• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007
Citation: Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007

Plant leaf segmentation method based on fully convolutional neural network

More Information
  • Received Date: January 03, 2018
  • Revised Date: September 09, 2018
  • Published Date: October 31, 2018
  • ObjectivePlant leaf segmentation aims to segment leaf regions from backgrounds for removing background object interferes, which is important for plant disease recognition and species identification.
    MethodIn this paper, a fully convolutional neural network (FCNN) was designed for plant leaf image segmentation. First, a log-logic function as objective function replaces the complex Softmax function, which transforms the segmentation task into a binary classification problem suitable for plant leaf segmentation. Second, the batch normalization (BN) technology was introduced into the FCNN, which improved the convergence of the whole FCNN. Finally, due to the lack of evaluation index in the research of plant leaf segmentation, receiver operating characteristic (ROC) curve, as a new evaluation protocol, was designed. It reflected the changes between recall rate and false alarm rate of plant leaf segmentation under different threshold settings.
    ResultThe method reduced the complexity of parameters and improved the convergence performance of FCNN. Experimental results showed that this method was more complete to segment the leaf image than the color-based method in Leafsnap. The proposed ROC curve adequately evaluated the performance of plant leaf segmentation.
    ConclusionCompared with traditional plant leaf segmentation methods, the proposed method based on deep learning realizes input image by end to end processing, and does not require pre-processing like image conversion, noise filter and morphological operations, etc. Therefore, this method can be used for leaf segmentation.
  • [1]
    Cope J S, Corney D, Clark J Y, et al.Plant species identification using digital morphometrics:a review[J].Expert Systems with Applications, 2012, 39(8):7562-7573. doi: 10.1016/j.eswa.2012.01.073
    [2]
    Clarke J, Barman S, Remagnino P, et al.Venation pattern analysis of leaf images[C]//Bebis G, Boyle R, Parvin B, et al.Advances in visual computing: part Ⅱ. Berlin: Springer, 2006: 427-436.
    [3]
    Kumar N, Belhumeur P N, Biswas A, et al.Leafsnap: a computer vision system for automatic plant species identification[C]//Fitzgibbon A, Lazebnik S, Perona P, et al. Computer vision: ECCV 2012. Berlin: Springer, 2012: 502-516.
    [4]
    Wang X F, Huang D S, Du J X, et al.Classification of plant leaf images with complicated background[J].Applied Mathematics & Computation, 2008, 205(2):916-926. http://cs231n.stanford.edu/reports/2017/pdfs/325.pdf
    [5]
    Lee S H, Chan C S, Wilkin P, et al.Deep-plant: plant identification with convolutional neural networks[C]//Proccedings of IEEE International Conference on Image Processing.Piscataway: IEEE Signal Processing Society, 2015: 452-456.
    [6]
    Kavitha P, Ananthi B.Segmentation of unhealthy region of plant leaf using image processing techniques:a survey[J].International Journal of Research in Engineering and Technology, 2014, 11(3):24-27. https://ieeexplore.ieee.org/document/7164858/
    [7]
    Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation[J].International Journal of Computer Vision, 2006, 70(2):109-131. doi: 10.1007/s11263-006-7934-5
    [8]
    Shi J, Malik J. Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. doi: 10.1109/34.868688
    [9]
    Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[J].IEEE Transactions on Medical Imaging, 2001, 20(1):45-57. doi: 10.1109/42.906424
    [10]
    Valliammal N, Geethalakshmi S N. A novel approach for plant leaf image segmentation using fuzzy clustering[J].International Journal of Computer Applications, 2012, 44(13):10-20. doi: 10.5120/6322-8669
    [11]
    Valliammal N, Geethalakshmi S N. Leaf image segmentation based on the combination of wavelet transform and k means clustering[J].International Journal of Advanced Research in Artificial Intelligence, 2012, 1(3):25-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003577404
    [12]
    Shelhamer E, Long J, Darrell T, et al.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. doi: 10.1109/TPAMI.2016.2572683
    [13]
    张帅, 淮永建.基于分层卷积深度学习系统的植物叶片识别研究[J].北京林业大学学报, 2016, 38(9):108-115. http://bjly.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=94fda7a0-37de-449e-bcb0-bfb6a7916e6c

    Zhang S, Huai Y J.Leaf image recognition based on layered convolutions neural network deep learning[J].Journal of Beijing Forestry University, 2016, 38(9):108-115. http://bjly.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=94fda7a0-37de-449e-bcb0-bfb6a7916e6c
    [14]
    Noh H, Hong S, Han B.Learning deconvolution network for semantic segmentation[C/OL]//Proceedings of IEEE International Conference on Computer Vision. Washington D C: IEEE Computer Society, 2015[2017-10-10]. https://arxiv.org/pdf/1505.04366.pdf.
    [15]
    Chen L C, Papandreou G, Kokkinos I, et al.Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. doi: 10.1109/TPAMI.2017.2699184
    [16]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Pereira F, Burges C J C, Bottou L, et al. Advances in neural information processing systems. New York: Curran Associates Inc., 2012: 1097-1105.
    [17]
    Ioffe S, Szegedy C.Batch normalization: accelerating deep network training by reducing internal covariate shift[C/OL]. ICML'15 Proccedings of the 32nd International Conference on Machine Learning, 2015, 37: 448-456[2017-09-20]. https://arxiv.org/pdf/1502.03167.pdf.
  • Related Articles

    [1]Huang Chengwei, Qi Lei, Duojiecairen, Zhang Huaiqing, Xue Lianfeng, Yun Ting. Prediction of tree growth parameters based on cascaded recurrent network[J]. Journal of Beijing Forestry University, 2023, 45(8): 94-108. DOI: 10.12171/j.1000-1522.20230027
    [2]Zhang Jinlan, Zhang Xiangxue, Ran Ran, Wu Min, Wu Shang, Jia Liming. Leaf shedding of Populus tomentosa under drought stress based on the theory of plant segmentation hypothesis[J]. Journal of Beijing Forestry University, 2020, 42(9): 19-27. DOI: 10.12171/j.1000-1522.20190411
    [3]Jiang Tao, Wang Xinjie. Convolutional neural network for GF-2 image stand type classification[J]. Journal of Beijing Forestry University, 2019, 41(9): 20-29. DOI: 10.13332/j.1000-1522.20180342
    [4]Wu Jianzhao, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie, Wu Chengzhen. Characteristics of plants, soil nutrients and leaf stoichiometry at the early stage of ecological restoration in earthquake-affected area[J]. Journal of Beijing Forestry University, 2019, 41(2): 41-52. DOI: 10.13332/j.1000-1522.20180329
    [5]Yu Huiling, Ma Junwei, Zhang Yizhuo. Plant leaf recognition model based on two-way convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(12): 132-137. DOI: 10.13332/j.1000-1522.20180182
    [6]ZHANG Shuai, HUAI Yong-jian.. Leaf image recognition based on layered convolutions neural network deep learning.[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. DOI: 10.13332/j.1000-1522.20160035
    [7]LIU Nian, KAN Jiang-ming. Plant leaf identification based on the multi-feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. DOI: 10.13332/j.1000-1522.20150267
    [8]WANG Li-jun, HUAI Yong-jian, PENG Yue-cheng. Method of identification of foliage from plants based on extraction of multiple features of leaf images.[J]. Journal of Beijing Forestry University, 2015, 37(1): 55-69. DOI: 10.13332/j.cnki.jbfu.2015.01.006
    [9]BI Yu-hui, TANG Shou-zheng, WANG Xue-feng. Automatic segmentation of leaf images based on an improved geometric active contour model.[J]. Journal of Beijing Forestry University, 2011, 33(1): 90-93.
    [10]ZHANG Jin-tun, MENG Dong-ping, XI Yue-xiang. Ordination of self-organizing feature map neural network and its application in the study of plant communities.[J]. Journal of Beijing Forestry University, 2008, 30(1): 1-5.
  • Cited by

    Periodical cited type(11)

    1. 黄菲,张佛熠,钟嘉琳,李心,彭辉,邹冰燕,刘玮,王琼. 南昌城市森林土壤肥力综合评价及其空间分布特征. 中南林业科技大学学报. 2024(08): 129-138 .
    2. 吴家龙,张俊涛. 园林绿色废弃物资源价值实现的系统认知与路径探析——以广州市为例. 中国园林. 2024(08): 57-63 .
    3. 刘国梁,吴伟,李素艳,孙向阳,岳宗伟,魏宇光. 园林绿化废弃物堆肥配施化肥对土壤腐殖质碳组分的影响. 中国土壤与肥料. 2024(12): 27-35 .
    4. 史正军,潘松,冯世秀,袁峰均. 园林废弃物地表覆盖处理对植物生长及土壤细菌群落的影响. 草业学报. 2023(04): 153-160 .
    5. 潘松,赵玉梅,袁峰均,史正军. 园林废弃物地表覆盖对龙船花生长发育的影响. 热带作物学报. 2023(04): 766-773 .
    6. 余海洋. 基于自然解决方案的城市绿地系统营建策略. 现代园艺. 2023(11): 140-142 .
    7. 高星,贾慧果. 故宫景福宫古树土壤肥力特征分析评价. 北方农业学报. 2023(01): 45-60 .
    8. 闫芳彬,郑景明,宫殷婷,赵一臣,张家琦. 园林废弃物资源化处理对人工林土壤养分及微生物碳源利用的影响. 浙江农林大学学报. 2023(05): 1045-1053 .
    9. 胡永恒,张程,万华琴,朱咏莉,李萍萍. 不同园林废弃物堆肥过程中化学性状变化及其对发芽指数的影响. 南京林业大学学报(自然科学版). 2023(06): 133-140 .
    10. 潘松,史正军,毛晓宁,袁峰均,曾伟,焦玉佳. 园林废弃物覆盖材料组分及厚度对土壤化学性质的影响. 西部林业科学. 2022(05): 153-158 .
    11. 李小羊. 黔南地区市政园林工程建设中土壤改良技术措施研究. 工程技术研究. 2022(22): 215-217 .

    Other cited types(0)

Catalog

    Article views (4293) PDF downloads (70) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return