• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Guo Tian, Zhang Na, Fu Qun, Chai Yangyang, Guo Qingqi. Effects of several assisted extraction methods on extraction effect and antioxidant activity of proanthocyanins from blueberry[J]. Journal of Beijing Forestry University, 2020, 42(9): 139-148. DOI: 10.12171/j.1000-1522.20190466
Citation: Guo Tian, Zhang Na, Fu Qun, Chai Yangyang, Guo Qingqi. Effects of several assisted extraction methods on extraction effect and antioxidant activity of proanthocyanins from blueberry[J]. Journal of Beijing Forestry University, 2020, 42(9): 139-148. DOI: 10.12171/j.1000-1522.20190466

Effects of several assisted extraction methods on extraction effect and antioxidant activity of proanthocyanins from blueberry

More Information
  • Received Date: December 12, 2019
  • Revised Date: March 09, 2020
  • Available Online: September 09, 2020
  • Published Date: September 29, 2020
  •   Objective  Using wild blueberries from Daxinganling Area, northeastern China as raw materials, the effects of organic solvent extraction, ultrasonic-assisted, microwave-assisted, and light-wave-assisted extraction methods on the extraction effects, chemical structure, and antioxidant function of proanthocyanidins and phenols from blueberries were studied.
      Method  The contents of proanthocyanidins, total phenols, total flavonoids and anthocyanins in the four kinds of extraction solution were determined by spectrophotometry. The structural changes of the four kinds of extraction solution were analyzed by infrared spectrum. The microstructure of the residues of blueberry treated by different ways was observed by scanning electron microscope. The total reducing capacity and the scavenging ability of DPPH, ABTS as well as hydroxyl radicals of the four kinds of extraction solution were also measured.
      Result  The maximum yield of proanthocyanidins extracted by microwave-assisted method was (15.72 ± 0.03) mg/g. The results showed that there was no obvious change in the chemical structure of proanthocyanidins extracted by four methods through infrared spectrum, and the pores and folds on the surface of the residue after microwave-assisted extraction were obvious by SEM (P < 0.05). When the blueberry proanthocyanidins extracted by the four methods was adjusted to the same concentration of 30 μg/mL, there was no significant difference in total reduction ability and DPPH free radical scavenging ability (P > 0.05). The free radical scavenging percentage of DPPH was above 97%. The order of scavenging capacity of hydroxyl radicals was general solvent extraction > microwave-assisted extraction > light wave assisted extraction > ultrasonic assisted extraction. The ultrasonic assisted method had the worst scavenging effect on ABTS radicals, and the solvent extraction method had the strongest.
      Conclusion  At the same concentration, the antioxidant activity of the solution from the solvent extraction is stronger, but the microwave-saaisted extraction method has the highest yield of proanthocysnins and the antioxidant activity is not significantly different from that of the solvent extraction method (P > 0.05). Microwave can promote the extraction of proanthocyanidins in a short time because of its strong ion polarization and dipole rotation, and there is no significant difference in the chemical structure and antioxidant function of proanthocyanidins after microwave treatment, so the microwave assisted method is more suitable for the extraction of proanthocyanidins from blueberry. By comparing the yields obtained when ultrasonic, microwave, and light wave treatments are performed separately and the yields after re-extraction after ultrasonic, microwave, and light wave treatments, it is found that ultrasonic, microwave, and light wave treatments dominate the extraction.
  • [1]
    胡雅馨, 李京, 惠伯棣. 蓝莓果实中主要营养及花青素成分的研究[J]. 食品科学, 2006(10):600−603.

    Hu Y X, Li J, Hui B D. Study on major nutrition and anthocyanins of blueberry[J]. Food Science, 2006(10): 600−603.
    [2]
    翁芳华, 陈建业, 温鹏飞, 等. 蓝莓酒中11种酚酸的高效液相色谱测定[J]. 食品科学, 2006(9):223−226.

    Weng F H, Chen J Y, Wen P F, et al. Detection of 11 phenolic acids of blueberry wine by high performance liquid chromatography[J]. Food Science, 2006(9): 223−226.
    [3]
    李艳芳, 聂佩显, 张鹤华, 等. 蓝莓果实花青苷积累与内源激素含量动态变化[J]. 北京林业大学学报, 2017, 39(2):64−71.

    Li Y F, Nie P X, Zhang H H, et al. Dynamic changes of anthocyanin accumulation and endogenous hormone contents in blueberry[J]. Journal of Beijing Forestry University, 2017, 39(2): 64−71.
    [4]
    Petko D, Maria K, Milan C, et al. Biological activities of selected polyphenol-rich fruitsrelated to immunity and gastrointestinal health[J]. Food Chemistry, 2014, 157: 37−44.
    [5]
    许昆. 干型蓝莓酒的生产工艺研究[D]. 合肥: 安徽大学, 2014.

    Xu K. The research of dry blueberry wine production technology[D]. Hefei: Anhui University, 2014.
    [6]
    姜贵全, 张卓睿, 张诗朦, 等. 落叶松树皮多聚原花青素的树脂催化降解及抗氧化活性[J]. 北京林业大学学报, 2018, 40(9):118−126.

    Jiang G Q, Zhang Z R, Zhang S M, et al. Degradation of polymeric proanthocyanidin from larch bark catalyzed by resin and antioxidant activity[J]. Journal of Beijing Forestry University, 2018, 40(9): 118−126.
    [7]
    Zdunczyk Z, Frejnagel S, WrÓblewsk M, et al. Biological activity of polyphenol extracts from different plant sources[J]. Food Research International, 2002, 35(2−3): 183−186.
    [8]
    Ariga T. Antioxidative functions, preventive action toward disease and utilization of proanthocyanidins[J]. BioFactors, 2004, 21(1-4): 197−201. doi: 10.1002/biof.552210140
    [9]
    Khan M K, Abert-Vian M, Fabiano-Tixier A S, et al. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel[J]. Food Chemistry, 2010, 119(2): 851−858. doi: 10.1016/j.foodchem.2009.08.046
    [10]
    孙晓薇, 李丽丽, 王涵, 等. 微波辅助提取落叶松树皮原花青素及其条件优化[J]. 食品工业, 2012(1):35−39.

    Sun X W, Li L L, Wang H, et al. Microwave-assisted extraction of oligomeric proanthocyanidins from larch bark and optimization[J]. The Food Industry, 2012(1): 35−39.
    [11]
    Leandro G A, Kriaa K, Nikov I, et al. Ultrasound assisted extraction of polyphenols from black chokeberry[J]. Separation & Purification Technology, 2012, 93: 42−47.
    [12]
    周泉城, 申德超, 区颖刚. 超声波辅助提取经膨化大豆粕中低聚糖工艺[J]. 农业工程学报, 2008, 24(5):245−249.

    Zhou Q C, Shen D C, Ou Y G. Ultrasonic assisted extraction of oligosaccharide from defatted soybean meal after extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(5): 245−249.
    [13]
    李凤英, 崔蕊静, 李春华. 采用微波辅助法提取葡萄籽中的原花青素[J]. 食品与发酵工业, 2005(1):39−42.

    Li F Y, Cui R J, Li C H. Microwave-assisted extraction of procyanidin by from grape seed[J]. Food and Fermentation Industries, 2005(1): 39−42.
    [14]
    吕俊丽, 游新勇, 任志龙, 等. 酶解水溶剂法提取莜麦多酚的工艺研究[J]. 中国粮油学报, 2017, 32(11):131−135.

    Lü J L, You X Y, Ren Z L, et al. The microwave-assisted organic solvent extraction of poly-phenols from oat[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(11): 131−135.
    [15]
    叶松华, 王晓燕, 杨莹莹, 等. 黄刺玫果中总黄酮的提取工艺研究[J]. 山西医科大学学报, 2013(7):535−538.

    Ye S H, Wang X Y, Yang Y Y, et al. Study on extraction process of flavonoids from fruit of Rosa xanthina Lindl[J]. Journal of Shanxi Medical University, 2013(7): 535−538.
    [16]
    陆卿卿. 蓝莓汁中花色苷稳定性及抗氧化活性的研究[D]. 南京: 南京农业大学, 2013.

    Lu Q Q. Studies on stability and antioxidant activity of anthocyanins from blueberry[D]. Nanjing: Nanjing Agriculture University, 2013.
    [17]
    Prior R L, Fan E, Ji H P, et al. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders[J]. Journal of the Science of Food & Agriculture, 2010, 90(9): 1473−1478.
    [18]
    高德艳, 梁红敏, 任继波, 等. 葡萄籽原花青素聚合度分析方法的研究[J]. 食品研究与开发, 2017, 38(10):124−127.

    Gao D Y, Liang H M, Ren J B, et al. Study on analytical methods of grape seed proanthocyanidins polymerization degree[J]. Food Research and Development, 2017, 38(10): 124−127.
    [19]
    马烨. 红米原花青素的提取纯化与抗氧化活性研究[D]. 南昌: 南昌大学, 2016.

    Ma Y. Studies on the extraction, purification and antioxidant activity of proanthocyanidins from red rice[D]. Nanchang: Nanchang University, 2016.
    [20]
    Hur S J, Lee S Y, Kim Y C, et al. Effect of fermentation on the antioxidant activity in plant-based foods[J]. Food Chemistry, 2014, 160(10): 346−356.
    [21]
    黎英, 曾珍清, 张薇, 等. 大孔树脂纯化红腰豆总黄酮的工艺优化及其体外抗氧化活性比较[J]. 中国粮油学报, 2017, 32(11):128−136,143.

    Li Y, Zeng Z Q, Zhang W, et al. Optimization of purification process of total flavonoids fromred kidney beans with macroporous absorbent resin and comparision of in vitro antioxidant activity[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(11): 128−136,143.
    [22]
    张乃珣, 尹红力, 赵鑫, 等. 红松多酚与真菌多糖联合清除ABTS自由基活性比较[J]. 北京林业大学学报, 2016, 38(10):104−111.

    Zhang N X, Yin H L, Zhao X, et al. Combined ABTS radical scavenging activity of Pinus koraiensis polyphenols with fungus polysaccharides[J]. Journal of Beijing Forestry University, 2016, 38(10): 104−111.
    [23]
    李瑞光, 刘邻渭, 郑海燕, 等. 芦苇黄酮提取液体外抗氧化特性研究[J]. 西北农业学报, 2009, 18(4):310−314.

    Li R G, Liu L W, Zheng H Y, et al. Antioxidant properties of Phragmites communis trin flavonoids extracts[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(4): 310−314.
    [24]
    齐雅静. 不同结构原花青素的制备及对食品中丙烯酰胺生成的影响[D]. 无锡: 江南大学, 2019.

    Qi Y J. Preparation of proanthocyanidins with different structures and their effect on the formation of acrylamide in foods[D]. Wuxi: Jiangnan University, 2019.
    [25]
    刘静. 蓝莓叶片原花青素的提取、分离及抗氧化活性研究[D]. 福州: 福建农林大学, 2014.

    Liu J. Study on extration, separation process and antioxidanactivity of procyanidins from blueberry (Vacciniumashei Reade) leaves[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014.
    [26]
    陈茵茹. 吐鲁番葡萄籽原花青素的提取纯化及抗菌抗氧化研究[D]. 乌鲁木齐: 新疆大学, 2013.

    Chen Y R. Study on extraction and purification and antibacterial antioxidant of procyanidins from grape seed in turpan[D]. Wulumuqi: Xinjiang University, 2013.
    [27]
    Soto R, Freer J, Baeza J. Evidence of chemical reactions between di- and poly-glycidyl ether resins and tannins isolated from Pinus radiata D. Don bark[J]. Bioresource Technology, 2005, 96(1): 95−101. doi: 10.1016/j.biortech.2003.05.006
    [28]
    Fu C, Yang X, Lai S, et al. Structure, antioxidant and α-amylase inhibitory activities of longan pericarp proanthocyanidins[J]. Journal of Functional Foods, 2015, 14: 23−32. doi: 10.1016/j.jff.2015.01.041
    [29]
    李琴, 周梦舟, 汪超, 等. 莲原花青素与金属离子相互作用对抗氧化的影响[J]. 中国食品学报, 2019, 19(2):37−46.

    Li Q, Zhou M Z, Wang C, et al. Effects of interaction between proanthocynidins and metal ions on antioxidation[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(2): 37−46.
    [30]
    孙芸. 葡萄籽原花青素聚合度与功效关系的研究[D]. 无锡: 江南大学, 2004.

    Sun Y. Study on the degree of polymerization and bioactivities of grape seed procyanidins[D]. Wuxi: Jiangnan University, 2004.
  • Related Articles

    [1]Huang Chengwei, Qi Lei, Duojiecairen, Zhang Huaiqing, Xue Lianfeng, Yun Ting. Prediction of tree growth parameters based on cascaded recurrent network[J]. Journal of Beijing Forestry University, 2023, 45(8): 94-108. DOI: 10.12171/j.1000-1522.20230027
    [2]Zhang Jinlan, Zhang Xiangxue, Ran Ran, Wu Min, Wu Shang, Jia Liming. Leaf shedding of Populus tomentosa under drought stress based on the theory of plant segmentation hypothesis[J]. Journal of Beijing Forestry University, 2020, 42(9): 19-27. DOI: 10.12171/j.1000-1522.20190411
    [3]Jiang Tao, Wang Xinjie. Convolutional neural network for GF-2 image stand type classification[J]. Journal of Beijing Forestry University, 2019, 41(9): 20-29. DOI: 10.13332/j.1000-1522.20180342
    [4]Wu Jianzhao, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie, Wu Chengzhen. Characteristics of plants, soil nutrients and leaf stoichiometry at the early stage of ecological restoration in earthquake-affected area[J]. Journal of Beijing Forestry University, 2019, 41(2): 41-52. DOI: 10.13332/j.1000-1522.20180329
    [5]Yu Huiling, Ma Junwei, Zhang Yizhuo. Plant leaf recognition model based on two-way convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(12): 132-137. DOI: 10.13332/j.1000-1522.20180182
    [6]ZHANG Shuai, HUAI Yong-jian.. Leaf image recognition based on layered convolutions neural network deep learning.[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. DOI: 10.13332/j.1000-1522.20160035
    [7]LIU Nian, KAN Jiang-ming. Plant leaf identification based on the multi-feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. DOI: 10.13332/j.1000-1522.20150267
    [8]WANG Li-jun, HUAI Yong-jian, PENG Yue-cheng. Method of identification of foliage from plants based on extraction of multiple features of leaf images.[J]. Journal of Beijing Forestry University, 2015, 37(1): 55-69. DOI: 10.13332/j.cnki.jbfu.2015.01.006
    [9]BI Yu-hui, TANG Shou-zheng, WANG Xue-feng. Automatic segmentation of leaf images based on an improved geometric active contour model.[J]. Journal of Beijing Forestry University, 2011, 33(1): 90-93.
    [10]ZHANG Jin-tun, MENG Dong-ping, XI Yue-xiang. Ordination of self-organizing feature map neural network and its application in the study of plant communities.[J]. Journal of Beijing Forestry University, 2008, 30(1): 1-5.
  • Cited by

    Periodical cited type(11)

    1. 黄菲,张佛熠,钟嘉琳,李心,彭辉,邹冰燕,刘玮,王琼. 南昌城市森林土壤肥力综合评价及其空间分布特征. 中南林业科技大学学报. 2024(08): 129-138 .
    2. 吴家龙,张俊涛. 园林绿色废弃物资源价值实现的系统认知与路径探析——以广州市为例. 中国园林. 2024(08): 57-63 .
    3. 刘国梁,吴伟,李素艳,孙向阳,岳宗伟,魏宇光. 园林绿化废弃物堆肥配施化肥对土壤腐殖质碳组分的影响. 中国土壤与肥料. 2024(12): 27-35 .
    4. 史正军,潘松,冯世秀,袁峰均. 园林废弃物地表覆盖处理对植物生长及土壤细菌群落的影响. 草业学报. 2023(04): 153-160 .
    5. 潘松,赵玉梅,袁峰均,史正军. 园林废弃物地表覆盖对龙船花生长发育的影响. 热带作物学报. 2023(04): 766-773 .
    6. 余海洋. 基于自然解决方案的城市绿地系统营建策略. 现代园艺. 2023(11): 140-142 .
    7. 高星,贾慧果. 故宫景福宫古树土壤肥力特征分析评价. 北方农业学报. 2023(01): 45-60 .
    8. 闫芳彬,郑景明,宫殷婷,赵一臣,张家琦. 园林废弃物资源化处理对人工林土壤养分及微生物碳源利用的影响. 浙江农林大学学报. 2023(05): 1045-1053 .
    9. 胡永恒,张程,万华琴,朱咏莉,李萍萍. 不同园林废弃物堆肥过程中化学性状变化及其对发芽指数的影响. 南京林业大学学报(自然科学版). 2023(06): 133-140 .
    10. 潘松,史正军,毛晓宁,袁峰均,曾伟,焦玉佳. 园林废弃物覆盖材料组分及厚度对土壤化学性质的影响. 西部林业科学. 2022(05): 153-158 .
    11. 李小羊. 黔南地区市政园林工程建设中土壤改良技术措施研究. 工程技术研究. 2022(22): 215-217 .

    Other cited types(0)

Catalog

    Article views (1788) PDF downloads (71) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return