• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHANG Shuai, HUAI Yong-jian.. Leaf image recognition based on layered convolutions neural network deep learning.[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. DOI: 10.13332/j.1000-1522.20160035
Citation: ZHANG Shuai, HUAI Yong-jian.. Leaf image recognition based on layered convolutions neural network deep learning.[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. DOI: 10.13332/j.1000-1522.20160035

Leaf image recognition based on layered convolutions neural network deep learning.

More Information
  • Received Date: January 20, 2016
  • Published Date: September 29, 2016
  • Deep learning has been recently becoming research hotspot in the field of image recognition. In this study, plant leaf images were used as recognition objects. Plant leaf images were divided into single and complex background and were treated by using image segmentation method. We design a deep learning system which includes eight layers of Convolution Neural Network (CNNs) to identify leaf images. And then the deep learning system was tested with 33 293 leaf sample images which come from Pl@antNet libraries and our extending leaf libraries for image training and recognition. Compared with the traditional identification methods, the classifier provided in this paper has achieved better recognition effect. For CNN+SVM and CNN+Softmax recognition system, the simple background leaf recognition rate reaches 91.11% and 90.90%, and the recognition rate of complex background reaches 34.38%. The system has higher recognition rate for the large amount of leaf images with no more optimization, and has a higher recognition rate especially for the recognition of complex background images.
  • [1]
    WANG L J, HUAI Y J, PENG Y C. Method of identification of foliage from plants based on extraction of multiple features of leaf images[J]. Journal of Beijing Forestry University, 2015, 37(1):55-61.
    [1]
    王丽君,淮永建,彭月橙. 基于叶片图像多特征融合的观叶植物种类识别[J]. 北京林业大学学报,2015,37(1):55-61.
    [2]
    杨天天,潘晓星,穆立蔷. 基于叶片图像特征数字化信息识别7种柳属植物[J]. 东北林业大学学报,2014,42(12):75-79.
    [3]
    YANG T T, PAN X X, MU L Q.Identification of seven Salix species using digital information analysis of leaf image characteristics[J]. Journal of Northeast Forestry University, 2014,42(12):75-79.
    [4]
    张宁, 刘文萍. 基于克隆选择算法和K近邻的植物叶片识别方法[J]. 计算机应用, 2013,33(7) : 2009-2013.
    [5]
    ZHANG N, LIU W P.Plant leaf recognition method based on clonal selection algorithm and K nearest neighbor[J]. Journal of Computer Applications, 2013,33(7):2009-2013.
    [6]
    邓立苗,唐俊,马文杰. 基于图像处理的玉米叶片特征提取与识别系统[J]. 中国农机化学报,2014,35(6):72-75,79.
    [7]
    DENG L M, TANG J, MA W J.Feature extraction and recognition system of maize leaf based on image processing[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(6): 72-75,79.
    [8]
    翟传敏,汪青萍,杜吉祥. 基于叶缘与叶脉分数维特征的植物叶识别方法研究[J]. 计算机科学,2014,41(2):170-173.
    [9]
    ZHAI C M, WANG Q P, DU J X. Plant leaf recognition method based on fractal dimension feature of outline and venation[J]. Computer Science, 2014,41(2):170-173.
    [10]
    邹秋霞,郜鲁涛,盛立冲. 基于Android手机和图像特征识别技术的植物叶片分类系统的研究[J]. 安徽农业科学,2015,43(11):367-369.
    [11]
    ZOU Q X, GAO L T, SHENG L C.Study on plant leaves classification system based on android mobile phone and image feature recognition technology[J]. Journal of Anhui Agricultural Sciences, 2015,43(11):367-369.
    [12]
    VILLENA-ROMN J, LANA-SERRANO S, CRISTBAL J C G. Daedalus at ImageCLEF 2011 plant identification task: using SIFT keypoints for object detection[C]∥Conference and Labs of the Evaluation forum 2011. Amsterdam: Clef Labs Workshop, 2011.
    [13]
    BACKES A R, CASANOVA D, BRUNO O M. A complex network-based approach for boundary shape analysis[J]. Pattern Recognition, 2009, 42(1):54-67.
    [14]
    GHAZI M M, YANIKOGLU B, APTOULA E, et al. Sabanci-okan system in LifeCLEF 2015 plant identification competition[C]∥Conference and Labs of the Evaluation forum 2015. [2015-10-20]. http:∥ceur-ws.org/Vol-1391/43-CR.pdf.
    [15]
    YANIKOGLU B, APTOULA E, TIRKAZ C. Sabanci-okan system at ImageClef 2012: combining features and classifiers for plant identification[C]∥Conference and Labs of the Evaluation forum 2012. Rome: Clef, 2012.
    [17]
    OTSU N. An automatic threshold selection method based on discriminate and least squares criteria[J]. Denshi Tsushin Gakkai Ronbunshi, 1979, 63:349-356.
    [18]
    BOSCH A, ZISSERMAN A, MUOZ X. Image classification using random forests and Ferns[C]∥IEEE International Conference on Computer Vision. Rio de Janeiro:IEEE, 2007:1-8.
    [19]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1106-1114.
    [20]
    LCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
    [22]
    LECUN Y, BENGIO Y, HINTON G. Deep learning.[J]. Nature, 2015, 521:436-444.
    [23]
    LYU S, SIMONCELLI E P. Nonlinear image representation using divisive normalization[C]∥IEEE Conference on Computer Vision and Pattern Recognition. Anchorage:IEEE, 2008:1-8.
    [24]
    GOLD S, RANGARAJAN A. Softmax to softassign: neural network algorithms for combinatorial optimization[J]. Journal of Artificial Neural Networks, 1995, 2(4):381-399.
    [25]
    张学工. 关于统计学习理论与支持向量机[J]. 自动化学报,2000,26(1):32-42.
    [26]
    ZHANG X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000,26(1):32-42.
    [28]
    HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7):1527-1554.
  • Cited by

    Periodical cited type(47)

    1. 马娜,任宇翔. 基于多特征的BP神经网络多种植物叶片病害识别研究. 中国农学通报. 2024(04): 158-164 .
    2. 苏彤,许杰. 基于生成对抗网络的树种识别方法. 林业科学. 2024(02): 97-105 .
    3. 李西兴,陈佳豪,吴锐,杨睿. 基于改进MaxViT的辣椒病害识别分类方法. 华中农业大学学报. 2024(02): 123-133 .
    4. 周婷,杜建强,朱彦陈,冯振乾. 嵌入压缩—激励机制ResNet的民族药植物图像识别. 软件导刊. 2023(02): 1-7 .
    5. 郝菁,贾宗维. 基于图像识别的苹果叶片病害识别模型对比研究. 中国农学通报. 2022(12): 153-158 .
    6. 李海涛,罗维平. 基于深度学习的棉花品种识别. 武汉纺织大学学报. 2022(04): 22-26 .
    7. 游梓童,吴福明,赵淼,业宁. 融合高阶信息增强模块的复杂背景植物叶片图像分类. 南京师范大学学报(工程技术版). 2022(03): 45-52 .
    8. LI Jicai,SUN Shiding,JIANG Haoran,TIAN Yingjie,XU Xiaoliang. Image recognition and empirical application of desert plant species based on convolutional neural network. Journal of Arid Land. 2022(12): 1440-1455 .
    9. 韩斌,曾松伟. 基于多特征融合和卷积神经网络的植物叶片识别. 计算机科学. 2021(S1): 113-117 .
    10. 张冬妍,韩睿,张瑞,曹军. 基于CapsNet神经网络的树叶图像分类模型. 西南大学学报(自然科学版). 2021(08): 143-151 .
    11. 原忠虎,王维,苏宝玲. 基于改进VGGNet模型的外来入侵植物叶片识别方法. 计算机与现代化. 2021(09): 7-11 .
    12. 徐瑶,李栓,韩英华. 基于CNN-GS-SVM的用户异常用电行为检测. 控制工程. 2021(10): 1989-1997 .
    13. 孟瑶,杨怀卿,杨惠斐,杨华. 家畜饲料植物叶片的识别研究. 中国农学通报. 2021(31): 145-150 .
    14. 罗娟,蔡骋. 多线索植物种类识别. 计算机工程与应用. 2020(05): 160-165 .
    15. 孙颖异,李健,时天,孙中波. 基于改进的 AlexNet 卷积神经网络的植物叶片识别. 种子. 2020(02): 77-81 .
    16. 朱良宽,晏铭,黄建平. 一种新型卷积神经网络植物叶片识别方法. 东北林业大学学报. 2020(04): 50-53 .
    17. 宋晓宇,金莉婷,赵阳,孙越,刘童. 基于有效区域筛选的复杂背景植物图像识别方法. 激光与光电子学进展. 2020(04): 181-191 .
    18. 朱荣胜,闫学慧,陈庆山. 基于图像识别和卷积神经网络的大豆优良籽粒筛选研究. 大豆科学. 2020(02): 189-197 .
    19. 王守富,孟昭磊,何利华,杨杰锋. 基于WPA-SVM的多肉植物分类识别. 微型电脑应用. 2020(06): 29-32+36 .
    20. 蔡兴泉,涂宇欣,葛亚坤,杨哲. 基于CNN网络和多任务损失函数的实时叶片识别. 系统仿真学报. 2020(07): 1279-1286 .
    21. 蒋毅,耿宇鹏,张俊华,王嘉庆,宋颖超. 深度迁移学习在紫茎泽兰检测中的应用. 计算机系统应用. 2020(06): 271-275 .
    22. Qinghua GUO,Shichao JIN,Min LI,Qiuli YANG,Kexin XU,Yuanzhen JU,Jing ZHANG,Jing XUAN,Jin LIU,Yanjun SU,Qiang XU,Yu LIU. Application of deep learning in ecological resource research:Theories, methods, and challenges. Science China(Earth Sciences). 2020(10): 1457-1474 .
    23. 沈凯文,李浩伟,韩进,房若民. 基于卷积神经网络的病虫害可视化监测系统设计. 软件导刊. 2020(09): 122-126 .
    24. 殷健凯,虞冬蕾,李梓仪,郭薇,朱浩. 基于TensorFlow平台的深度学习月季花病害检测研究. 科技资讯. 2020(32): 27-32 .
    25. 杨春兰,薛大为. 基于卷积神经网络的淡水鱼分类识别. 西南民族大学学报(自然科学版). 2020(06): 611-618 .
    26. 郭庆华,金时超,李敏,杨秋丽,徐可心,巨袁臻,张菁,宣晶,刘瑾,苏艳军,许强,刘瑜. 深度学习在生态资源研究领域的应用:理论、方法和挑战. 中国科学:地球科学. 2020(10): 1354-1373 .
    27. 郭祥云,台海江. 深度学习在大田种植中的应用及展望. 中国农业大学学报. 2019(01): 119-129 .
    28. 燕斌,周鹏,严利. 基于迁移学习的小样本农作物病害识别. 现代农业科技. 2019(06): 87-89 .
    29. 张澎,崔梦天,谢琪,姜玥. 基于深度卷积生成对抗网络的植物图像识别方法的研究. 西南民族大学学报(自然科学版). 2019(02): 185-191 .
    30. 张习之,李立君. 基于改进卷积自编码机的油茶果图像识别研究. 林业工程学报. 2019(03): 118-124 .
    31. 罗奇. 基于深度学习的蘑菇种类识别算法研究. 中国食用菌. 2019(06): 26-29+33 .
    32. 陈桂芬,赵姗,曹丽英,傅思维,周佳鑫. 基于迁移学习与卷积神经网络的玉米植株病害识别. 智慧农业. 2019(02): 34-44 .
    33. 贾俊杰,李捷. 基于半监督生成对抗网络的病虫害图像识别算法. 武汉轻工大学学报. 2019(04): 45-52 .
    34. 冯海林,胡明越,杨垠晖,夏凯. 基于树木整体图像和集成迁移学习的树种识别. 农业机械学报. 2019(08): 235-242+279 .
    35. 林志玮,涂伟豪,黄嘉航,丁启禄,周铮雯,刘金福. 基于FC-DenseNet的低空航拍光学图像树种识别. 国土资源遥感. 2019(03): 225-233 .
    36. 谢将剑,李文彬,张军国,丁长青. 基于Chirplet语图特征和深度学习的鸟类物种识别方法. 北京林业大学学报. 2018(03): 122-127 . 本站查看
    37. 张楠,路阳,李欣,韩正君,王洪生. 基于softmax的水稻稻瘟病识别方法研究. 信息记录材料. 2018(01): 209-211 .
    38. 彭鸿元,吴恋,郑旭,张雯雯,兰腾腾. 基于深度学习的植物识别技术的发展. 电脑知识与技术. 2018(19): 200-202 .
    39. 袁培森,黎薇,任守纲,徐焕良. 基于卷积神经网络的菊花花型和品种识别. 农业工程学报. 2018(05): 152-158 .
    40. 赵彦辉,范欣宁,张建逵,谢明. 基于DeepLearning4J on Spark深度学习方法在药用植物图像识别中应用初探. 中国中医药图书情报杂志. 2018(05): 18-22 .
    41. 郑一力,张露. 基于迁移学习的卷积神经网络植物叶片图像识别方法. 农业机械学报. 2018(S1): 354-359 .
    42. 胡静,陈志泊,杨猛,张荣国,崔亚稷. 基于全卷积神经网络的植物叶片分割算法. 北京林业大学学报. 2018(11): 131-136 . 本站查看
    43. 于慧伶,麻峻玮,张怡卓. 基于双路卷积神经网络的植物叶片识别模型. 北京林业大学学报. 2018(12): 132-137 . 本站查看
    44. 李敏,宣晶,赵明月,魏泽,谢淦. 标本馆伴侣的诞生与发展前景. 科研信息化技术与应用. 2018(05): 36-40 .
    45. 赵建敏,李艳,李琦,芦建文. 基于卷积神经网络的马铃薯叶片病害识别系统. 江苏农业科学. 2018(24): 251-255 .
    46. 梁万杰,曹宏鑫. 基于卷积神经网络的水稻虫害识别. 江苏农业科学. 2017(20): 241-243+253 .
    47. 孙俊,谭文军,毛罕平,武小红,陈勇,汪龙. 基于改进卷积神经网络的多种植物叶片病害识别. 农业工程学报. 2017(19): 209-215 .

    Other cited types(49)

Catalog

    Article views (3016) PDF downloads (102) Cited by(96)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return