Simulation model of crown profile for Chinese fir (Cunninghamia lanceolata) in different age groups
-
摘要: 为了对杉木不同龄组树冠形态进行数学模拟,运用非线性回归筛选有效变量的方法将相对树冠半径(RCRj)和相对树冠长度(RCLj)确立为树冠形态模型的因变量和自变量。选取福建省顺昌县297株杉木标准木的1 485个树冠半径测量值,基于8大类模型分别建立不同龄组的树冠最优模型。对最优模型进行误差和残差分析、模型检验、生物学意义评估,结果表明:幼龄林、中龄林和近成熟林时期拟合效果最优的模型分别是Cubic、Poly4和GaussAmp。使用本文建立的树冠轮廓模型预估树冠形态时,只需测量全树高、最大树冠半径和最大树冠长度。树冠轮廓模型是生长和收获模型的重要组成部分,同时对于评价林木间的竞争、森林小气候和生物多样性也至关重要。Abstract: In order to model the crown profile by mathematical simulation for Chinese fir (Cunninghamia lanceolata) in different age groups, this study utilized the nonlinear regression method to select the effective variables, i.e. the relative crown radius (RCRj) as the dependent variable and relative crown length (RCLj) as the independent variable for the crown profile model. Using data from 1 485 measurements of crown radius with 297 sample trees of Chinese fir at Shunchang County of Fujian Province, the optimal crown profile models in the different age groups were established based on 8 kinds of foundation models. The analysis of error and residual, model test and biological evaluation were carried out for the optimal crown profile models. Results showed that the optimal crown profile models of the young growth, half-mature, and near-mature and mature forests were the Cubic, Poly4 and GaussAmp, respectively. The crown profile models developed can be used to estimate the crown profile which only requires to measure the total tree height, the largest crown radius and length. Such models are important components of growth and yield models, and are also crucial for assessing the level of competition, forest microclimate and biodiversity.
-
Key words:
- plantations /
- crown profile /
- crown length /
- models fitting
-
[1] ZHAO M, XIANG W, PENG C, et al. Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model[J]. Forest Ecology and Management, 2009, 257(6): 1520-1531. [2] FENG L. Theory of regression analysis and SPSS actual operation[M]. Beijing: China Finance Press, 2004. [3] State Forestry Administration. NFI technical regulations[R]. Beijing: State Forestry Administration,2004. [4] MA X, HEAL K V, LIU A, et al. Nutrient cycling and distribution in different-aged plantations of Chinese fir in southern China[J]. Forest Ecology and Management, 2007, 243(1): 61-74. [5] BIGING G S, DOBBERTIN M. Evaluation of competition indices in individual tree growth models[J]. Forest Science, 1995, 41(2): 360-377. [6] MONSERUD R A, STERBA H. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria[J]. Forest Ecology and Management, 1996, 80(1): 57-80. [7] CARVALHO J P, PARRESOL B R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.)[J]. Forest Ecology and Management, 2003, 179(1): 269-276. [8] PUKKALA T, BECKER P, KUULUVAINEN T, et al. Predicting spatial distribution of direct radiation below forest canopies[J]. Agricultural and Forest Meteorology, 1991, 55(3): 295-307. [9] WEISKITTEL A R, SEYMOUR R S, HOFMEYER P V, et al. Modelling primary branch frequency and size for five conifer species in Maine, USA[J]. Forest Ecology and Management, 2010, 259(10): 1912-1921. [10] MÄKINEN H, OJANSUU R, SAIRANEN P, et al. Predicting branch characteristics of Norway spruce (Picea abies (L.) Karst.) from simple stand and tree measurements[J]. Forestry, 2003, 76(5): 525-546. [11] RUSSELL M B, WEISKITTEL A R. Maximum and largest crown width equations for 15 tree species in Maine[J]. Northern Journal of Applied Forestry, 2011, 28(2): 84-91. [12] FU L, SUN H, SHARMA R, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China[J].Forest Ecology and Management, 2013,302:210-220. [13] MITCHELL K J. Dynamics and simulated yield of Douglas-fir[J]. Forest Science, 1975, 21(Suppl.17): a0001-z0001. [14] OTTORINI J M. Growth and development of individual Douglas-fir in stands for applications to simulation in silviculture[J]. Annals of Forest Science, 1991, 48(6): 651-666. [15] GILL S J, BIGING G S. Autoregressive moving average models of crown profiles for two California hardwood species[J]. Ecological Modeling, 2002,152(2-3):213-226. [16] BIGING G S, WENSEL L C. Estimation of crown form for six conifer species of northern California[J]. Canadian Journal of Forest Research, 1990, 20(8): 1137-1142. [17] ZEIDE B, PFEIFER P. A method for estimation of fractal dimension of tree crowns[J]. Forest Science, 1991, 37(5): 1253-1265. [18] MARSHALL D D, JOHNSON G P, HANN D W. Crown profile equations for stand-grown western hemlock trees in northwestern Oregon[J]. Canadian Journal of Forest Research, 2003, 33(11): 2059-2066. [19] CRECENTE-CAMPO F, MARSHALL P, LEMAY V, et al. A crown profile model for Pinus radiate D. Don in northwestern Spain[J]. Forest Ecology and Management, 2009, 257(12): 2370-2379. [20] BALDWIN V C, Jr., PETERSON K D. Predicting the crown shape of loblolly pine trees[J]. Canadian Journal of Forest Research, 1997, 27(1): 102-107. [21] CRECENTE-CAMPO F, ÁLVAREZ-GONZÁLEZ J G, CASTEDO-DORADO F, et al. Development of crown profile models for Pinus pinaster Ait. and Pinus sylvestris L. in northwestern Spain[J]. Forestry, 2013, 86(4): 481-491. [22] HANN D W. An adjustable predictor of crown profile for stand-grown Douglas-fir trees[J]. Forest Science, 1999, 45(2): 217-225. [23] RAUTIAINEN M, STENBERG P. Simplified tree crown model using standard forest mensuration data for Scots pine[J]. Agricultural and Forest Meteorology, 2005, 128(1): 123-129. [24] LIU Y, KANG X, GUO Y, et al. A nonlinear-matrix model for the prediction of mixed uneven-aged forests growth with Fortran program in Changbai Mountain, China [J]. International Journal of Advancements in Computing Technology, 2012, 4(22): 163-172. [25] DAVIES O, POMMERENING A. The contribution of structural indices to the modelling of Sitka spruce (Picea sitchensis) and birch (Betula spp.) crowns[J]. Forest Ecology and Management, 2008, 256(1): 68-77. [26] CONDÉS S, STERBA H. Derivation of compatible crown width equations for some important tree species of Spain[J]. Forest Ecology and Management, 2005, 217(2): 203-218. [27] PRETZSCH H, BIBER P, DˇURSKY'J. The single tree-based stand simulator SILVA: construction, application and evaluation[J]. Forest Ecology and Management, 2002, 162(1): 3-21. [28] Orignilab Corporation. Origin 8 user guide[M]. Northampton: Orignlab Corporation, 2007. [29] KVÅLSETH T O. Cautionary note about R2[J]. The American Statistician, 1985, 39(4): 279-285. [30] BECHTOLD W A. Largest-crown-width prediction models for 53 species in the western United States[J]. Western Journal of Applied Forestry, 2004, 19(4): 245-251. [31] 冯力. 回归分析方法、原理及SPSS实际操作[M]. 北京:中国金融出版社, 2004. [32] 国家林业局. 国家森林资源连续清查技术规定[R]. 北京: 国家林业局, 2004. [33] RAUTIAINEN M, MÕTTUS M, STENBERG P, et al. Crown envelope shape measurements and models[J]. Silva Fennica, 2008, 42(1): 19-33. [34] CRECENTE-CAMPO F. Modelo de crecimiento de árbol individual para Pinus radiata D. Don en Galicia[D]. Lugo: University of Santiago de Compostela, 2008. -

计量
- 文章访问数: 695
- HTML全文浏览量: 46
- PDF下载量: 9
- 被引次数: 0