Effects of stock density on carbon storage in Fraxinus mandshurica plantations
-
摘要: 为了解林分密度对水曲柳人工林碳储量的影响规律,在黑龙江省帽儿山地区,选择不同造林密度(2 200、2 500、4 400、10 000株/hm2)的13年生水曲柳人工林,采用样地调查的方法在每种密度处理各设置3块样地,进行了林分碳储量与乔木层年净固碳量的测定。结果表明:水曲柳林分密度增加,其乔木层、凋落物层、土壤层以及生态系统碳储量均随之增大,而林下植被层碳储量随林分密度的增加而减小。其中不同密度林分的乔木层、林下植被层、土壤层以及生态系统碳储量差异均显著(P<0.05),而凋落物层在各密度之间差异不显著(P>0.05)。4种密度水曲柳林分碳储量的空间分配均表现为:土壤层>乔木层>凋落物层>林下植被层,土壤层和乔木层碳储量分别占生态系统总碳储量的79.6%~82.4%和14.1%~17.0%,是人工林碳库的主要组成部分。此外,水曲柳人工林乔木层的年净固碳量随林分密度的增加而增大,造林密度为2 200株/hm2林分的年净固碳量明显低于其他密度林分(P<0.05)。上述结果说明提高造林密度对增加幼龄林分碳储量具有显著作用。Abstract: Stock density is the important factor influencing the carbon storage of forest, but currently we know little about the effects of stock density on carbon storage of forest. In order to investigate the effects of stock density on carbon storage in Fraxinus mandshurica plantations, we measured carbon storage and annual carbon accumulation in 13-year-old Fraxinus mandshurica plantations with different densities(2 200, 2 500, 4 400, 10 000 tree/ha)in Maoershan area of Heilongjiang Province, northeastern China. We adopted the method of sample-plot survey to set three plots respectively in each treatment, and estimated the carbon storage of stand and the annual net carbon fixation of tree layer. The results showed that the carbon storage in tree, litter, soil layers and ecosystem increased with stock density increasing, while the carbon storage in understory vegetation layer decreased with stand density increasing, in which there was a significant difference(P < 0.05)in tree, understory vegetation layer, soil layer and ecosystem with different densities on carbon storage, but there was no significant difference(P>0.05)in litter layer. The spatial allocation of carbon storage in plantations with four densities was soil layer > tree layer > litter layer > understory vegetation layer. The carbon storage in soil and tree layer, which were main components in carbon pool of plantations, accounted for 79.6%-82.4% and 14.1%-17.0% of the ecosystem, respectively. In addition, the annual net carbon fixation in tree layer increased with stock density increasing, which was obviously lower(P < 0.05)in plantations with 2 200 tree/ha than others. Above results suggest that improving planting density plays a significant role in increasing carbon storage of young stands.
-
Keywords:
- Fraxinus mandshurica plantations /
- carbon storage /
- stock density /
- ecosystem
-
-
表 1 不同林分密度水曲柳林基本状况
Table 1 Basic state of Fraxinus mandshurica plantations with different densities
密度类型
Density type初植密度/(株·hm-2)
Planting density/(tree·ha-1)现存密度/(株·hm-2)
Existing density/(tree·ha-1)平均胸径/cm
Mean DBH/cm平均树高/m
Mean tree height/m郁闭度
Crown densityⅠ 2 200 1 325 8.8 10.3 0.7 Ⅱ 2 500 2 141 8.1 9.9 0.9 Ⅲ 4 400 2 766 7.4 9.2 0.9 Ⅳ 10 000 4 125 6.5 8.3 0.9 表 2 不同林分密度水曲柳人工林乔木层碳储量
Table 2 Carbon storage of tree layer in Fraxinus mandshurica plantations with different stock densities
t·hm-2 t·ha-1 密度类型Density type 干Stem 枝Branch 叶Leaf 根Root 总量Total Ⅰ 12.81±0.34a(65.2%) 2.74±0.12a(13.9%) 0.61±0.01a(3.1%) 3.51±0.11a(17.8%) 19.67±0.59a(100%) Ⅱ 17.14±0.65ab(65.8%) 3.47±0.16a(13.3%) 0.82±0.03b(3.2%) 4.61±0.19ab(17.7%) 26.04±1.02ab(100%) Ⅲ 18.07±1.00b(66.3%) 3.52±0.24a(12.9%) 0.88±0.05b(3.2%) 4.80±0.29b(17.6%) 27.27±1.58b(100%) Ⅳ 20.02±2.40b(66.9%) 3.67±0.55a(12.3%) 0.99±0.11b(3.3%) 5.22±0.67b(17.5%) 29.90±3.73b(100%) 表 3 不同林分密度水曲柳人工林土壤层碳储量
Table 3 Carbon storage of soil layer in Fraxinus mandshurica plantations with different densities
t·hm-2 t·ha-1 密度类型Density type 0~20 cm 20~40 cm 40~60 cm 总量Total Ⅰ 69.72±2.07a 28.67±0.44a 16.95±0.64a 115.34±3.14a Ⅱ 73.68±5.99ab 35.80±2.05a 16.67±0.60a 126.15±6.12ab Ⅲ 80.11±1.53ab 38.86±2.34a 16.77±1.16a 135.74±2.05ab Ⅳ 85.05±12.14b 36.26±4.05a 18.37±0.65a 139.68±5.46b 表 4 不同林分密度水曲柳人工林年净固碳量
Table 4 Annual carbon accumulation in Fraxinus mandshurica plantations with different stock densities
t·hm-2·a-1 t·ha-1·year-1 密度类型Density type 干Stem 枝Branch 叶Leaf 根Root 凋落物Litter 总计Total Ⅰ 0.97±0.02a 0.21±0.01a 0.05±0.00a 0.27±0.01a 1.12±0.06a 2.62±0.10a Ⅱ 1.29±0.04b 0.26±0.01a 0.06±0.00ab 0.35±0.01b 1.32±0.03b 3.28±0.08b Ⅲ 1.37±0.07b 0.27±0.02a 0.07±0.00b 0.36±0.02b 1.48±0.05c 3.56±0.16b Ⅳ 1.48±0.16b 0.28±0.04a 0.07±0.01b 0.38±0.05b 1.52±0.03c 3.73±0.26b -
[1] SEDJO R A. The carbon cycle and global forest ecosystem[J]. Water, Air, and Soil Pollution, 1993, 70(1-4): 295-307. doi: 10.1007/BF01105003
[2] PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world's forests[J]. Science Express, 2011, 333: 988-993. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21764754
[3] JANDL R, LINDNERL M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration[J]. Geoderma, 2007, 137(3-4): 253-268. doi: 10.1016/j.geoderma.2006.09.003
[4] LAPORTE M F, DUCHESNE L C, MORRISON I K. Effect of clearcutting, selection cutting, shelterwood cutting and microsites on soil surface CO2 efflux in a tolerant hardwood ecosystem of northern Ontario[J]. Forest Ecology and Management, 2003, 174(1-3): 565-575. doi: 10.1016/S0378-1127(02)00072-5
[5] NOH N J, KIM C, BAE S W, et al. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities[J]. Journal of Plant Ecology, 2013, 6(5): 368-379. doi: 10.1093/jpe/rtt007
[6] 方晰, 田大伦, 项文化, 等.不同密度湿地松人工林中碳的积累与分配[J].浙江林学院学报, 2003, 20(4): 374-379. doi: 10.3969/j.issn.2095-0756.2003.04.010 FANG X, TIAN D L, XIANG W H, et al. Carbon accumulation and allocation with different density in slash pine plantation[J]. Journal of Zhejiang Forestry College, 2003, 20(4): 374-379. doi: 10.3969/j.issn.2095-0756.2003.04.010
[7] FERNÁNDEZ-NÚÑEZ E, RIGUEIRO-RODRÍGUEZ A, MOSQUERA-LOSADA M R. Carbon allocation dynamics one decade after afforestation with Pinus radiata D. Don and Betula alba L. under two stand densities in NW Spain[J]. Ecological Engineering, 2010, 36(7): 876-890. doi: 10.1016/j.ecoleng.2010.03.007
[8] 李瑞霞, 郝俊鹏, 闵建刚, 等.不同密度侧柏人工林碳储量变化及其机理初探[J].生态环境学报, 2012, 21(8): 1392-1397. http://d.old.wanfangdata.com.cn/Periodical/tryhj201208004 LI R X, HAO J P, MIN J G, et al. The change and preliminary research of carbon storage with different density in Platycladus orientalis (Linn) Franco plantation[J]. Ecology and Environmental Sciences, 2012, 21(8): 1392-1397. http://d.old.wanfangdata.com.cn/Periodical/tryhj201208004
[9] 潘辉, 赵凯, 王玉芹, 等.不同密度福建柏人工林碳储量研究[C]//第十二届中国科协年会第五分会场"全球气候变化与碳汇林业学术研讨会"优秀论文集.福州: 第十二届中国科学技术协会, 2010: 36-39. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7334401 PAN H, ZHAO K, WANG Y Q, et al. The research on carbon storage in different density Fokienia hodginsii plantations[C]//The 12th annual meeting of China Association for Science and Technology at the venue 5"Global Climate Change and Carbon Sink Forestry Academic Seminar"excellenet essays. Fuzhou: The 12th annual meeting of China Association for Science and Technology, 2010: 36-39. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7334401
[10] 梅莉, 张卓文, 谷加存, 等.水曲柳和落叶松人工林乔木层碳、氮储量及分配[J].应用生态学报, 2009, 20(8): 1791-1796. http://d.old.wanfangdata.com.cn/Periodical/yystxb200908002 MEI L, ZHANG Z W, GU J C, et al. Carbon and nitrogen storages and allocation in tree layer of Fraxinus mandshurica and Larix gmelinii plantations[J]. Chinese Journal of Applied Ecology, 2009, 20(8): 1791-1796. http://d.old.wanfangdata.com.cn/Periodical/yystxb200908002
[11] WANG C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1-3): 9-16. doi: 10.1016/j.foreco.2005.10.074
[12] 冯宗炜, 王效科, 吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社, 1999. FENG Z W, WANG X K, WU G. Biomass and productivity of forest ecosystem in China[M]. Beijing: Science Press, 1999.
[13] 王春梅, 邵彬, 王汝南.东北地区两种主要造林树种生态系统固碳潜力[J].生态学报, 2010, 30(7): 1764-1772. http://d.old.wanfangdata.com.cn/Periodical/stxb201007012 WANG C M, SHAO B, WANG R N. Carbon sequestration potential ecosystem of two main tree species in northeast China[J]. Acta Ecologica Sinica, 2010, 30(7): 1764-1772. http://d.old.wanfangdata.com.cn/Periodical/stxb201007012
[14] SCOTT N A, TATE K R, ROSS D J, et al. Processes influencing soil carbon storage following afforestation of pasture with Pinus radiate at different stocking densities in New Zealand[J]. Australian Journal of Soil Research, 2006, 44(2): 85-96. doi: 10.1071/SR05013
[15] HERNÁNDEZ J, DEL PINO A, VANCE E D, et al. Eucalyptus and Pinus stand density effects on soil carbon sequestration[J]. Forest Ecology and Management, 2016, 368: 28-38. doi: 10.1016/j.foreco.2016.03.007
[16] 王秀云, 孙玉军, 马炜.不同密度长白落叶松林生物量与碳储量分布特征[J].福建林学院学报, 2011, 31(3): 221-226. doi: 10.3969/j.issn.1001-389X.2011.03.007 WANG X Y, SUN Y J, MA W. Biomass and carbon storage distribution of different density in Larix olgensis plantation[J]. Journal of Fujian College of Forestry, 2011, 31(3): 221-226. doi: 10.3969/j.issn.1001-389X.2011.03.007
[17] 张国庆, 黄从德, 郭恒, 等.不同密度马尾松人工林生态系统碳储量空间分布格局[J].浙江林业科技, 2007, 27(6): 10-14. doi: 10.3969/j.issn.1001-3776.2007.06.003 ZHANG G Q, HUANG C D, GUO H, et al. Spatial distribution pattern of forest ecosystem with different density in Pinus massoniana plantation[J]. Journal of Zhejiang Forest Science and Technology, 2007, 27(6): 10-14. doi: 10.3969/j.issn.1001-3776.2007.06.003
[18] 吴增志, 杨瑞国, 徐效智, 等.杨树苗期合理密度规律及其在育林中的应用研究[J].河北林学院学报, 1994, 9(4): 273-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400178242 WU Z Z, YANG R G, XU X Z, et al. Reasonable law of density andits application in seedling stage of poplar[J]. Journal of Hebei Forestry College, 1994, 9(4): 273-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400178242
[19] 向元彬, 胡庭兴, 张健, 等.华西雨屏区不同密度巨桉人工林土壤呼吸特征[J].自然资源学报, 2011, 26(1): 79-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201101008 XIANG Y B, HU T X, ZHANG J, et al. Soil respiration in Eucalyptus grandis plantation with different density in rainy zone of west China[J]. Journal of Natural Resources, 2011, 26(1): 79-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzyxb201101008
[20] 方晰, 田大伦, 项文化.间伐对杉木人工林生态系统碳贮量及其空间分配格局的影响[J].中南林业科技大学学报, 2010, 30(11): 47-53. doi: 10.3969/j.issn.1673-923X.2010.11.010 FANG X, TIAN D L, XIANG W H. Effects of thinning on carbon storage and its space allocation pattern in Chinese fir plantation ecosystem[J]. Journal of Central South University of Forestry and Technology, 2010, 30(11): 47-53. doi: 10.3969/j.issn.1673-923X.2010.11.010
[21] 李国雷, 刘勇, 李瑞生, 等.油松叶凋落物分解速率、养分归还及组分对间伐强度的响应[J].北京林业大学学报, 2008, 30(5): 52-57. doi: 10.3321/j.issn:1000-1522.2008.05.009 LI G L, LIU Y, LI R S, et al. Responses of decomposition rate, nutrient return and composition of leaf litter to thinning intensities in Pinus tabulaeformis plantation[J]. Journal of Beijing Forestry University, 2008, 30(5): 52-57. doi: 10.3321/j.issn:1000-1522.2008.05.009
[22] MCMURTRIEM R E, MEDLYN B E, DEWAR R C. Increased understanding of nutrient immobilization in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years[J]. Tree Physiol, 2001, 21(12-13): 831-839. doi: 10.1093/treephys/21.12-13.831
[23] FONTAINE S, BARDOUX G, ABBADIE L, et al. Carbon input to soil may decrease soil carbon content[J]. Ecology Letters, 2004, 7(4): 314-320. doi: 10.1111/j.1461-0248.2004.00579.x
[24] 罗达, 史作民, 王卫霞, 等.南亚热带格木、马尾松幼龄人工纯林及其混交林生态系统碳氮储量[J].生态学报, 2015, 35(18): 6051-6059. http://d.old.wanfangdata.com.cn/Periodical/stxb201518016 LUO D, SHI Z M, WANG W X, et al. Carbon and nitrogen storage in monoculture and mixed young plantation stands of Erythrophleum fordii and Pinus massoniana in subtropical China[J]. Acta Ecologica Sinica, 2015, 35(18): 6051-6059. http://d.old.wanfangdata.com.cn/Periodical/stxb201518016
[25] HE Y, QIN L, LI Z, et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China[J]. Forest Ecology and Management, 2013, 295: 193-198. doi: 10.1016/j.foreco.2013.01.020
[26] SITTERS J, EDWARDS P J, OLDE VENTERINK H. Increases of soil C, N, and P pools along an acacia tree density gradient and their effects on trees and grasses[J]. Ecosystems, 2013, 16(2): 347-357. doi: 10.1007/s10021-012-9621-4