• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xie Jiangjian, Li Wenbin, Zhang Junguo, Ding Changqing. Bird species recognition method based on Chirplet spectrogram feature and deep learning[J]. Journal of Beijing Forestry University, 2018, 40(3): 122-127. DOI: 10.13332/j.1000-1522.20180008
Citation: Xie Jiangjian, Li Wenbin, Zhang Junguo, Ding Changqing. Bird species recognition method based on Chirplet spectrogram feature and deep learning[J]. Journal of Beijing Forestry University, 2018, 40(3): 122-127. DOI: 10.13332/j.1000-1522.20180008

Bird species recognition method based on Chirplet spectrogram feature and deep learning

More Information
  • Received Date: January 04, 2018
  • Revised Date: January 16, 2018
  • Published Date: February 28, 2018
  • ObjectiveThe application of deep learning in bird species recognition is the research hotspot at present. To improve the performance of recognition, a bird species recognition method based on Chirplet spectrogram feature and VGG16 model was proposed.
    MethodAcoustic signal spectrograms were calculated by the Chirplet transform firstly, then spectrograms were inputted in the VGG16 model to realize the recognition of bird species. Taking eighteen bird species in Beijing Songshan National Nature Reserve as examples, through Chirplet transform, Fourier transform and Mel cepstrum transform, three spectrogram sample sets were calculated respectively, then using three kinds of spectrogram sample sets to train the recognition model, the performances of each input were compared.
    ResultResults showed that with the Chirplet diagram input, the highest mean average precision (MAP) of the test set was 0.9871 compared with the other two inputs. Also, the epochs of the highest trainning MAP was the smallest.
    ConclusionThe choice of input affects the classification performance of deep learning model. The vocalization zone of Chirplet spectrogram is more concentrate and obvious than STFT spectrogram and Mel spectrogram, which means Chirplet spectrogram is more suitable for the bird recognition based on VGG16 model, higher MAP and efficiency of recognition can be achieved.
  • [1]
    范宗骥, 董大颖, 郑然, 等.北京静福寺侧柏古树林鸟类群落多样性研究[J].北京林业大学学报, 2013, 35(5):46-55. http://j.bjfu.edu.cn/article/id/9946

    Fan Z J, Dong D Y, Zheng R, et al. Avian community diversity in Platycladus orientalis ancient trees at the Jingfu Temple in Beijing[J]. Journal of Beijing Forestry University, 2013, 35(5): 46-55. http://j.bjfu.edu.cn/article/id/9946
    [2]
    Green S, Marler P. The analysis of animal communication[M]. New York: Springer US, 1979.
    [3]
    Xia C, Huang R, Wei C, et al. Individual identification on the basis of the songs of the Asian stubtail (Urosphena squameiceps)[J]. Chinese Birds, 2011, 2(3):132-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnl201103003
    [4]
    Tan L N, Abeer A, George K, et al. Dynamic time warping and sparse representation classification for birdsong phrase classification using limited training data[J]. Journal of the Acoustical Society of America, 2015, 137(3): 1069-1080. doi: 10.1121/1.4906168
    [5]
    Lee C H, Hsu S B, Shih J L, et al. Continuous birdsong recognition using gaussian mixture modeling of image shape features[J]. IEEE Transactions on Multimedia, 2012, 15(2): 454-464. http://cn.bing.com/academic/profile?id=e4bbf99759b51b973a3e5c45e7dd4003&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    Kalan A K, Mundry R, Wagner O J J, et al. Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring[J]. Ecological Indicators, 2015, 54: 217-226. doi: 10.1016/j.ecolind.2015.02.023
    [7]
    Stowell D, Plumbley M D. Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning[J]. PeerJ, 2014, 2(4): 1-24. http://cn.bing.com/academic/profile?id=c20d2857a0134c74d381699d4fe15859&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    程金魁.基于鸣声的鸟类物种个体识别及鸣声关系分析[D].北京: 中国科学院大学, 2012.

    Cheng J K. Automatic bird species and individual recognition and the analysis of bird vocalizations[D]. Beijing: University of Chinese Academy of Sciences, 2012.
    [9]
    Koops H V, van Baben J, Wiering F, et al. A deep neural network approach to the LifeCLEF 2014 bird task[J]. CLEF Working Notes, 2014, 1180:1-9. http://cn.bing.com/academic/profile?id=0bb5fd3074758e9e3c0d71db28b2cf5c&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Piczak K J. Recognizing bird species in audio recordings using deep convolutional neural networks[J]. CLEF Working Notes, 2016, 1609: 534-543. http://cn.bing.com/academic/profile?id=1daede1d019bd15cd65f166b76e64554&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    TÓth B P, Czeba B. Convolutional neural networks for large-scale bird song classification in noisy environment[C]. Évora, Portugal: Conference and Labs of the Evaluation Forum, 2016: 1-9.
    [12]
    张帅, 淮永建.基于分层卷积深度学习系统的植物叶片识别研究[J].北京林业大学学报, 2016, 38(9):108-115. doi: 10.13332/j.1000-1522.20160035

    Zhang S, Huai Y J. Leaf image recognition based on layered convolutions neural network deep learning[J]. Journal of Beijing Forestry University, 2016, 38(9):108-115. doi: 10.13332/j.1000-1522.20160035
    [13]
    刘念, 阚江明.基于多特征融合和深度信念网络的植物叶片识别[J].北京林业大学学报, 2016, 38(3):110-119. doi: 10.13332/j.1000-1522.20150267

    Liu N, Kan J M. Plant leaf identification based on the multi feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3):110-119. doi: 10.13332/j.1000-1522.20150267
    [14]
    Chen C, Liu M, Liu H, et al. Multi-temporal depth motion maps-based local binary patterns for 3-D human action recognition[J]. IEEE Access, 2017, 5:22590-22604. doi: 10.1109/ACCESS.2017.2759058
    [15]
    周飞燕, 金林鹏, 董军, 卷积神经网络研究综述[J].计算机学报, 2017, 40 (7): 1-23. http://d.old.wanfangdata.com.cn/Periodical/jsjxb201706001

    Zhou F Y, Jin L P, Dong J. Review of convolutional neural network journal of computer applications[J]. Chinese Journal of Computers, 2017, 40 (7): 1-23. http://d.old.wanfangdata.com.cn/Periodical/jsjxb201706001
    [16]
    Hou R, Chen C, Shah M. Tube convolutional neural network (T-CNN) for action detection in videos[J]. IEEE International Conference on Computer Vision, 2017: 1-11. http://cn.bing.com/academic/profile?id=6a4f72d6728bcc8ce81219f3b6718b07&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014: 1-14. http://cn.bing.com/academic/profile?id=9a83dddfc646cd21a3e38737d303a369&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    Zou J, Li W, Chen C, et al. Scene classification using local and global features with collaborative representation fusion[J]. Information Sciences, 2016, 348:209-226. doi: 10.1016/j.ins.2016.02.021
    [19]
    Triantafyllidou D, Nousi P, Tefas A. Fast deep convolutional face detection in the wild exploiting hard sample mining[J]. Big Data Research, 2017, 3:1-24. http://cn.bing.com/academic/profile?id=3c1228dfffdc126a1ea8dc2633aedfd0&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    Uricchio T, Ballan L, Seidenari L, et al. Automatic image annotation via label transfer in the semantic space[J]. Pattern Recognition, 2017, 6: 1-15. http://cn.bing.com/academic/profile?id=423cea00e0ba24bcdb4bcf40c1cf3ce9&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    Bultan A. A four-parameter atomic decomposition of Chirplets[J]. IEEE Transactions on Signal Processing, 2002, 47(3):731-745. http://cn.bing.com/academic/profile?id=a00d5e651922ddf7fe4864eb641d7751&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    Glotin H, Ricard J, Balestriero R. Fast Chirplet transform to enhance CNN machine listening-validation on animal calls and speech[J]. arXiv, 2017: 1-22. http://cn.bing.com/academic/profile?id=0dcb90d45913b47851b3f80464eb30e6&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    Potamitis I, Ntalampiras S, Jahn O, et al. Automatic bird sound detection in long real-field recordings: applications and tools[J]. Applied Acoustics, 2014, 80(4): 1-9. http://cn.bing.com/academic/profile?id=ec7738dfaa30c2c81477679e08f86bf9&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]Huang Chengwei, Qi Lei, Duojiecairen, Zhang Huaiqing, Xue Lianfeng, Yun Ting. Prediction of tree growth parameters based on cascaded recurrent network[J]. Journal of Beijing Forestry University, 2023, 45(8): 94-108. DOI: 10.12171/j.1000-1522.20230027
    [2]Zhang Jinlan, Zhang Xiangxue, Ran Ran, Wu Min, Wu Shang, Jia Liming. Leaf shedding of Populus tomentosa under drought stress based on the theory of plant segmentation hypothesis[J]. Journal of Beijing Forestry University, 2020, 42(9): 19-27. DOI: 10.12171/j.1000-1522.20190411
    [3]Jiang Tao, Wang Xinjie. Convolutional neural network for GF-2 image stand type classification[J]. Journal of Beijing Forestry University, 2019, 41(9): 20-29. DOI: 10.13332/j.1000-1522.20180342
    [4]Wu Jianzhao, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie, Wu Chengzhen. Characteristics of plants, soil nutrients and leaf stoichiometry at the early stage of ecological restoration in earthquake-affected area[J]. Journal of Beijing Forestry University, 2019, 41(2): 41-52. DOI: 10.13332/j.1000-1522.20180329
    [5]Yu Huiling, Ma Junwei, Zhang Yizhuo. Plant leaf recognition model based on two-way convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(12): 132-137. DOI: 10.13332/j.1000-1522.20180182
    [6]ZHANG Shuai, HUAI Yong-jian.. Leaf image recognition based on layered convolutions neural network deep learning.[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. DOI: 10.13332/j.1000-1522.20160035
    [7]LIU Nian, KAN Jiang-ming. Plant leaf identification based on the multi-feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. DOI: 10.13332/j.1000-1522.20150267
    [8]WANG Li-jun, HUAI Yong-jian, PENG Yue-cheng. Method of identification of foliage from plants based on extraction of multiple features of leaf images.[J]. Journal of Beijing Forestry University, 2015, 37(1): 55-69. DOI: 10.13332/j.cnki.jbfu.2015.01.006
    [9]BI Yu-hui, TANG Shou-zheng, WANG Xue-feng. Automatic segmentation of leaf images based on an improved geometric active contour model.[J]. Journal of Beijing Forestry University, 2011, 33(1): 90-93.
    [10]ZHANG Jin-tun, MENG Dong-ping, XI Yue-xiang. Ordination of self-organizing feature map neural network and its application in the study of plant communities.[J]. Journal of Beijing Forestry University, 2008, 30(1): 1-5.
  • Cited by

    Periodical cited type(11)

    1. 黄菲,张佛熠,钟嘉琳,李心,彭辉,邹冰燕,刘玮,王琼. 南昌城市森林土壤肥力综合评价及其空间分布特征. 中南林业科技大学学报. 2024(08): 129-138 .
    2. 吴家龙,张俊涛. 园林绿色废弃物资源价值实现的系统认知与路径探析——以广州市为例. 中国园林. 2024(08): 57-63 .
    3. 刘国梁,吴伟,李素艳,孙向阳,岳宗伟,魏宇光. 园林绿化废弃物堆肥配施化肥对土壤腐殖质碳组分的影响. 中国土壤与肥料. 2024(12): 27-35 .
    4. 史正军,潘松,冯世秀,袁峰均. 园林废弃物地表覆盖处理对植物生长及土壤细菌群落的影响. 草业学报. 2023(04): 153-160 .
    5. 潘松,赵玉梅,袁峰均,史正军. 园林废弃物地表覆盖对龙船花生长发育的影响. 热带作物学报. 2023(04): 766-773 .
    6. 余海洋. 基于自然解决方案的城市绿地系统营建策略. 现代园艺. 2023(11): 140-142 .
    7. 高星,贾慧果. 故宫景福宫古树土壤肥力特征分析评价. 北方农业学报. 2023(01): 45-60 .
    8. 闫芳彬,郑景明,宫殷婷,赵一臣,张家琦. 园林废弃物资源化处理对人工林土壤养分及微生物碳源利用的影响. 浙江农林大学学报. 2023(05): 1045-1053 .
    9. 胡永恒,张程,万华琴,朱咏莉,李萍萍. 不同园林废弃物堆肥过程中化学性状变化及其对发芽指数的影响. 南京林业大学学报(自然科学版). 2023(06): 133-140 .
    10. 潘松,史正军,毛晓宁,袁峰均,曾伟,焦玉佳. 园林废弃物覆盖材料组分及厚度对土壤化学性质的影响. 西部林业科学. 2022(05): 153-158 .
    11. 李小羊. 黔南地区市政园林工程建设中土壤改良技术措施研究. 工程技术研究. 2022(22): 215-217 .

    Other cited types(0)

Catalog

    Article views (3534) PDF downloads (143) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return