高级检索

    不同径级红松挥发性碳贡献变化特征及其影响因子分析

    朱一泓, 高露双, 贾勃, 张平瑞, 王寅鹏, 欧礼金

    朱一泓, 高露双, 贾勃, 张平瑞, 王寅鹏, 欧礼金. 不同径级红松挥发性碳贡献变化特征及其影响因子分析[J]. 北京林业大学学报, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289
    引用本文: 朱一泓, 高露双, 贾勃, 张平瑞, 王寅鹏, 欧礼金. 不同径级红松挥发性碳贡献变化特征及其影响因子分析[J]. 北京林业大学学报, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289
    Zhu Yihong, Gao Lushuang, Jia Bo, Zhang Pingrui, Wang Yinpeng, Ou Lijin. Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes[J]. Journal of Beijing Forestry University, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289
    Citation: Zhu Yihong, Gao Lushuang, Jia Bo, Zhang Pingrui, Wang Yinpeng, Ou Lijin. Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes[J]. Journal of Beijing Forestry University, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289

    不同径级红松挥发性碳贡献变化特征及其影响因子分析

    基金项目: 

    国家自然科学基金项目 31600509

    北京市级大学生创新创业训练项目 S201710022002

    详细信息
      作者简介:

      朱一泓。主要研究方向:森林经理学。Email:a20090439@163.com地址:100083  北京市海淀区清华东路35号北京林业大学117信箱

      责任作者:

      高露双,博士,副教授。主要研究方向:树木生长过程模拟。Email: gaolushuang@bjfu.edu.cn  地址:同上

    • 中图分类号: S718.55+6;S791.247

    Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes

    • 摘要:
      目的植物含碳率是研究森林碳储量的关键因素之一,精确测定含碳率及其影响因子有利于提高森林碳储量的预测准确率。
      方法以吉林蛟河阔叶红松成熟林固定样地内红松为研究对象,获取冷冻干燥、自然干燥和烘干干燥3种处理方式下的红松茎干连年含碳率,对比分析3种处理方式下不同径级红松含碳率年际变化特征。发现自然干燥含碳率波动较大,因此本文的挥发性碳贡献由冷冻干燥含碳率和烘干干燥含碳率来量化。通过比较大小径级红松挥发性碳贡献年际变化特征,分析其在时间尺度上的差异与稳定性,并构建挥发性碳贡献与气候因子和生长量等因子的相关关系,揭示影响挥发性碳贡献的主要因子。
      结果(1) 不同干燥方式仅对大径级红松的含碳率的测定结果有显著影响(P < 0.05),而3种干燥方式下小径级红松含碳率不存在显著差异。(2)红松挥发性碳贡献有一定阶段性。小径级红松挥发性碳贡献较大径级波动更大,小径级红松挥发性碳贡献最高和最低值分别为24.46%和0.03%,大径级红松挥发性碳贡献最高和最低值则为9.72%和1.18%,同时大径级红松挥发性碳贡献存在明显的滞后现象。(3)红松挥发性碳贡献主要受到冬季温度的影响,其中小径级红松挥发性碳贡献仅与当年12月的温度呈现显著负相关(P < 0.05),而大径级红松则与上一年12月的温度呈显著负相关(P < 0.05)。(4)当年1月降水对大径级红松挥发性碳贡献有促进作用(P < 0.05),而当年6月的干旱指数对小径级红松挥发性碳贡献有促进作用(P < 0.05)。推测挥发性碳可能与树木非生长季的生理活动有关。
      结论在评价森林碳储量时要考虑挥发性碳贡献,同时不能忽视径级差异的影响及挥发性碳的时间稳定性,从而实现对不同特征林分碳储量的精确估算。
      Abstract:
      ObjectiveCarbon content is one of the key factors when estimating carbon storage. Accurate measurement of carbon content and finding its influencing factors can improve the accuracy of the prediction of carbon storage.
      MethodTree cores collected in the plots of mature forests in the broardleaved Korean pine forest of Jiaohe, northeastern China were taken as samples in this study. Carbon content of frozen, oven-dried and natural air drying samples of Pinus koraiensis from 1987 to 2016 were attained in order to qualify the volatile carbon content and to compare the characteristics of the interannual variation of the carbon content attained by different drying methods. In this passage, volatile carbon content was qualified with frozen and oven-dried carbon content considering the relative stability of them. The relationship between volatile carbon content and three climate factors as well as size class and annual growth was developed.
      Result(1) The results showed that significant difference among carbon content of different drying methods was only found in trees of large diameter class.(2)The fluctuation characteristics of volatile carbon contribution differed in small and large class and the interannual variations were more remarkable in small class. The volatile carbon contribution reached 24.46% in small class and 9.72% in large class. Also, the volatile carbon contribution in large class lagged behind that of small class. (3)The volatile carbon contribution was mainly limited by the temperature in winter. In small class, the volatile carbon contribution showed negative response to temperature in December of that very year, while in large class, it responsed negatively to the temperature in last December. (4)The precipitation of this January had positive influence in volatile carbon contribution of large class and the volatile carbon contribution of small class showed positive response to PDSI of this June, which inspired us that the effect of volatile carbon may be related to trees' dormancy or other defensive mechanisms.
      ConclusionTherefore, it is necessary to take volatile carbon content into account while estimating the forest carbon storage without ignoring the influence of size class. It is also necessary to make a deep analysis of the influencing factors of volatile carbon contribution.
    • 致谢: 感谢工学院张扬老师提供冷冻干燥机器保证本实验可顺利进行,感谢黄思琪学姐、唐睿琳学姐和郝珉辉学长在冷冻干燥机和元素分析仪使用方面上的耐心指导与帮助。
    • 图  1   生长变化值计算方法

      2011年的生长变化值为(M2-M1)/M1,其中M1M2分别为前5年和后5年年轮宽度的平均值。

      Figure  1.   Calculation methods of growth change

      Growth change in 2011 is(M2-M1)/M1, where M1, M2 refer to the mean ring width of the last five years and the after five years.

      图  2   不同干燥方式下大小径级红松含碳率年际变化

      S代表小径级,L代表大径级。下同。

      Figure  2.   Interannual dynamics of carbon content of Pinus koraiensis at different diameter classes under different drying methods

      S means small diameter class, L means large diameter class. The same below.

      图  3   不同干燥方式下大小径级红松含碳率滑动标准差变化

      Figure  3.   Moving standard deviation of annual carbon content of Pinus koraiensis at different diameter classes under different drying methods

      图  4   大小径级红松挥发性碳贡献年际变化

      Figure  4.   Interannual dynamics of volatile carbon contribution of Pinus koraiensis at different diameter classes

      图  5   大小径级红松挥发性碳贡献滑动标准差变化

      Figure  5.   Moving standard deviation of annual contribution of volatile carbon content of Pinus koraiensis at different diameter classes

      图  6   大小径级红松生长变化百分率

      Figure  6.   Percent change of growth of Pinus koraiensis at different diameter classes

      表  1   大小径级红松挥发性碳贡献与温度的相关关系

      Table  1   Correlations between volatile carbon contribution and temperature for P. koraiensis of large and small diameter classes

      月份 Month大径级 Large diameter class小径级 Small diameter class
      当年温度 Temperature
      in the very year
      上一年温度 Temperature
      in the previous year
      当年温度 Temperature
      in the very year
      上一年温度 Temperature
      in the previous year
      rPrPr PrP
      1月 January-0.270.150 70.010.958 9-0.320.085 4-0.260.172 0
      2月 February-0.210.256 7-0.020.902 0-0.360.050 10.010.977 2
      3月 March-0.220.246 30.050.797 8-0.170.381 20.130.499 7
      4月 April-0.100.615 30.260.175 8-0.020.930 5-0.040.841 2
      5月 May0.220.253 00.170.373 20.090.643 7-0.080.666 3
      6月 June0.130.489 5-0.060.771 0-0.010.977 60.310.104 7
      7月 July0.180.335 00.200.286 3-0.150.432 20.010.961 7
      8月 August-0.050.773 40.030.870 90.050.808 50.070.701 7
      9月 September0.130.506 90.090.643 00.110.552 5-0.040.828 2
      10月 October-0.050.787 3-0.300.110 50.180.330 60.200.300 3
      11月 November-0.180.339 5-0.340.070 50.290.116 40.330.083 2
      12月 December-0.060.768 6-0.460.012 4*-0.390.032 5*-0.170.367 4
      年平均 Annual mean-0.220.235 7-0.220.257 5-0.270.146 3-0.040.822 6
      注:* P < 0.05相关性显著。下同。
      Notes: * represents signifieant correlation at P < 0.05 level. The same below.
      下载: 导出CSV

      表  2   大小径级红松挥发性碳贡献与降水的相关关系

      Table  2   Correlations between volatile carbon contribution and precipitation for P. koraiensis of large and small diameter classes

      月份 Month大径级 Large diameter class小径级 Small diameter class
      当年降水 Precipitation
      in the very year
      上一年降水 Precipitation
      in the previous year
      当年降水 Precipitation
      in the very year
      上一年降水 Precipitation
      in the previous year
      rPrPr PrP
      1月 January0.380.039 8*0.320.095 8-0.100.590 8-0.180.357 0
      2月 February-0.050.773 2-0.230.230 8-0.020.921 30.320.088 8
      3月 March0.110.546 7-0.140.475 3-0.080.673 9-0.050.801 2
      4月 April-0.100.585 40.190.317 70.310.099 3-0.140.476 9
      5月 May-0.080.669 8-0.160.396 3-0.010.942 40.200.288 5
      6月 June-0.200.299 60.220.256 20.280.129 4-0.270.155 1
      7月 July-0.060.765 5-0.270.159 00.170.380 70.030.891 8
      8月 August0.320.084 7-0.070.714 6-0.070.713 8-0.190.326 4
      9月 September-0.100.600 2-0.170.386 6-0.140.468 0-0.090.645 9
      10月 October0.250.182 2-0.160.417 7-0.230.216 2-0.340.072 7
      11月 November0.090.633 2-0.250.193 9-0.080.670 80.090.633 9
      12月 December-0.060.759 3-0.040.851 9-0.240.199 90.220.248 6
      年平均 Annual mean0.030.892 3-0.230.225 70.120.528 8-0.180.363 6
      下载: 导出CSV

      表  3   大小径级红松挥发性碳贡献与PDSI的相关关系

      Table  3   Correlations between volatile carbon contribution and PDSI for P. koraiensis of large and small diameter classes

      月份 Month大径级 Large diameter class小径级 Small diameter class
      当年PDSI PDSI
      in the very year
      上一年PDSI PDSI
      in the previous year
      当年PDSI PDSI
      in the very year
      上一年PDSI PDSI
      in the previous year
      rPrPr PrP
      1月 January-0.030.890 2-0.060.776 50.040.849 90.210.278 7
      2月 February-0.020.927 9-0.080.681 90.030.892 20.260.175 4
      3月 March0.030.876 5-0.130.516 70.030.885 00.240.204 2
      4月 April0.040.831 0-0.060.755 90.110.577 00.150.439 0
      5月 May-0.030.866 6-0.170.379 40.150.414 20.210.264 3
      6月 June-0.090.653 8-0.060.749 10.370.041 2*0.070.708 4
      7月 July0.000.986 2-0.080.665 10.360.054 10.100.595 4
      8月 August0.080.689 5-0.110.555 80.220.232 70.070.710 2
      9月 September0.080.663 7-0.180.348 90.090.618 50.040.830 9
      10月 October0.160.396 6-0.160.409 50.070.698 00.030.876 5
      11月 November0.170.378 2-0.170.364 90.070.714 10.070.720 6
      12月 December0.150.433 1-0.120.520 10.050.809 50.050.807 9
      年平均 Annual mean0.060.762 5-0.140.480 80.150.436 10.140.460 6
      下载: 导出CSV

      表  4   大小径级红松挥发性碳贡献与生长量及生长变化率相关关系

      Table  4   Correlations between volatile carbon contribution and tree ring growth and growth rate of Pinus koraiensis at different diameter classes

      项目 Item当年生长量 Increment
      in the very year
      上一年生长量 Increment
      in the previous year
      当年生长变化率 Growth
      change rate in the very year
      上一年生长变化率 Growth
      change rate in the previous year
      rPrPrPrP
      大径级 Large diameter class-0.100.612 8-0.130.504 40.040.879 40.080.723 7
      小径级 Small diameter class-0.040.836 20.020.906 40.100.681 90.130.596 2
      下载: 导出CSV
    • [1] 樊星, 田大伦, 樊巍, 等.黄淮海平原主要农林复合树种的含碳率研究[J].中南林业科技大学学报, 2014, 34(6):85-87, 93. doi: 10.3969/j.issn.1673-923X.2014.06.017

      Fan X, Tian D L, Fan W, et al. Carbon content of main agro-forestry tree species in the North China Plain[J]. Journal of Central South University of Forestry & Technology, 2014, 34(6): 85-87, 93. doi: 10.3969/j.issn.1673-923X.2014.06.017

      [2] 刘维, 张晓丽, 马菁.鹫峰国家森林公园主要乔木树种含碳率分析[J].西北林学院学报, 2011, 26(5):214-218. http://d.old.wanfangdata.com.cn/Periodical/xblxyxb201105044

      Liu W, Zhang X L, Ma J. Carbon content rate analysis on the main arbor species in Jiufeng National Forest Park[J]. Journal of Northwest Forestry University, 2011, 26(5): 214-218. http://d.old.wanfangdata.com.cn/Periodical/xblxyxb201105044

      [3] 季波, 何建龙, 李娜, 等.宁夏贺兰山主要森林树种含碳率分析[J].水土保持通报, 2015, 35(2): 332-335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbctb201502061

      Ji B, He J L, Li N, et al. Carbon content rate analysis in main tree species of forest in Helan Mountain of Ningxia Area[J]. Bulletin of Soil and Water Conservation, 2015, 35(2): 332-335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbctb201502061

      [4] 于颖, 范文义, 李明泽.东北林区不同尺度森林的含碳率[J].应用生态学报, 2012, 23(2):341-346. http://d.old.wanfangdata.com.cn/Periodical/yystxb201202007

      Yu Y, Fan W Y, Li M Z. Forest carbon rates at different scales in Northeast China forest area[J]. Chinese Journal of Applied Ecology, 2012, 23(2): 341-346. http://d.old.wanfangdata.com.cn/Periodical/yystxb201202007

      [5]

      Margart K, Alvaro C, Tim M, et al. Carbon storage of harvest-age teak(Tectona grandis) plantations, Panama[J].Forest Ecology and Management, 2003, 173: 213-225. doi: 10.1016/S0378-1127(02)00002-6

      [6]

      Doganay T. Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey[J]. Scandinavian Journal of Forest Research, 2009, 24: 394-402. doi: 10.1080/02827580903164471

      [7]

      Lamlom S H, Savidge R A. A reassessment of carbon content in wood: variation within and between 41 North American species[J]. Biomass & Bioenergy, 2003, 25: 381-388. http://www.sciencedirect.com/science/article/pii/S0961953403000333

      [8]

      Martin A R, Thomas S C. A reassessment of carbon content in tropical trees[J/OL]. PLoS One, 2011, 6(8): e23533[2017-11-10].https://doi.org/10.1371/journal.pone.0023533.

      [9]

      Gao B L, Anthony R T, Han Y H, et al. Variation in total and volatile carbon concentration among the major tree species of the boreal forest[J]. Forest Ecology and Management, 2016, 375: 191-199. doi: 10.1016/j.foreco.2016.05.041

      [10]

      Thomas S C, Malczewski G. Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction[J]. Journal of Environmental Management, 2007, 85: 659-662. http://www.sciencedirect.com/science/article/pii/S0301479706002775

      [11] 范春楠.吉林省森林植被碳估算及其分布特征[D].哈尔滨: 东北林业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10225-1014410161.htm

      Fan C N. The carbon distribution characteristic and storage of forest vegetation in Jilin Province[D].Harbin: Northeast Forestry University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10225-1014410161.htm

      [12] 刘实, 闫敏华, 隋波.东北三省冬季气温变化的有关研究进展[J].气候变化研究进展, 2009, 5(6): 357-361 doi: 10.3969/j.issn.1673-1719.2009.06.007

      Liu S, Yan M H, Sui B. Advances in the research of winter air temperature variation of three Provinces in Northeast China[J]. Advances in Climate Change Research, 2009, 5(6): 357-361. doi: 10.3969/j.issn.1673-1719.2009.06.007

      [13] 李建, 彭鹏, 何怀江, 等.采伐对吉林蛟河针阔混交林空间结构的影响[J].北京林业大学学报, 2017, 37(9): 48-57. doi: 10.13332/j.1000-1522.20170220

      Li J, Peng P, He H J, et al.Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China[J].Journal of Beijing Forestry University, 2017, 39(9): 48-57. doi: 10.13332/j.1000-1522.20170220

      [14] 王晓春, 赵玉芳.黑河胜山国家自然保护区红松和红皮云杉生长释放判定及解释[J].生态学报, 2011, 31(5): 1230-1239. http://d.old.wanfangdata.com.cn/Periodical/stxb201105005

      Wang X C, Zhao Y F. Determination and explanation of the growth and release of Korean pine and Picea koraiensis in the Heishan National Nature Reserve of Heihe[J].Acta Ecologica Sinica, 2011, 31(5): 1230-1239. http://d.old.wanfangdata.com.cn/Periodical/stxb201105005

      [15]

      Martin A R, Thomas S C. Size-development changes in leaf and wood chemical traits in two Caribbean rainforest trees[J].The Physiology Advance Access, 2013, 33(12):1-13. http://www.ncbi.nlm.nih.gov/pubmed/24336517

      [16]

      Kerrie M S, Peter B R, Christopher H L. Sizerelated shifts in carbon gain and growth responses to light differ among rainforest evergreens of contrasting shade tolerance[J]. Oecologia, 2018, 187:609-623. doi: 10.1007/s00442-018-4125-3

      [17]

      Martin A R, Thomas S C, Zhao Y. Size-dependent changes in wood chemical traits: a comparison of neotropical saplings and large trees[J]. AoB Plants, 2013, 5:1-14. http://www.researchgate.net/publication/275115145_Size-dependent_changes_in_wood_chemical_traits_a_comparison_of_neotropical_saplings_and_large_trees

      [18] 张慧东, 李军, 赵俊卉, 等.寒温带非生长季环境气象要素对兴安落叶松影响分析[J].内蒙古农业大学学报, 2007, 28(4):79-84. http://d.old.wanfangdata.com.cn/Periodical/nmgnydxxb200704018

      Zhang H D, Li J, Zhao J H, et al. Analysis of meteorological elements on dahurian larch(Larix gmelinii) forest in non-cropping season in cold-temperate zone[J]. Journal of Inner Mongolia Agricultural University, 2007, 28(4): 79-84. http://d.old.wanfangdata.com.cn/Periodical/nmgnydxxb200704018

      [19] 张宁, 李宝富, 徐彤彤, 等.1960-2012年全球胡杨分布区干旱指数时空变化特征[J].干旱区资源与环境, 2017, 31(7):121-126. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201707021

      Zhang N, Li B F, Xu T T, et al. Spatiotemporal variations of drought index in Populus euphratica global distribution area during the past 50 years (1960-2012)[J]. Journal of Arid Land Resources and Environment, 2017, 31(7):121-126. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201707021

      [20] 吴家兵, 关德新, 施婷婷, 等.非生长季长白山红松针阔叶混交林CO2通量特征[J].林业科学, 2006, 4(9): 1-6. http://d.old.wanfangdata.com.cn/Periodical/lykx200609001

      Wu J B, Guan D X, Shi T T, et al. Non-growing seasons CO2 flux of a broad-leaved Korean pine forest in Changbai Mountain[J]. Scientia Silvae Sinicae, 2006, 4(9): 1-6. http://d.old.wanfangdata.com.cn/Periodical/lykx200609001

      [21] 张强, 郭传友, 张兴旺, 等.基于光合作用和抗氧化机制的南方铁杉和褐叶青冈越冬策略研究[J].植物研究, 2015, 35(2):200-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyj201502007

      Zhang Q, Guo C Y, Zhang X W, et al. Photosynthesis and antioxidant defense strategies in overwintering plants of Tsuga chinensis and Cyclobalanopsis stewardiana[J]. Bulletin of Botanical Research, 2015, 35(2):200-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyj201502007

      [22] 范春雨, 张春雨, 赵秀海.择伐对吉林蛟河阔叶红松林群落结构及动态的影响[J].生态学报, 2017, 37(20): 6668-6678. http://d.old.wanfangdata.com.cn/Periodical/stxb201720003

      Fan C Y, Zhang C Y, Zhao X H, et al. Effects of selective harvest on community structure and dynamics in a mixed broad-leaved Korean pine forest in Jiaohe, Jilin Province[J]. Acta Ecologica Sinica, 2017, 37(20): 6668-6678. http://d.old.wanfangdata.com.cn/Periodical/stxb201720003

    图(6)  /  表(4)
    计量
    • 文章访问数:  1615
    • HTML全文浏览量:  343
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-09-13
    • 修回日期:  2018-11-26
    • 发布日期:  2018-12-31

    目录

      /

      返回文章
      返回
      x 关闭 永久关闭