• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Guo Tian, Zhang Na, Fu Qun, Chai Yangyang, Guo Qingqi. Effects of several assisted extraction methods on extraction effect and antioxidant activity of proanthocyanins from blueberry[J]. Journal of Beijing Forestry University, 2020, 42(9): 139-148. DOI: 10.12171/j.1000-1522.20190466
Citation: Guo Tian, Zhang Na, Fu Qun, Chai Yangyang, Guo Qingqi. Effects of several assisted extraction methods on extraction effect and antioxidant activity of proanthocyanins from blueberry[J]. Journal of Beijing Forestry University, 2020, 42(9): 139-148. DOI: 10.12171/j.1000-1522.20190466

Effects of several assisted extraction methods on extraction effect and antioxidant activity of proanthocyanins from blueberry

More Information
  • Received Date: December 12, 2019
  • Revised Date: March 09, 2020
  • Available Online: September 09, 2020
  • Published Date: September 29, 2020
  •   Objective  Using wild blueberries from Daxinganling Area, northeastern China as raw materials, the effects of organic solvent extraction, ultrasonic-assisted, microwave-assisted, and light-wave-assisted extraction methods on the extraction effects, chemical structure, and antioxidant function of proanthocyanidins and phenols from blueberries were studied.
      Method  The contents of proanthocyanidins, total phenols, total flavonoids and anthocyanins in the four kinds of extraction solution were determined by spectrophotometry. The structural changes of the four kinds of extraction solution were analyzed by infrared spectrum. The microstructure of the residues of blueberry treated by different ways was observed by scanning electron microscope. The total reducing capacity and the scavenging ability of DPPH, ABTS as well as hydroxyl radicals of the four kinds of extraction solution were also measured.
      Result  The maximum yield of proanthocyanidins extracted by microwave-assisted method was (15.72 ± 0.03) mg/g. The results showed that there was no obvious change in the chemical structure of proanthocyanidins extracted by four methods through infrared spectrum, and the pores and folds on the surface of the residue after microwave-assisted extraction were obvious by SEM (P < 0.05). When the blueberry proanthocyanidins extracted by the four methods was adjusted to the same concentration of 30 μg/mL, there was no significant difference in total reduction ability and DPPH free radical scavenging ability (P > 0.05). The free radical scavenging percentage of DPPH was above 97%. The order of scavenging capacity of hydroxyl radicals was general solvent extraction > microwave-assisted extraction > light wave assisted extraction > ultrasonic assisted extraction. The ultrasonic assisted method had the worst scavenging effect on ABTS radicals, and the solvent extraction method had the strongest.
      Conclusion  At the same concentration, the antioxidant activity of the solution from the solvent extraction is stronger, but the microwave-saaisted extraction method has the highest yield of proanthocysnins and the antioxidant activity is not significantly different from that of the solvent extraction method (P > 0.05). Microwave can promote the extraction of proanthocyanidins in a short time because of its strong ion polarization and dipole rotation, and there is no significant difference in the chemical structure and antioxidant function of proanthocyanidins after microwave treatment, so the microwave assisted method is more suitable for the extraction of proanthocyanidins from blueberry. By comparing the yields obtained when ultrasonic, microwave, and light wave treatments are performed separately and the yields after re-extraction after ultrasonic, microwave, and light wave treatments, it is found that ultrasonic, microwave, and light wave treatments dominate the extraction.
  • [1]
    胡雅馨, 李京, 惠伯棣. 蓝莓果实中主要营养及花青素成分的研究[J]. 食品科学, 2006(10):600−603.

    Hu Y X, Li J, Hui B D. Study on major nutrition and anthocyanins of blueberry[J]. Food Science, 2006(10): 600−603.
    [2]
    翁芳华, 陈建业, 温鹏飞, 等. 蓝莓酒中11种酚酸的高效液相色谱测定[J]. 食品科学, 2006(9):223−226.

    Weng F H, Chen J Y, Wen P F, et al. Detection of 11 phenolic acids of blueberry wine by high performance liquid chromatography[J]. Food Science, 2006(9): 223−226.
    [3]
    李艳芳, 聂佩显, 张鹤华, 等. 蓝莓果实花青苷积累与内源激素含量动态变化[J]. 北京林业大学学报, 2017, 39(2):64−71.

    Li Y F, Nie P X, Zhang H H, et al. Dynamic changes of anthocyanin accumulation and endogenous hormone contents in blueberry[J]. Journal of Beijing Forestry University, 2017, 39(2): 64−71.
    [4]
    Petko D, Maria K, Milan C, et al. Biological activities of selected polyphenol-rich fruitsrelated to immunity and gastrointestinal health[J]. Food Chemistry, 2014, 157: 37−44.
    [5]
    许昆. 干型蓝莓酒的生产工艺研究[D]. 合肥: 安徽大学, 2014.

    Xu K. The research of dry blueberry wine production technology[D]. Hefei: Anhui University, 2014.
    [6]
    姜贵全, 张卓睿, 张诗朦, 等. 落叶松树皮多聚原花青素的树脂催化降解及抗氧化活性[J]. 北京林业大学学报, 2018, 40(9):118−126.

    Jiang G Q, Zhang Z R, Zhang S M, et al. Degradation of polymeric proanthocyanidin from larch bark catalyzed by resin and antioxidant activity[J]. Journal of Beijing Forestry University, 2018, 40(9): 118−126.
    [7]
    Zdunczyk Z, Frejnagel S, WrÓblewsk M, et al. Biological activity of polyphenol extracts from different plant sources[J]. Food Research International, 2002, 35(2−3): 183−186.
    [8]
    Ariga T. Antioxidative functions, preventive action toward disease and utilization of proanthocyanidins[J]. BioFactors, 2004, 21(1-4): 197−201. doi: 10.1002/biof.552210140
    [9]
    Khan M K, Abert-Vian M, Fabiano-Tixier A S, et al. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel[J]. Food Chemistry, 2010, 119(2): 851−858. doi: 10.1016/j.foodchem.2009.08.046
    [10]
    孙晓薇, 李丽丽, 王涵, 等. 微波辅助提取落叶松树皮原花青素及其条件优化[J]. 食品工业, 2012(1):35−39.

    Sun X W, Li L L, Wang H, et al. Microwave-assisted extraction of oligomeric proanthocyanidins from larch bark and optimization[J]. The Food Industry, 2012(1): 35−39.
    [11]
    Leandro G A, Kriaa K, Nikov I, et al. Ultrasound assisted extraction of polyphenols from black chokeberry[J]. Separation & Purification Technology, 2012, 93: 42−47.
    [12]
    周泉城, 申德超, 区颖刚. 超声波辅助提取经膨化大豆粕中低聚糖工艺[J]. 农业工程学报, 2008, 24(5):245−249.

    Zhou Q C, Shen D C, Ou Y G. Ultrasonic assisted extraction of oligosaccharide from defatted soybean meal after extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(5): 245−249.
    [13]
    李凤英, 崔蕊静, 李春华. 采用微波辅助法提取葡萄籽中的原花青素[J]. 食品与发酵工业, 2005(1):39−42.

    Li F Y, Cui R J, Li C H. Microwave-assisted extraction of procyanidin by from grape seed[J]. Food and Fermentation Industries, 2005(1): 39−42.
    [14]
    吕俊丽, 游新勇, 任志龙, 等. 酶解水溶剂法提取莜麦多酚的工艺研究[J]. 中国粮油学报, 2017, 32(11):131−135.

    Lü J L, You X Y, Ren Z L, et al. The microwave-assisted organic solvent extraction of poly-phenols from oat[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(11): 131−135.
    [15]
    叶松华, 王晓燕, 杨莹莹, 等. 黄刺玫果中总黄酮的提取工艺研究[J]. 山西医科大学学报, 2013(7):535−538.

    Ye S H, Wang X Y, Yang Y Y, et al. Study on extraction process of flavonoids from fruit of Rosa xanthina Lindl[J]. Journal of Shanxi Medical University, 2013(7): 535−538.
    [16]
    陆卿卿. 蓝莓汁中花色苷稳定性及抗氧化活性的研究[D]. 南京: 南京农业大学, 2013.

    Lu Q Q. Studies on stability and antioxidant activity of anthocyanins from blueberry[D]. Nanjing: Nanjing Agriculture University, 2013.
    [17]
    Prior R L, Fan E, Ji H P, et al. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders[J]. Journal of the Science of Food & Agriculture, 2010, 90(9): 1473−1478.
    [18]
    高德艳, 梁红敏, 任继波, 等. 葡萄籽原花青素聚合度分析方法的研究[J]. 食品研究与开发, 2017, 38(10):124−127.

    Gao D Y, Liang H M, Ren J B, et al. Study on analytical methods of grape seed proanthocyanidins polymerization degree[J]. Food Research and Development, 2017, 38(10): 124−127.
    [19]
    马烨. 红米原花青素的提取纯化与抗氧化活性研究[D]. 南昌: 南昌大学, 2016.

    Ma Y. Studies on the extraction, purification and antioxidant activity of proanthocyanidins from red rice[D]. Nanchang: Nanchang University, 2016.
    [20]
    Hur S J, Lee S Y, Kim Y C, et al. Effect of fermentation on the antioxidant activity in plant-based foods[J]. Food Chemistry, 2014, 160(10): 346−356.
    [21]
    黎英, 曾珍清, 张薇, 等. 大孔树脂纯化红腰豆总黄酮的工艺优化及其体外抗氧化活性比较[J]. 中国粮油学报, 2017, 32(11):128−136,143.

    Li Y, Zeng Z Q, Zhang W, et al. Optimization of purification process of total flavonoids fromred kidney beans with macroporous absorbent resin and comparision of in vitro antioxidant activity[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(11): 128−136,143.
    [22]
    张乃珣, 尹红力, 赵鑫, 等. 红松多酚与真菌多糖联合清除ABTS自由基活性比较[J]. 北京林业大学学报, 2016, 38(10):104−111.

    Zhang N X, Yin H L, Zhao X, et al. Combined ABTS radical scavenging activity of Pinus koraiensis polyphenols with fungus polysaccharides[J]. Journal of Beijing Forestry University, 2016, 38(10): 104−111.
    [23]
    李瑞光, 刘邻渭, 郑海燕, 等. 芦苇黄酮提取液体外抗氧化特性研究[J]. 西北农业学报, 2009, 18(4):310−314.

    Li R G, Liu L W, Zheng H Y, et al. Antioxidant properties of Phragmites communis trin flavonoids extracts[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(4): 310−314.
    [24]
    齐雅静. 不同结构原花青素的制备及对食品中丙烯酰胺生成的影响[D]. 无锡: 江南大学, 2019.

    Qi Y J. Preparation of proanthocyanidins with different structures and their effect on the formation of acrylamide in foods[D]. Wuxi: Jiangnan University, 2019.
    [25]
    刘静. 蓝莓叶片原花青素的提取、分离及抗氧化活性研究[D]. 福州: 福建农林大学, 2014.

    Liu J. Study on extration, separation process and antioxidanactivity of procyanidins from blueberry (Vacciniumashei Reade) leaves[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014.
    [26]
    陈茵茹. 吐鲁番葡萄籽原花青素的提取纯化及抗菌抗氧化研究[D]. 乌鲁木齐: 新疆大学, 2013.

    Chen Y R. Study on extraction and purification and antibacterial antioxidant of procyanidins from grape seed in turpan[D]. Wulumuqi: Xinjiang University, 2013.
    [27]
    Soto R, Freer J, Baeza J. Evidence of chemical reactions between di- and poly-glycidyl ether resins and tannins isolated from Pinus radiata D. Don bark[J]. Bioresource Technology, 2005, 96(1): 95−101. doi: 10.1016/j.biortech.2003.05.006
    [28]
    Fu C, Yang X, Lai S, et al. Structure, antioxidant and α-amylase inhibitory activities of longan pericarp proanthocyanidins[J]. Journal of Functional Foods, 2015, 14: 23−32. doi: 10.1016/j.jff.2015.01.041
    [29]
    李琴, 周梦舟, 汪超, 等. 莲原花青素与金属离子相互作用对抗氧化的影响[J]. 中国食品学报, 2019, 19(2):37−46.

    Li Q, Zhou M Z, Wang C, et al. Effects of interaction between proanthocynidins and metal ions on antioxidation[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(2): 37−46.
    [30]
    孙芸. 葡萄籽原花青素聚合度与功效关系的研究[D]. 无锡: 江南大学, 2004.

    Sun Y. Study on the degree of polymerization and bioactivities of grape seed procyanidins[D]. Wuxi: Jiangnan University, 2004.
  • Related Articles

    [1]Xia Wenzhe, Dong Tingting, Sun Liwei. Evaluation of phenolic resources and its antioxidant abilities for seed coats of Acer truncatum from four producing areas[J]. Journal of Beijing Forestry University, 2021, 43(12): 127-135. DOI: 10.12171/j.1000-1522.20210276
    [2]Fu Qun, Kuai Bin, Li Lu, Liu Lei, Wang Mengli. Extraction technology of flavonoids from pine shell and its antioxidant activity[J]. Journal of Beijing Forestry University, 2020, 42(8): 141-149. DOI: 10.12171/j.1000-1522.20190452
    [3]Jiang Guiquan, Zhang Zhuorui, Zhang Shimeng, Ren Xuanbai, Pang Jiuyin. Degradation of polymeric proanthocyanidin from larch bark catalyzed by resin and antioxidant activity[J]. Journal of Beijing Forestry University, 2018, 40(9): 118-126. DOI: 10.13332/j.1000-1522.20180124
    [4]ZHANG Nai-xun, YIN Hong-li, ZHAO Xin, LIU Ran, YU Mei-hui, WANG Zhen-yu. Combined ABTS radical scavenging activity of Pinus koraiensis polyphenols with fungus polysaccharides.[J]. Journal of Beijing Forestry University, 2016, 38(10): 104-111. DOI: 10.13332/j.1000-1522.20150527
    [5]ZHAO Qing, Lu Xiao-fei, ZHU Xiao-ran, ZHANG Na, GUO Qing-qi. Optimization of extraction technology for lilac polyphenols and their antioxidant activity.[J]. Journal of Beijing Forestry University, 2015, 37(10): 125-129. DOI: 10.13332/j.1000-1522.20140174
    [6]ZHU Ming-hua, FANG Gui-zhen, HAN Shi-yan, ZHANG Yan-hua, RONG Hai-hong, GUO Jun, SHI Yong-chun. Lignin separation and antioxidant capacity from Acanthopanax senticosus remainders using acetone.[J]. Journal of Beijing Forestry University, 2012, 34(1): 135-140.
    [7]LU Qi, ZHU Ming-hua, ZU Yuan-gang, ZHANG Ying, ZHANG Xiao-nan, LI Wen-gang, ZU Bai-shi, ZHANG Bao-you. Preparation and antioxidant capacity of high boiling solvent lignin nano-powder.[J]. Journal of Beijing Forestry University, 2011, 33(5): 69-74.
    [8]LU Qi, LIU Wen-jun, ZU Yuan-gang, YANG Lei, ZU Bai-shi, LI Wen-gang, ZHANG Bao-you, ZHU Ming-hua. Lignin separation and antioxidant capacity from Acanthopanax senticosus remainders using high boiling solvent[J]. Journal of Beijing Forestry University, 2011, 33(4): 124-129.
    [9]CHEN Jian, SUN Ai-dong, GAO Xue-juan, TAO Xiao-yun, WANG Shan-shan. .Extraction and antioxidation of anthocyanins from blueberry.[J]. Journal of Beijing Forestry University, 2011, 33(2): 126-129.
    [10]DU Jian, YANG Ying, ZHAO Ming-ye, WANG Jun, CHEN Min. Changes of antioxidant activity of phenolics in Toona sinensis during storage.[J]. Journal of Beijing Forestry University, 2011, 33(2): 120-125.
  • Cited by

    Periodical cited type(11)

    1. 何秋玲,陈晓玉,杨申明,徐兴丽,向雪梅,王振吉. 无花果原花青素超声辅助提取工艺优化及抗氧化性研究. 生物化工. 2024(04): 1-7+12 .
    2. 林赛婷,田君飞,史荣祥,王欣莹,陈俊宇,王传浩,万小芳,陈广学. 微波辅助低共熔溶剂高效提取油茶壳原花青素的工艺优化. 应用化工. 2023(02): 398-403 .
    3. 焦思宇,许丁予,姚先超,刘鑫,林春燕,何丽欣,林日辉. 壳聚糖微花对原花青素吸附机理的研究. 食品工业科技. 2023(18): 43-49 .
    4. 郝丽,杨志伟. 超声波-酶法提取紫甘蓝花青素条件优化及其抗氧化和消化酶抑制活性研究. 食品安全质量检测学报. 2023(22): 295-304 .
    5. 颜雪琴,蔡金燕. 超临界CO_2萃取黑土豆原花青素及抗氧化性研究. 当代化工. 2023(12): 2803-2807 .
    6. 詹昕,赵芳芳,高志强,杨珍平,杨文平. 喷施有机硒肥对黑糯玉米籽粒硒及花青素含量的影响. 山西农业科学. 2022(02): 199-205 .
    7. 熊颖,禹霖,柏文富,李建挥,严佳文,聂东伶,吴思政. 不同品种蓝莓果实品质特征和抗氧化能力及多酚组成的比较. 中南林业科技大学学报. 2022(02): 119-128 .
    8. 汪建红. 双水相辅助内部沸腾法提取桂花叶黄酮. 食品研究与开发. 2022(04): 22-28 .
    9. 高琪,陈志远,刘艳妮. 皂素废水改良蓝莓土壤的重金属安全性评价. 中国果树. 2021(05): 33-37+109 .
    10. 吕筱,郑天元,韦新月,窦子珊,高晨佳,蔡冉,孟琬星,王汝华. 花生红衣中原花青素的提取工艺与活性研究. 农产品加工. 2021(09): 27-31 .
    11. 周海旭,谢美玉,高晗,李波,苏同超,李忠海. 樟树叶木脂素和多酚超声辅助同步提取工艺优化. 食品与机械. 2020(10): 143-148 .

    Other cited types(8)

Catalog

    Article views (1775) PDF downloads (70) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return