 35(4):743−753. Zhao H X, Wang J, Ding X L, et al. Compatibility of interspecific crossing between several Rosa species and modern rose cultivars[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(4): 743−753. [13] 丁晓六, 刘佳, 赵红霞, 等. 现代月季和玫瑰杂交后代的鉴定与评价[J]. 北京林业大学学报, 2014, 36(5):123−130. Ding X L, Liu J, Zhao H X, et al. Hybrid identification and morphological evaluation of modern roses (Rosa hybrida) × Rosa rugosa[J]. Journal of Beijing Forestry University, 2014, 36(5): 123−130. [14] 黄善武, 葛红. 弯剌蔷薇在月季抗寒育种上的研究利用初报[J]. 园艺学报, 1989, 16(3):237−240. doi: 10.3321/j.issn:0513-353X.1989.03.004 Huang S W, Ge H. Studies on the use of Rosa beggeriana Schrenk as a source of cold resistance in rose breeding[J]. Acta Horticulturae Sinica, 1989, 16(3): 237−240. doi: 10.3321/j.issn:0513-353X.1989.03.004 [15] 孙宪芝, 赵惠恩. 月季育种研究现状分析[J]. 西南林学院学报, 2003, 23(4):65−69. Sun X Z, Zhao H E. Review of research measures and development trend of rose breeding[J]. Journal of Southwest Forestry University, 2003, 23(4): 65−69. [16] 邓衍明, 叶晓青, 佘建明, 等. 植物远缘杂交育种研究进展[J]. 华北农学报, 2011, 26(S2):52−55. doi: 10.7668/hbnxb.2011.S2.013 Deng Y M, Ye X Q, She J M, et al. The research progress on distant hybridization of plant breeding[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(S2): 52−55. doi: 10.7668/hbnxb.2011.S2.013 [17] 王荣邦, 张秀海, 吴忠义, 等. 菊花染色体倍性鉴定研究[J]. 安徽农业科学, 2010, 38(23):12778−12780, 12789. doi: 10.3969/j.issn.0517-6611.2010.23.173 Wang R B, Zhang X H, Wu Z Y, et al. Common methods of cell chromosome ploidy identification for Chrysanthemum and its application in breeding[J]. Journal of Anhui Agricultural Sciences, 2010, 38(23): 12778−12780, 12789. doi: 10.3969/j.issn.0517-6611.2010.23.173 [18] 刘建鑫, 杨柳慧, 魏冬霞, 等. 芍药属组内组间杂交及部分后代核型分析与SSR鉴定[J]. 北京林业大学学报, 2017, 39(4):72−78. Liu J X, Yang L H, Wei D X, et al. Intrasectional and intersectional crossbreeding of Paeonia and karyotype analysis and SSR identification of some hybrids[J]. Journal of Beijing Forestry University, 2017, 39(4): 72−78. [19] 王辉, Pawan K, 李双铃, 等. SSR分子标记在花生杂种鉴定中的应用[J]. 福建农林大学学报 (自然科学版), 2015, 44(4):350−354. Wang H, Pawan K, Li S L, et al. Application of SSR markers in peanut F1 hybrid identification[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(4): 350−354. [20] 王明启, 张银慧, 陈宝晶. 蔷薇属植物抗寒性指标的研究[J]. 吉林林学院学报, 1993, 9(1):51−58. Wang M Q, Zhang Y H, Chen B J. Study on hardiness indicators of the genus Rosa[J]. Journal of Jilin Forestry University, 1993, 9(1): 51−58. [21] 白锦荣. 部分蔷薇属种质资源亲缘关系分析及抗白粉病育种[D]. 北京: 北京林业大学, 2009. Bai J R. Analysis of genetic relationships between wild species and Chinese traditional roses and powdery mildew resistance breeding [D]. Beijing: Beijing Forestry University, 2009. [22] 赵红霞. 蔷薇属植物与现代月季品种杂交及主要性状与SSR标记的连锁分析[D]. 北京: 北京林业大学, 2015. Zhao H X. Hybridizing between several Rosa species and modern rose cultivars and linkage analysis of main traits using SSR markers [D]. Beijing: Beijing Forestry University, 2015. [23] 李亚齐, 韩倩, 王泽翻, 等. 野生蔷薇和月季的杂交亲和性评价[J]. 江苏农业科学, 2013, 41(6):155−160. doi: 10.3969/j.issn.1002-1302.2013.06.059 Li Y Q, Han Q, Wang Z F, et al. Hybridization affinity evaluation between wild Rosa multiflora and Rosa chinensis[J]. Jiangsu Agricultural Sciences, 2013, 41(6): 155−160. doi: 10.3969/j.issn.1002-1302.2013.06.059 [24] 罗乐, 张启翔, 白锦荣, 等. 16个中国传统月季品种的核型分析[J]. 北京林业大学学报, 2009, 31(5):90−95. doi: 10.3321/j.issn:1000-1522.2009.05.016 Luo L, Zhang Q X, Bai J R, et al. Karyotype analysis of sixteen Chinese traditional rose cultivars[J]. Journal of Beijing Forestry University, 2009, 31(5): 90−95. doi: 10.3321/j.issn:1000-1522.2009.05.016 [25] 李懋学, 陈瑞阳. 关于植物核型分析的标准化问题[J]. 武汉植物学研究, 1985, 3(4):297−302. Li M X, Chen R Y. A suggestion on the standardization of karyotype analysis in plants[J]. Journal of Wuhan Botanical Research, 1985, 3(4): 297−302. [26] Stebbins G L. Chromosomal evolution in higher plants [M]. London: Edward Aronld, 1971: 87−93. [27] Arano H. Cytological studies in subfamily Carduoideae (Compo-sitae) of Japan IX[J]. Botanic Magazine., 1963, 76: 32−39. doi: 10.15281/jplantres1887.76.32 [28] Kuo S R, Wang T T, Huang T C. Karyotype analysis of some formosan gymnosperms[J]. Taiwania, 1972, 17(1): 66−80. [29] 于超. 四倍体月季遗传连锁图谱的构建及部分观赏性状的QTLs分析[D]. 北京: 北京林业大学, 2015. Yu C. Constructionof a genetic linkage map and QTLs analysis for phenotypic traits in tetraploid roses [D]. Beijing: Beijing Forestry University, 2015. [30] 白锦荣, 潘会堂, 张启翔. 月季SSR-PCR反应体系的建立和优化[J]. 华北农学报, 2009, 24(3):184−188. Bai J R, Pan H T, Zhang Q X. Optimization and establishment of SSR analysis system in roses (Rosa spp.)[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(3): 184−188. [31] 赵丹, 王飞, 酒立君, 等. 不同倍性柿品种的杂交亲和性及结实性研究[J]. 西北农林科技大学学报 (自然科学版), 2012, 40(7):141−148. Zhao D, Wang F, Jiu L J, et al. Study on cross compatibility and fecundity of different ploidy persimmon cultivars[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(7): 141−148. [32] 徐顺超, 管洁, 曹荷艳, 等. 百合杂交育种亲和性与染色体倍性相关性研究[J]. 分子植物育种, 2014, 12(2):316−322. Xu S C, Guan J, Cao H Y, et al. Study on the relationship between lily crossbreeding affinity and ploidy levels[J]. Molecular Plant Breeding, 2014, 12(2): 316−322. [33] 张正海, 康向阳. 植物2n配子发生及其遗传标记研究进展[J]. 遗传(北京), 2006, 28(1):105−109. doi: 10.3321/j.issn:0253-9772.2006.01.019 Zhang Z H, Kang X Y. Advances in researches on genetic markers of 2n gametes[J]. Hereditas (Beijing), 2006, 28(1): 105−109. doi: 10.3321/j.issn:0253-9772.2006.01.019 [34] Van Huylenbroeck J, Leus L, Van Bockstaele E. Interploidy-crosses in roses: use of triploids[J]. Acta Horticulturae, 2005, 690: 109−112. [35] 廖道龙, 谢利, 曾瑞珍, 等. 石斛属植物倍性与形态学性状的相关性研究[J]. 西北植物学报, 2012, 32(10):2023−2029. doi: 10.3969/j.issn.1000-4025.2012.10.014 Liao D L, Xie L, Zeng R Z, et al. Relationship between chromosome ploidy and morphology characters in Dendrobium[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(10): 2023−2029. doi: 10.3969/j.issn.1000-4025.2012.10.014 [36] 金亮, 薛庆中, 肖建富, 等. 不同倍性水稻植株茎解剖结构比较研究[J]. 浙江大学学报 (农业与生命科学版), 2009, 35(5):489−496. Jin L, Xue Q Z, Xiao J F, et al. Comparative studies on stem anatomical structure of rice plants with various ploidy level[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2009, 35(5): 489−496. [37] Li S B, Zhou N N, Zhou Q, et al. Inheritance of perpetual blooming in Rosa chinensis ‘Old Blush’[J]. Horticultural Plant Journal, 2015, 1(2): 108−112. [38] 马燕, 陈俊愉. 蔷薇属若干花卉的染色体观察[J]. 福建林学院学报, 1991, 11(2):215−218. Ma Y, Chen J Y. Chromosome studies of 7 roses[J]. Journal of Fujian College of Forestry, 1991, 11(2): 215−218. [39] 蹇洪英, 张颢, 王其刚, 等. 中国古老月季品种的核型研究[J]. 园艺学报, 2010, 37(1):83−88. Jian H Y, Zhang H, Wang Q G, et al. Karylogical study of Chinese old garden roses[J]. Acta Horticulturae Sinica, 2010, 37(1): 83−88. [40] 陈瑞阳. 中国主要经济植物基因组染色体图谱Ⅲ[M]. 北京: 科学出版社, 2003: 692−717. Chen R Y. Chromosome atlas of Chinese principal economic plantsⅢ [M]. Beijing: Science Press, 2003: 692−717. [41] 罗玉兰, 张冬梅. SSR标记及形态性状鉴定红刺玫和月季杂交F1后代[J]. 分子植物育种, 2007, 5(6):839−842. doi: 10.3969/j.issn.1672-416X.2007.06.014 Luo Y L, Zhang D M. Identification of F1 hybrids derived from the combinations of Rosa and modern rose by SSR markers and morphological traits[J]. Molecular Plant Breeding, 2007, 5(6): 839−842. doi: 10.3969/j.issn.1672-416X.2007.06.014 -