• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jin Xiaodong, Jiang Lichun. Equation construction on standing tree volume of Pinus sylvestris var. mongolica based on different form quotients of trunk[J]. Journal of Beijing Forestry University, 2020, 42(3): 78-86. DOI: 10.12171/j.1000-1522.20190047
Citation: Jin Xiaodong, Jiang Lichun. Equation construction on standing tree volume of Pinus sylvestris var. mongolica based on different form quotients of trunk[J]. Journal of Beijing Forestry University, 2020, 42(3): 78-86. DOI: 10.12171/j.1000-1522.20190047

Equation construction on standing tree volume of Pinus sylvestris var. mongolica based on different form quotients of trunk

More Information
  • Received Date: January 16, 2019
  • Revised Date: March 18, 2019
  • Available Online: January 15, 2020
  • Published Date: March 30, 2020
  • ObjectiveThe tree volume equation has been widely used in studying forest productivity, biomass and carbon storage. Therefore, improving the prediction precision of tree volume has always been an important task for forestry model researchers. Two-variable and three-variable volume equations were established based on different form quotients of the trunk, and compared and tested the predictive effects for Pinus sylvestris var. mongolica in Daxing,anling Mountains of northeastern China to improve the prediction precision of traditional tree volume to a new level.
    MethodUsing the 15 different form quotients of the trunk, two-variable and three-variable volume equations were established based on the traditional one-variable and two-variable volume equations, respectively, and compared with the traditional one-variable and two-variable volume equations. All models were fitted using GNLS in S-PLUS. And the optimal form quotient model was selected. Variance functions (power function, constant plus power function and exponential function) were incorporated into generalized models to decrease heteroscedasticity. And the precision of different individual volume models was evaluated using four factors: mean absolute bias (MAB), mean percentage of bias (MPB), root mean square error (RMSE), and coefficient determination (R2). Finally, the prediction precision of four kinds of equations in different diameter classes was compared by the method of different diameter classes testing.
    ResultThe results showed that the two-variable model based on 70% of the relative height had the best fitting effect, and the three-variable model based on the relative height of 50% was the best. The model test results showed that based on the traditional one-variable model, the RMSE, MAB and MPB of the model after adding form quotient were reduced by 33.7%, 30.7%, and 29.9%, respectively. Based on the traditional two-variable model, the RMSE, MAB and MPB of the model after adding form quotient, were reduced by 70.5%, 70.9% and 71.2%, respectively. From evaluation results of different diameter classes testing, for small and medium diameter classes, the order of test precision was: model (13) > model (2) > model (12) > model (1); for large diameter classes, the order of test precision was: model (13) > model (12) > model (2) > model (1).
    ConclusionThe form quotient is an important index of stem form. The introduction of form quotient factor into traditional tree volume model can improve the prediction precision of tree volume. Therefore, the three-variables volume model with form quotient factor is recommended for estimating tree volume of Pinus sylvestris var. mongolica, especially for medium and large diameter trees.
  • [1]
    Muukkonen P. Generalized allometric volume and biomass equations for some tree species in Europe[J]. European Journal of Forest Research, 2007, 126(2): 157−166. doi: 10.1007/s10342-007-0168-4
    [2]
    Özçelik R, Diamantopoulou M J, Brooks J R, et al. Estimating tree bole volume using artificial neural network models for four species in Turkey[J]. Journal of Environmental Management, 2010, 91(3): 742−753. doi: 10.1016/j.jenvman.2009.10.002
    [3]
    Yoon T K, Park C W, Sun J L, et al. Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea[J]. Urban Forestry & Urban Greening, 2013, 12(3): 344−349.
    [4]
    刘琼阁, 彭道黎, 黄国胜, 等. 东北云杉相容性立木材积和地上生物量模型研建[J]. 北京林业大学学报, 2015, 37(2):8−15.

    Liu Q G, Peng D L, Huang G S, et al. Compatible standing tree volume and above-ground biomass equations for spruce (Picea asperata) in northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(2): 8−15.
    [5]
    孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest mensuration[M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.
    [6]
    徐祯祥, 廖晓海, 侯建智. 测定单株立木材积的形点法[J]. 林业科学, 1990, 26(5):475−480.

    Xu Z X, Liao X H, Hou J Z. From reference point method to measure the volume of a single tree[J]. Scientia Silvae Sinicae, 1990, 26(5): 475−480.
    [7]
    张明铁, 李万宝. 用干形指数测定单株立木材积的研究[J]. 内蒙古林学院学报, 1995(1):43−46.

    Zhang M T, Li W B. The research of measuring singles volume using tree trunk shape exponent[J]. Journal of Inner Mongolia Forestry College, 1995(1): 43−46.
    [8]
    冯仲科, 徐祯祥, 王小昆, 等. 测定立木材积的改进形点法[J]. 北京林业大学学报, 2005, 27(5):87−91. doi: 10.3321/j.issn:1000-1522.2005.05.015

    Feng Z K, Xu Z X, Wang X K, et al. Precision form method to determine standing wood volume[J]. Journal of Beijing Forestry University, 2005, 27(5): 87−91. doi: 10.3321/j.issn:1000-1522.2005.05.015
    [9]
    张明铁. 单株立木材积测定方法的研究[J]. 林业资源管理, 2004(1):24−26. doi: 10.3969/j.issn.1002-6622.2004.01.006

    Zhang M T. Study on volume measurement of single trees[J]. Forest Resources Management, 2004(1): 24−26. doi: 10.3969/j.issn.1002-6622.2004.01.006
    [10]
    张兴龙, 姜立春. 兴安落叶松树干去皮直径预测模型[J]. 林业科学研究, 2015, 28(1):67−73.

    Zhang X L, Jiang L C. Inside bark diameter prediction models for Dahurian larch[J]. Forest Research, 2015, 28(1): 67−73.
    [11]
    Cao Q V, Wang J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015, 61(2): 213−219. doi: 10.5849/forsci.14-008
    [12]
    Parker R C, Matney T G. Comparison of optical dendrometers for prediction of standing tree volume[J]. Southern Journal of Applied Forestry, 1999, 23(2): 100−107. doi: 10.1093/sjaf/23.2.100
    [13]
    Williams M S, Cormier K L, Briggs R G, et al. Evaluation of the Barr & Stroud FP15 and criterion 400 laser dendrometers for measuring upper stem diameters and heights[J]. Forest Science, 1999, 45(1): 53−61.
    [14]
    Kalliovirta J, Laasasenaho J, Kangas A. Evaluation of the laser-relascope[J]. Forest Ecology and Management, 2005, 204(2/3): 181−194.
    [15]
    Fortin M, Daigle C, Ung C H, et al. A variance-covariance structure to take into account repeated measurements and heteroscedasticity in growth modeling[J]. European Journal of Forest Research, 2007, 126(4): 573−585. doi: 10.1007/s10342-007-0179-1
    [16]
    吴明山, 胥辉, 叶江霞. 兴安落叶松材积模型中的异方差研究[J]. 山东林业科技, 2010, 40(2):14−17. doi: 10.3969/j.issn.1002-2724.2010.02.004

    Wu M S, Xu H, Ye J X. Study on heteroscedasticity of Larix gmelini (Rupr.) in volume model[J]. Journal of Shandong Forestry Science and Technology, 2010, 40(2): 14−17. doi: 10.3969/j.issn.1002-2724.2010.02.004
    [17]
    曾鸣, 聂祥永, 曾伟生. 中国杉木相容性立木材积和地上生物量方程[J]. 林业科学, 2013, 49(10):74−79.

    Zeng M, Nie X Y, Zeng W S. Compatible tree volume and aboveground biomass equations of Chinese fir in China[J]. Scientia Silvae Sinicae, 2013, 49(10): 74−79.
    [18]
    胥辉. 一种与材积相容的生物量模型[J]. 北京林业大学学报, 1999, 21(5):32−36. doi: 10.3321/j.issn:1000-1522.1999.05.007

    Xu H. A biomass model compatible with volume[J]. Journal of Beijing Forestry University, 1999, 21(5): 32−36. doi: 10.3321/j.issn:1000-1522.1999.05.007
    [19]
    McRoberts R E, Westfall J A. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates[J]. Forest Science, 2014, 60(1): 34−42. doi: 10.5849/forsci.12-141
    [20]
    韩斐斐, 姜立春. 基于树干不同高度直径的落叶松立木材积方程[J]. 东北林业大学学报, 2017, 45(4):65−69. doi: 10.3969/j.issn.1000-5382.2017.04.013

    Han F F, Jiang L C. Tree volume function based on diameter at different relative heights of Dahurian larch[J]. Journal of Northeast Forestry University, 2017, 45(4): 65−69. doi: 10.3969/j.issn.1000-5382.2017.04.013
    [21]
    曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137−143.

    Zeng W S, Tang S Z. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models[J]. Forest Research, 2011, 24(2): 137−143.
    [22]
    Wang M L, Kane M B, Borders B E, et al. Direct variance-covariance modeling as an alternative to the traditional guide curve approach for prediction of dominant heights[J]. Forest Science, 2014, 60(4): 652−662. doi: 10.5849/forsci.13-019
    [23]
    Uzoh F C C, Oliver W W. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model[J]. Forest Ecology and Management, 2008, 256(3): 438−445. doi: 10.1016/j.foreco.2008.04.046
    [24]
    钟全林, 黄志强, 胡松竹, 等. 刨花楠干形结构分析[J]. 江西农业大学学报(自然科学版), 2002, 24(2):232−236.

    Zhong Q L, Huang Z Q, Hu S Z, et al. The structural analysis of the tree form of Machilus pauhoi[J]. Acta Agriculturae Universitatis Jiangxiensis, 2002, 24(2): 232−236.
    [25]
    曲佳, 张雄清. 国内外树干干形的研究进展[J]. 林业科技通讯, 2015(7):3−7.

    Qu J, Zhang X Q. Research progress of trunk shape at home and abroad[J]. Forest Science and Technology, 2015(7): 3−7.
    [26]
    Bi H Q. Improving stem volume estimation of regrowth Eucalyptus fastigata with a lower stem form quotient[J]. Australian Forestry, 1994, 57(3): 98−104. doi: 10.1080/00049158.1994.10676123
    [27]
    Adesoye P O, Popoola O D. Determinants of stem form: application to Tectona grandis (Linn. F) stands[J]. Journal of Sustainable Forestry, 2016, 35(5): 338−354. doi: 10.1080/10549811.2016.1177730
  • Related Articles

    [1]Xie Yunhong, Sun Zhao, Ding Zhidan, Luo Mi, Li Yun, Sun Yujun. UAV remote sensing image extraction of single tree crown of Chinese fir based on Mask R-CNN and transfer learning[J]. Journal of Beijing Forestry University, 2024, 46(3): 153-166. DOI: 10.12171/j.1000-1522.20210343
    [2]Cen Lumei, Lin Jian. Compression deformation fixation and properties of Chinese fir pretreated with citric acid[J]. Journal of Beijing Forestry University, 2022, 44(4): 157-164. DOI: 10.12171/j.1000-1522.20210467
    [3]Geng Dan, Xia Chaozong, Zhang Guobin, Liu Xiaodong, Kang Fengfeng. Biomass model construction of shrub layer of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2018, 40(3): 34-41. DOI: 10.13332/j.1000-1522.20170257
    [4]ZHANG Shu-qin, YU Yan, FEI Ben-hua, WANG Han-kun. Longitudinal modulus of elasticity of Chinese fir tracheids[J]. Journal of Beijing Forestry University, 2012, 34(6): 126-130.
    [5]ZHANG Shu-qin, FEI Ben-hua, YU Yan, XING Xin-ting, WANG Han-kun. Constructing a twovariable model for predicting longitudinal MOE of wood: a case study on Chinese fir wood.[J]. Journal of Beijing Forestry University, 2012, 34(1): 123-126.
    [6]XIA Zhong-sheng, ZENG Wei-sheng, ZHU Song, LUO Hong-zhang1. Construction of tree volume equations for Chinese fir plantation in Guizhou Province, southwestern China.[J]. Journal of Beijing Forestry University, 2012, 34(1): 1-5.
    [7]ZENG Wei-sheng, XIA Zhong-sheng, ZHU Song, LUO Hong-zhang. Compatible tree volume and above-ground biomass equations for Chinese fir plantations in Guizhou[J]. Journal of Beijing Forestry University, 2011, 33(4): 1-6.
    [8]LI Yan-jun, TANG Rong-qiang, BAO Bin-fu, SUN Hui. Mechanical properties and dimensional stability of heat-treated Chinese fir[J]. Journal of Beijing Forestry University, 2010, 32(4): 232-236.
    [9]HUANG Hua-hong, CHEN Fen-xue, TONG Zai-kang, ZHU Yu-qiu.. Photosynthetic properties and chlorophyll florescence parameters of dwarf Chinese fir.[J]. Journal of Beijing Forestry University, 2009, 31(2): 69-73.
    [10]FU Yun-lin, XU Feng, TANG Li-ming, WEI Guang-sui. Wood anatomy of Chinese fir in different site types of its southern growing district.[J]. Journal of Beijing Forestry University, 2005, 27(1): 10-13.
  • Cited by

    Periodical cited type(3)

    1. 罗光成,雷相东,史景宁,何潇,向玮,李玉堂. 基于潜在生产力的吉林省长白落叶松人工林立地质量评价. 北京林业大学学报. 2025(01): 1-10 . 本站查看
    2. 高羽,李静,刘洋,乌雅瀚,巩家星,辛启睿. 结构方程模型在兴安落叶松林生长中的应用. 南京林业大学学报(自然科学版). 2023(01): 38-46 .
    3. 金鹏,徐明,冉富菊,雷云,蒙春灿,张健. 森林光环境特征及其生态作用. 山地农业生物学报. 2023(02): 38-47 .

    Other cited types(5)

Catalog

    Article views (1745) PDF downloads (79) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return