高级检索

    欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力

    张罡, 安海龙, 史军娜, 刘超, 田菊, 郭惠红, 夏新莉, 尹伟伦

    张罡, 安海龙, 史军娜, 刘超, 田菊, 郭惠红, 夏新莉, 尹伟伦. 欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力[J]. 北京林业大学学报, 2017, 39(4): 46-54. DOI: 10.13332/j.1000-1522.20160376
    引用本文: 张罡, 安海龙, 史军娜, 刘超, 田菊, 郭惠红, 夏新莉, 尹伟伦. 欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力[J]. 北京林业大学学报, 2017, 39(4): 46-54. DOI: 10.13332/j.1000-1522.20160376
    ZHANG Gang, AN Hai-long, SHI Jun-na, LIU Chao, TIAN Ju, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Deposition and absorption capacity of Populus deltoides × P. nigra to different size zinc oxide aerosol[J]. Journal of Beijing Forestry University, 2017, 39(4): 46-54. DOI: 10.13332/j.1000-1522.20160376
    Citation: ZHANG Gang, AN Hai-long, SHI Jun-na, LIU Chao, TIAN Ju, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Deposition and absorption capacity of Populus deltoides × P. nigra to different size zinc oxide aerosol[J]. Journal of Beijing Forestry University, 2017, 39(4): 46-54. DOI: 10.13332/j.1000-1522.20160376

    欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力

    基金项目: 

    2014内蒙古自治区科技重大专项“内蒙古生态屏障建设林业关键技术集成与示范” 

    林业公益性行业科研专项 201304301

    中国工程院咨询研究项目 2013-QTSHKJJH-01

    “十三五”国家科技支撑计划课题 2015BAD07B01

    详细信息
      作者简介:

      张罡。主要研究方向:植物抗逆生理生态学。Email:zhanggang@bjfu.edu.cn  地址:100083  北京市海淀区清华东路35号北京林业大学生物科学与技术学院

      责任作者:

      尹伟伦,教授,博士生导师。主要研究方向:植物抗逆生理及分子机制。Email: yinwl@bjfu.edu.cn  地址:同上

    • 中图分类号: S718.43

    Deposition and absorption capacity of Populus deltoides × P. nigra to different size zinc oxide aerosol

    • 摘要: 为揭示植物叶片对大气颗粒物的滞纳效应,本研究首次采用氧化锌(ZnO)纳米颗粒物模拟PM2.5等颗粒物在欧美杨DN-2叶片表面的沉降、附着和滞留过程,利用水洗法和电感耦合等离子体质谱(ICP-MS)分别测定叶片表面和组织内的ZnO含量,通过扫描电子显微镜对叶表形貌进行观察和附着颗粒物数量统计,定量研究欧美杨对不同粒径颗粒物的吸附和吸收能力及其光合生理的响应特征。结果表明:粒径约为30 nm(NPs)、100 nm(BPs)和1 μm(MPs)的3种ZnO气溶胶处理16 d后,欧美杨叶片表面对MPs的吸附质量最大,高达653.03 mg/g,显著高于NPs。而通过Image J软件统计叶表面颗粒物的数量发现,NPs处理下叶面附着颗粒物数量最多,BPs次之,MPs最少,说明颗粒物的粒径越小,分布在叶片表面的数量越多,但其在叶面附着质量较低。此外,通过对植物叶表形貌观察发现,颗粒物对气孔和角质层产生了负面影响,气孔轮廓不清晰,角质层皱折不规则。在模拟颗粒物环境中,欧美杨对粒径小于1 μm颗粒物均有一定量的吸收。与吸附质量不同,欧美杨叶片对NPs的吸收量显著高于BPs和MPs,在处理16 d后高达1.17 mg/g,分别是BPs和MPs的2.59和2.89倍,这表明粒径越小的颗粒物越容易被植物吸收进入体内。NPs、BPs和MPs处理16 d后,欧美杨叶片净光合速率(Pn)分别降低了22%、44%和19%,这是由气孔和非气孔因素共同导致的。
      Abstract: To investigate the deposition and absorption of particulate matters on leaves, this study firstly uses the zinc oxide (ZnO) nanoparticles to simulate sedimentation, attachment and retention of fine particulate matter (PM2.5) on Populus deltoides × P. nigra leaves. The contents of ZnO on the leaf surface and in the leaf tissue were quantitatively determined by water-washing and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Furthermore, ZnO particle number on the leaf surface and its microstructure were analyzed by an scan electron microscope (SEM)and the response characteristics of photosynthetic physiology was also investigated by the Li-COR 6400 portable photosynthesis system. The results showed that ZnO particles could be adhered by leaves which were treated with NPs (particles with a mean diameter of 30 nm), BPs (particles with a mean diameter of 100 nm) or MPs (particles with a mean diameter of 1 μm). The deposition capacity of Populus deltoides × P. nigra to different particles was mainly analyzed from two aspects of total quality and total particle number. The mass concentration of MPs on leaf surface was the highest after treated for 16 days, reaching 653.03 mg/g, which was significantly higher than NPs. Analyzed by Image J software, the number of particles on the foliar surface was the highest under NPs treatment, followed by BPs and MPs, indicating that the smaller the size of the particles were, the larger the number of particles distributed on the surface of the leaves, while the weight of the smaller particles was relatively lower. Moreover, P. deltoides × P. nigra could uptake particle less than 1 μm. Compared with weight of deposition, the uptake of NPs by leaves was higher, reaching 1.17 mg/g after 16 day treatment, which was 2.59 and 2.89 times of BPs and MPs, respectively. This indicated that the smaller size of particle was easily absorbed by plants. Phytotoxicity was tested for plants exposed to different size of ZnO aerosol. Leaf surface microstructure had obvious change, stomata was often filled with ZnO particles or was also clogged and injured cells, and slightly disturbed striations were also visible in the ZnO-treated leaves. Moreover, acute phytotoxicity was also observed in photosynthetic. After 16 days treatment of NPs, BPs and MPs, net photosynthetic rate (Pn) was reduced by 22%, 44% and 19%, respectively, which was caused by stomatal and non-stomatal factors.
    • 图  1   欧美杨叶片表面对不同粒径ZnO颗粒物的吸附

      a.未经ZnO处理;b.NPs处理;c.BPs处理;d.MPs处理。图像拍摄倍数均为500×。

      Figure  1.   Adhesion of ZnO particles on the adaxial surfaces of poplar leaves exposed to different size ZnO aerosol

      a, untreated with ZnO; b, NPs treated; c, BPs treated; d, MPs treated. Image magnification was 500×.

      图  2   不同处理时间下欧美杨叶片对不同粒径氧化锌颗粒物的吸附含量

      Figure  2.   Deposition of different size particles on poplar leaves exposed to different size ZnO aerosol

      图  3   不同处理时间下欧美杨叶片对不同粒径氧化锌颗粒物的吸收含量

      Figure  3.   Absorption of different size particles in poplar leaves exposed to different size ZnO aerosol

      图  4   不同处理时间下欧美杨对不同粒径颗粒物的吸收量与吸附量比值

      Figure  4.   Proportion between particle absorption and deposition on poplar leaves under different treating time

      图  5   不同粒径氧化锌颗粒物对欧美杨叶片光合参数的影响

      Figure  5.   Impacts of different size ZnO particles on photosynthetic characteristics of poplar leaves

      表  1   欧美杨叶片表面吸附颗粒物的粒径分布

      Table  1   Size distribution of the particles on the leaf surface of P. deltoides × P. nigra

      颗粒物粒径
      Particle size/μm
      NPsBPsMPs
      4 d16 d增长率
      Increasing rate
      4 d16 d增长率
      Increasing rate
      4 d16 d增长率
      Increasing rate
      0.1~0.5418.35±68.62737.28±125.391.76290.88±63.15534.52±196.321.8345.03±21.32143.2±63.593.18
      0.5~1.066.72±15.30176.49±23.652.6360.55±23.01182±72.303.01115.63±32.56433.23±145.203.74
      1.0~2.522.23±6.33151.68±69.356.854.83±20.3636.12±12.680.6551.52±15.9128.1±8.662.51
      >2.52.03±0.322.86±0.631.435.6±0.952.60±0.320.4642.84±0.674.25±0.321.40
      总个数
      Total number
      509.31 067.822.09411.87755.241.83224.99708.563.14
      注:NPs为粒径约30 nm的颗粒物; BPs为粒径约100 nm的颗粒物; MPs为粒径约1.0 μm的颗粒物。下同。数值为12个视野的平均值±SD,500×。Notes:NPs, particle average diameter about 30 nm; BPs, particle average diameter about 100 nm; MPs, particle average diameter about 1.0 μm. Same as below. Value was an average of 12 fields of view ±SD, 500×.
      下载: 导出CSV
    • [1]

      LI Z Q, NIU F, FAN J W, et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation[J]. Nature Geoscience, 2011, 4(12): 888-894. doi: 10.1038/ngeo1313

      [2]

      POSFAI M, BUSECK P R. Nature and climate effects of individual tropospheric aerosol particles[J]. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 17-43. doi: 10.1146/annurev.earth.031208.100032

      [3]

      WANG Y, WAN Q, MENG W, et al. Long-term impacts of aerosols on precipitation and lightning over the pearl river delta megacity area in China[J]. Atmospheric Chemistry and Physics, 2011, 11(23): 12421-12436. doi: 10.5194/acp-11-12421-2011

      [4]

      DING X, WANG M, CHU H, et al. Global gene expression profiling of human bronchial epithelial cells exposed to airborne fine particulate matter collected from Wuhan, China[J]. Toxicology Letters, 2014, 228(1): 25-33. doi: 10.1016/j.toxlet.2014.04.010

      [5]

      YU H, KAUFMAN Y J, CHIN M, et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing[J]. Atmospheric Chemistry and Physics, 2006, 6: 613-666. doi: 10.5194/acp-6-613-2006

      [6]

      MORGENSTERN V, ZUTAVERN A, CYRYS J, et al. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children[J]. Occupational and Environmental Medicine, 2007, 64(1): 8-16. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2092590

      [7]

      ARNOLD C. Disease burdens associated with PM2.5 exposure how a new model provided global estimates[J]. Environmental Health Perspectives, 2014, 122(4): 111-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94e90f9ebb63eb6ba27225396c6b8b9c

      [8]

      NGUYEN T, YU X, ZHANG Z, et al. Relationship between types of urban forest and PM2. 5 capture at three growth stages of leaves[J]. Journal of Environmental Sciences-China, 2015, 27: 33-41. doi: 10.1016/j.jes.2014.04.019

      [9] 刘庆倩, 石婕, 安海龙, 等.应用15N示踪研究欧美杨对PM2.5无机成分NH4+和NO3-的吸收与分配[J].生态学报, 2015, 35(19): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201519032

      LIU Q Q, SHI J, AN H L, et al. Absorption and distribution of NH4+ and NO3- in PM2.5 in Populus euramericana Neva. by 15N Tracing[J]. Acta Ecologica Sinica, 2015, 35(19): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201519032

      [10]

      HU Y, FERNANDEZ V, MA L, et al. Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide[J]. Frontiers in Plant Science, 2014, 5: 360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004618335

      [11] 安海龙, 刘庆倩, 曹学慧, 等.不同PM2.5污染区常见树种叶片对PAHs的吸收特征分析[J].北京林业大学学报, 2016, 38(1): 59-66. doi: 10.13332/j.1000--1522.20150164

      AN H L, LIU Q Q, CAO X H, et al. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. doi: 10.13332/j.1000--1522.20150164

      [12] 曹学慧, 安海龙, 刘庆倩, 等.欧美杨对PM2.5中重金属铅的吸附、吸收及适应性变化[J].生态学杂志, 2015, 34(12): 1-9. http://d.old.wanfangdata.com.cn/Periodical/stxzz201512015

      CAO X H, AN H L, LIU Q Q, et al. Adhesion and absorption of Pb in PM2.5 and adaptative changes in Populous euramericana[J]. Chinese Journal of Ecology, 2015, 34(12): 1-9. http://d.old.wanfangdata.com.cn/Periodical/stxzz201512015

      [13] 谢滨泽, 王会霞, 杨佳, 等.北京常见阔叶绿化植物滞留PM2.5能力与叶面微结构的关系[J].西北植物学报, 2014, 34(12): 2432-2438. doi: 10.7606/j.issn.1000-4025.2014.12.2432

      XIE B Z, WANG H X, YANG J, et al. Retention capability of PM2.5 and explanation by leaf surface microstructure of commom bread leaves plant species in Beijing[J]. Acta Botanica Borealioccidentalia Sinica, 2014, 34(12): 2432-2438. doi: 10.7606/j.issn.1000-4025.2014.12.2432

      [14]

      SONG Y S, MAHER B A, LI F, et al. Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution[J]. Atmospheric Environment, 2015, 105: 53-60. doi: 10.1016/j.atmosenv.2015.01.032

      [15]

      NOWAK D J, HIRABAYASHI S, BODINE A, et al. Modeled PM2.5 removal by trees in ten USA cities and associated health effects[J]. Environmental Pollution, 2013, 178: 395-402. doi: 10.1016/j.envpol.2013.03.050

      [16]

      HWANG H J, YOOK S J, AHN K H. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves[J]. Atmospheric Environment, 2011, 45(38): 6987-6994. doi: 10.1016/j.atmosenv.2011.09.019

      [17] 梁丹, 王彬, 王云琦, 等.北京市典型绿化灌木阻滞吸附PM2.5能力研究[J].环境科学, 2014, 35(9): 3605-3611. http://d.old.wanfangdata.com.cn/Periodical/hjkx201409055

      LIANG D, WANG B, WANG Y Q, et al. Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5[J]. Environmental Science, 2014, 35(9): 3605-3611. http://d.old.wanfangdata.com.cn/Periodical/hjkx201409055

      [18]

      GUO S, HU M, ZAMORA M L, et al. Elucidating severe urban haze formation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49): 17373-17378. doi: 10.1073/pnas.1419604111

      [19]

      MIRALLES P, CHURCH T L, HARRIS A T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environmental Science and Technology, 2012, 46(17): 9224-9239. doi: 10.1021/es202995d

      [20] 王晴晴, 马永亮, 谭吉华, 等.北京市冬季PM2.5中水溶性重金属污染特征[J].中国环境科学, 2014, 34(9): 2204-2210. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201409006

      WANG Q Q, MA Y L, TAN J H, et al. Characterization of water-soluble heavy metals of PM2.5 during winter in Beijing[J]. China Environmental Science, 2014, 34(9): 2204-2210. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201409006

      [21] 于扬, 岑况, Stefan Norra, 等.北京市PM2.5中主要重金属元素污染特征及季节变化分析[J].现代地质, 2012, 26(5): 975-982. doi: 10.3969/j.issn.1000-8527.2012.05.018

      YU Y, CEN K, NORRA S, et al. Concentration characteristics and seasonal trend of main heavy metal elements of PM2.5 in Beijing[J]. Geoscience, 2012, 26(5): 975-982. doi: 10.3969/j.issn.1000-8527.2012.05.018

      [22]

      HONG J, PERALTAVIDEA J R, RICO C, et al. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants[J]. Environment Science and Technology, 2014, 48(8): 4376-4385. doi: 10.1021/es404931g

      [23]

      OTTELE M, BOHEMEN H D V, FRAAIJ A L A. Quantifying the deposition of particulate matter on climber vegetation on living walls[J]. Ecological Engineering, 2010, 36(2): 154-162. doi: 10.1016/j.ecoleng.2009.02.007

      [24]

      JANHALL S. Review on urban vegetation and particle air pollution deposition and dispersion[J]. Atmospheric Environment, 2015, 105: 130-137. doi: 10.1016/j.atmosenv.2015.01.052

      [25] 王晓磊, 王成.城市森林调控空气颗粒物功能研究进展[J].生态学报, 2014, 34(8): 1910-1921. http://d.old.wanfangdata.com.cn/Periodical/stxb201408002

      WANG X L, WANG C. Research status and prospects on functions of urban forests in regulating the air particulate matter[J]. Acta Ecologica Sinica, 2014, 34(8): 1910-1921. http://d.old.wanfangdata.com.cn/Periodical/stxb201408002

      [26] 杨佳, 王会霞, 谢滨泽, 等.北京9个树种叶片滞尘量及叶面微形态解释[J].环境科学研究, 2015, 28(3): 384-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=664064541

      YANG J, WANG H X, XIE Z B, et al. Accumulation of particulate matter on leaves of nine urban greening plant species with different micromorphological structures in Beijing[J]. Research of Environmental Sciences, 2015, 28(3): 384-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=664064541

      [27] 陈波, 鲁绍伟, 李少宁, 等.北京城市森林不同天气状况下PM2.5浓度变化[J].生态学报, 2016, 36(5): 1391-1399. http://d.old.wanfangdata.com.cn/Periodical/stxb201605023

      CHEN B, LU S W, LI S N, et al. Dynamic analysis of PM2.5 concentration in urban forests in Beijing for various weather conditions[J]. Acta Ecologica Sinica, 2016, 36(5): 1391-1399. http://d.old.wanfangdata.com.cn/Periodical/stxb201605023

      [28] 戴斯迪, 马克明, 宝乐, 等.北京城区公园及其邻近道路国槐叶面尘分布与重金属污染特征[J].环境科学学报, 2013, 33(1): 154-162. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201301022

      DAI S D, MA K M, BAO L, et al. Distribution of particle matters and contamination of heavy metals in the foliar dust of Sophora japonica in parks and their neighboring roads in Beijing[J]. Acta Scientiae Circumstantiae, 2013, 33(1): 154-162. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201301022

      [29] 杨柳, 吴烨, 宋少洁, 等.不同交通状况下道路边大气颗粒物数浓度粒径分布特征[J].环境科学, 2012, 33(3): 694-700. http://d.old.wanfangdata.com.cn/Periodical/hjkx201203004

      YANG L, WU Y, SONG S J, et al. Particle number size distribution near a major road with different traffic conditions[J]. Environmental Science, 2012, 33(3): 694-700. http://d.old.wanfangdata.com.cn/Periodical/hjkx201203004

      [30] 赵松婷, 李新宇, 李延明.园林植物滞留不同粒径大气颗粒物的特征及规律[J].生态环境学报, 2014, 23(2): 271-276. doi: 10.3969/j.issn.1674-5906.2014.02.014

      ZHAO S T, LI X Y, LI Y M. The characteristics of deposition of airborne particulate matters with different size on certain plants[J]. Ecology and Environmental Sciences, 2014, 23(2): 271-276. doi: 10.3969/j.issn.1674-5906.2014.02.014

      [31]

      TERZAGHI E, WILD E, ZACCHELLO G, et al. Forest filter effect: role of leaves in capturing/releasing air particulate matter and its associated PAHs[J]. Atmospheric Environment, 2013, 74(2): 378-384. https://www.sciencedirect.com/science/article/pii/S1352231013002586

      [32]

      TEPER E. Dust-particle migration around flotation tailings ponds: pine needles as passive samplers[J]. Environmental Monitoring and Assessment, 2009, 154(1-4): 383-391. doi: 10.1007/s10661-008-0405-4

      [33] 王慧, 刘庆倩, 安海龙, 等.城市环境中毛白杨和油松叶片表面颗粒污染物的观察[J].北京林业大学学报, 2016, 38(8): 28-35. doi: 10.13332/j.1000-1522.20160065

      WANG H, LIU Q Q, AN H L, et al. Observation of particulate pollutants retained on Populus tomentosa and Pinus tabulaeformis leaves in urban environment[J]. Journal of Beijing Forestry University, 2016, 38(8): 28-35. doi: 10.13332/j.1000-1522.20160065

      [34] 史军娜, 张罡, 安海龙, 等.北京市16种树木吸附大气颗粒物的差异及颗粒物研究[J].北京林业大学学报, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053

      SHI J N, ZHANG G, AN H L, et al. Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles[J]. Journal of Beijing Forestry University, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053

      [35]

      EICHERT T, KURTZ A, STEINER U, et al. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles[J]. Physiologia Plantarum, 2008, 134(1): 151-160. doi: 10.1111/j.1399-3054.2008.01135.x

      [36]

      XIONG T T, LEVEQUE T, AUSTRUY A, et al. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter[J]. Environmental Geochemistry and Health, 2014, 36(5): 897-909. doi: 10.1007/s10653-014-9607-6

      [37] 陈世宝, 孙聪, 魏威, 等.根细胞壁及其组分差异对植物吸附、转运Zn的影响[J].中国环境科学, 2012, 32(9): 1670-1676. doi: 10.3969/j.issn.1000-6923.2012.09.019

      CHEN S B, SUN C, WEI W, et al. Difference in cell wall components of roots and its effect on the transfer factor of Zn by plant species[J]. China Environmental Science, 2012, 32(9): 1670-1676. doi: 10.3969/j.issn.1000-6923.2012.09.019

      [38]

      PRAJAPATI S K, TRIPATHI B D. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution[J]. Journal of Environmental Quality, 2008, 37(3): 865-870. doi: 10.2134/jeq2006.0511

      [39]

      FERNANDEZ V, EICHERT T. Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization[J]. Critical Reviews in Plant Sciences, 2009, 28(1): 36-68. doi: 10.1080/07352680902743069?journalCode=bpts20

      [40] 李威, 黄进, 李其昌, 等.纳米颗粒对植物光合作用影响机制的研究[J].生物学杂志, 2015(5): 63-66. doi: 10.3969/j.issn.2095-1736.2015.05.063

      LI W, HUANG J, LI Q C, et al. Effect of nanoparticles on plant photosynthesis mechanism[J]. Journal of Biology, 2015(5): 63-66. doi: 10.3969/j.issn.2095-1736.2015.05.063

      [41] 许大全.光合作用气孔限制分析中的一些问题[J].植物生理学报, 1997, 33(4): 241-244. doi: 10.1063-1.1913612/

      XU D Q. Some problem in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communication, 1997, 33(4): 241-244. doi: 10.1063-1.1913612/

      [42] 宋丽莉, 赵华强, 朱小倩, 等.高温胁迫对水稻光合作用和叶绿素荧光特性的影响[J].安徽农业科学, 2011, 39(22): 13348-13353. doi: 10.3969/j.issn.0517-6611.2011.22.035

      SONG L L, ZHAO H Q, ZHU X Q, et al. Effect of high temperature stress on photosynthesis and chlorophyll fluorescence of rice[J]. Journal of Anhui Agriculture Science, 2011, 39(22): 13348-13353. doi: 10.3969/j.issn.0517-6611.2011.22.035

      [43] 裴斌, 张光灿, 张淑勇, 等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报, 2013, 33(5): 1386-1396. http://d.old.wanfangdata.com.cn/Periodical/stxb201305006

      PEI B, ZHANG G C, ZHANG S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides seedings[J]. Acta Ecologica Sinica, 2013, 33(5): 1386-1396. http://d.old.wanfangdata.com.cn/Periodical/stxb201305006

    • 期刊类型引用(6)

      1. 赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 . 百度学术
      2. 刘笑,杜琬莹,张云秀,唐成名,李华伟,夏海勇,樊守金,孔令安. NO_3~–缓解小麦根部NH_4~+毒性机理. 植物学报. 2024(03): 397-413 . 百度学术
      3. 魏尚霖,李晨蕾,廖柏勇,程俊森,代文魁,姜维,王溢,李永泉. 高州油茶与小果油茶种仁蛋白质组差异比较. 经济林研究. 2024(03): 10-24 . 百度学术
      4. 程俊森,王溢,李永泉,魏尚霖,李超楠,姜维,黄润生. 基于Label-free技术的高州油茶铝胁迫蛋白质组学研究. 中南林业科技大学学报. 2023(08): 169-181 . 百度学术
      5. 韦庆钰,黄海龙,吴纯泽,苏嘉熙,卫星. 3种倍性青杨扦插苗对覆膜滴肥的生长响应. 南京林业大学学报(自然科学版). 2021(05): 93-101 . 百度学术
      6. 王溢. 基于label-free技术的青杨3个叶位叶片比较蛋白质组学分析. 华中农业大学学报. 2019(04): 8-19 . 百度学术

      其他类型引用(1)

    图(5)  /  表(1)
    计量
    • 文章访问数:  2326
    • HTML全文浏览量:  505
    • PDF下载量:  27
    • 被引次数: 7
    出版历程
    • 收稿日期:  2016-11-15
    • 修回日期:  2017-01-16
    • 发布日期:  2017-03-31

    目录

      /

      返回文章
      返回