• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wei Wei, Wang Baitian, Zhang Kebin. Analysis on spatiotemporal trend of drought in the Central Asia region during 1901−2015 based on SPEI[J]. Journal of Beijing Forestry University, 2020, 42(4): 113-121. DOI: 10.12171/j.1000-1522.20190055
Citation: Wei Wei, Wang Baitian, Zhang Kebin. Analysis on spatiotemporal trend of drought in the Central Asia region during 1901−2015 based on SPEI[J]. Journal of Beijing Forestry University, 2020, 42(4): 113-121. DOI: 10.12171/j.1000-1522.20190055

Analysis on spatiotemporal trend of drought in the Central Asia region during 1901−2015 based on SPEI

More Information
  • Received Date: January 21, 2019
  • Revised Date: January 25, 2019
  • Available Online: March 20, 2020
  • Published Date: April 26, 2020
  • ObjectiveCentral Asia region is a landlocked dryland located in the heart of the Eurasian continent and far from oceans, and its dryland ecosystems support a substantial proportion of the human population and economy. Thus, the monitoring and assessment of frequent drought is of great significance for the sustainable development of this region.
    MethodBased on gridded monthly standardized precipitation evapotranspiration index (SPEI) with high-resolution (0.5° × 0.5°), the spatial patterns of trends in SPEI for 1,3,6 and 12-month time scales (SPEI01, SPEI03, SPEI06, SPEI12) were analyzed by a contextual Mann-Kendall test and Theil-Sen (TS) slope estimator during the period of 1901 –2015 to evaluate the drought variation at different temporal scales in the Central Asia region.
    Result(1) SPEI01 experienced a significant downward trend in an area (P < 0.05) accounting for 39.24% of the study area, and the largest decline exhibited in the south of the Tianshan Mountains in Xinjiang of western China with a value of − 5×10− 4 yearly; SPEI01 experienced a significant up trend in an area (P < 0.05) accounting for 45.73% of the study area, of which the largest increase was remarked in Tajikistan with a value of 3×10− 4 yearly. (2) SPEI03 showed a significant downward trend in an area (P < 0.05) accounting for 76.32% of the study area, and the largest decline exhibited in Kyrgyzstan with a value of − 4×10− 4 yearly; SPEI03 presented a significant up trend in an area (P < 0.05) accounting for 15.39% of the study area, and the largest rise presented in Tajikistan with a value of 3×10− 4 yearly. (3) The spatial distribution trends of SPEI06 and SPEI12 were basically the same, and the largest decline was shown in Kazakhstan with a value of − 3×10− 4 and − 5×10− 4 yearly, respectively, while the largest increase was shown in Tajikistan with a value of 5×10− 4 and 6×10− 4 yearly, respectively.
    ConclusionThe temporal and spatial variations of annual and seasonal precipitation in Central Asia affect the spatial and temporal distribution of water resources, resulting in humidification and aridification trends at different temporal scales in varied regions. For the short and medium term drought trends in central Kazakhstan, southwestern Turkmenistan and the south of Tianshan Mountains in Xinjiang, as well as seasonal drought trends in a large area of Central Asia, it is then necessary for the local government to take corresponding measures to deal with drought in order to prevent vegetation degradation and desertification to ensure food production and their population wellbeing and safety. For the trend of wetting in other regions, especially the increase of extreme precipitation events, the local government should further improve the flood control and irrigation facilities to prevent flood and drought disasters from expanding and to realize the effective utilization of water resources.
  • [1]
    Alexander L, Allen S, Bindoff N L. Climate change 2013: the physical science basis[R]//Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013.
    [2]
    Murray V, Ebi K L. IPCC special report on managing the risks of extreme events and disasters to advance climate change adaptation (SREX)[J]. Journal of Epidemiology and Community Health, 2012, 66(9): 759−760. doi: 10.1136/jech-2012-201045
    [3]
    Asl S J, Khorshiddoust A M, Dinpashoh Y, et al. Frequency analysis of climate extreme events in Zanjan, Iran[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(7): 1637−1650. doi: 10.1007/s00477-013-0701-6
    [4]
    Kao S C, Rao S G. Hutchinson on trivariate statistical analysis of extreme rainfall events via the plackett family of copulas[J]. Water Resources Research, 2008, 44(2): 32−37.
    [5]
    Nohegar N, Heydarzadeh M, Malekian A. Assessment of severity of droughts using geostatistics method (case study: southern Iran)[J]. Desert, 2013, 18: 79−87.
    [6]
    Masoudi M, Hakimi S. A new model for vulnerability assessment of drought in Iran using percent of normal precipitation index (PNPI)[J]. Iranian Journal of Science and Technology Transaction A-Science, 2014, 38(4): 435−440.
    [7]
    刘晓云, 李栋梁, 王劲松. 1961—2009年中国区域干旱状况的时空变化特征[J]. 中国沙漠, 2012, 32(2):473−483.

    Liu X Y, Li D L, Wang J S. Spatiotemporal characteristics of drought over China during 1961 –2009[J]. Journal of Desert Research, 2012, 32(2): 473−483.
    [8]
    Carrão H, Naumann G, Barbosa P. Global projections of drought hazard in a warming climate: a prime for disaster risk management[J]. Climate Dynamics, 2018, 50(5−6): 1−19.
    [9]
    Dracup J A, Lee K S, Paulson E G. On the definition of droughts[J]. Water Resources Research, 1980, 16(2): 297−302. doi: 10.1029/WR016i002p00297
    [10]
    Wilhite D A, Glantz M H. Understanding the drought phenomenon: the role of definitions[J]. Water International, 1985, 10(3): 111−120. doi: 10.1080/02508068508686328
    [11]
    Orville H D. AMS statement on meteorological drought[J]. Bulletin of the American Meteorological Society, 1990, 71(7): 1021−1025. doi: 10.1175/1520-0477-71.7.1021
    [12]
    Kallis G. Droughts[J]. Annual Review of Environment and Resources, 2008, 33(1): 85−118.
    [13]
    Wilhite D A, Hayes M J, Svoboda M D. Drought monitoring and assessment: status and trends in the United States[M]//Drought and drought mitigation in Europe. Amsterdam: Springer, 2000.
    [14]
    Tsakiris G, Pangalou D, Vangelis H. Regional drought assessment based on the reconnaissance drought index (RDI)[J]. Water Resources Management, 2007, 21(5): 821−833. doi: 10.1007/s11269-006-9105-4
    [15]
    Dai A. Characteristics and trends in various forms of the palmer drought severity index during 1900 –2008[J/OL]. Journal of Geophysical Research: Atmospheres, 2011, 116(D12) [2019–01–12]. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010JD015541.
    [16]
    Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[R]. California: Eighth Conference on Applied Climatology, 1993.
    [17]
    Akbar N, Ahmad N, Ardavan G. Comparison of the suitability of standardized precipitation index (SPI) and aggregated drought index (ADI) in Minab Watershed (Hormozgan Province/South of Iran)[J]. African Journal of Agricultural Research, 2012, 7(44): 5905−5911. doi: 10.5897/AJAR12.1521
    [18]
    Vicente-Serrano S M, Begueria S, López- Moreno J I. A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index:SPEI[J]. Journal of Climate, 2010, 23(7): 1696−1718. doi: 10.1175/2009JCLI2909.1
    [19]
    孙滨峰, 赵红, 王效科. 基于标准化降水蒸发指数(SPEI)的东北干旱时空特征[J]. 生态环境学报, 2015, 24(1):22−28.

    Sun B F, Zhao H, Wang X K. Spatiotemporal characteristics of drought in Northeast China based on SPEI[J]. Ecology and Environmental Sciences, 2015, 24(1): 22−28.
    [20]
    李洁, 莫淑红, 沈冰, 等. 基于SPEI的渭河流域干旱特征分析[J]. 西安理工大学学报, 2016, 32(1):70−76.

    Li J, Mo S H, Shen B, et al. Analysis of drought characteristics in Weihe River Basin based on SPEI[J]. Journal of Xi’an University of Technology, 2016, 32(1): 70−76.
    [21]
    Yu M, Li Q, Hayes M J, et al. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951 –2010?[J]. International Journal of Climatology, 2014, 34(3): 545−558. doi: 10.1002/joc.3701
    [22]
    Tan C P, Yang J P, Li M. Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China[J]. Atmosphere (Basel), 2015, 6(10): 1399−1421.
    [23]
    Hu Z Y, Zhang C, Hu Q S, et al. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets[J]. Journal of Climate, 2014, 27(3): 1143−1167. doi: 10.1175/JCLI-D-13-00064.1
    [24]
    Gessner U, Naeimi V, Klein I, et al. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia[J]. Global and Planetary Change, 2013, 110: 74−87. doi: 10.1016/j.gloplacha.2012.09.007
    [25]
    Lioubimtseva E, Henebry G M. Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations[J]. Journal of Arid Environments, 2009, 73(11): 963−977. doi: 10.1016/j.jaridenv.2009.04.022
    [26]
    Mohammat A, Wang X H, Xu X T, et al. Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia[J]. Agricultural and Forest Meteorology, 2013, 178–179(5): 21−30.
    [27]
    De Beurs K M, Wright C K, Henebry G M. Dual scale trend analysis forevaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan[J/OL]. Environmental Research Letters, 2009, 4(4): 045012 [2019−01−12]. https://iopscience.iop.org/article/10.1088/1748-9326/4/4/045012.
    [28]
    Zhang C, Ren W. Complex climatic and CO2 controls on net primary productivity of temperate dryland ecosystems over central Asia during 1980 –2014[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(9): 2356−2374. doi: 10.1002/2017JG003781
    [29]
    Sheffield J, Wood E F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations[J]. Climate Dynamics, 2008, 31(1): 79−105. doi: 10.1007/s00382-007-0340-z
    [30]
    Jiang L L, Jiapaer G, Bao A M, et al. Vegetation dynamics and responses to climate change and human activities in Central Asia[J]. Science of the Total Environment, 2017, 599−600: 967−980.
    [31]
    Beckwith C I. Empires of the silk road: a history of central Eurasia from the Bronze Age to the present[M]. Princeton: Princeton University Press, 2009.
    [32]
    Barrow C J. World atlas of desertification[J]. Land Degradation & Development, 1992, 3(4): 249.
    [33]
    Vicente-Serrano S M, Célia G, Jesús J, et al. Response of vegetation to drought time-scales across global land biomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 52−57. doi: 10.1073/pnas.1207068110
    [34]
    Sangüesa-Barreda G, Camarero J J, Oliva J, et al. Past logging, drought and pathogens interact and contribute to forest dieback[J]. Agricultural and Forest Meteorology, 2015, 208: 85−94. doi: 10.1016/j.agrformet.2015.04.011
    [35]
    Vicente-Serrano S M, Beguería S, López-Moreno J I, et al. A new global 0.5° gridded dataset (1901 –2006) of a multiscalar drought index: comparison with current drought index datasets based on the palmer drought severity index[J]. Journal of Hydrometeorology, 2010, 11(4): 1033−1043. doi: 10.1175/2010JHM1224.1
    [36]
    Um M J, Kim Y, Park D, et al. Effects of different reference periods on drought index (SPEI) estimations from 1901 to 2014[J]. Hydrology & Earth System Sciences, 2017, 21(10): 4989−5007.
    [37]
    王芝兰, 李耀辉, 王素萍, 等. 1901—2012年中国西北地区东部多时间尺度干旱特征[J]. 中国沙漠, 2015, 35(6):1666−1673. doi: 10.7522/j.issn.1000-694X.2014.00190

    Wang Z L, Li Y H, Wang S P, et al. Characteristics of drought at multiple time scales in the east of northwest China from 1901−2012[J]. Journal of Desert Research, 2015, 35(6): 1666−1673. doi: 10.7522/j.issn.1000-694X.2014.00190
    [38]
    沈国强, 郑海峰, 雷振锋. SPEI指数在中国东北地区干旱研究中的适用性分析[J]. 生态学报, 2017, 37(11):3787−3795.

    Shen G Q, Zheng H F, Lei Z F. Applicability analysis of SPEI for drought research in Northeast China[J]. Acta Ecologica Sinica, 2017, 37(11): 3787−3795.
    [39]
    芦佳玉, 延军平, 李英杰, 等. 基于SPEI及游程理论的云贵地区1960—2014年干旱时空变化特征[J]. 浙江大学学报(理学版), 2018, 45(3):363−372.

    Lu J Y, Yan J P, Li Y J, et al. The temporal variation characteristics of drought in Yunnan-Guizhou area during 1960 to 2014 based on SPEI and run-length theory[J]. Journal of Zhejiang University (Science Edition), 2018, 45(3): 363−372.
    [40]
    Hoaglin D C, Mosteller F, Tukey J W. Understanding robust and exploratory data analysis[M]//Understanding robust and exploratory data analysis. New York: John Wiley and Sons, 2000.
    [41]
    Neeti N, Eastman J R. A contextual Mann-Kendall approach for the assessment of trend significance in image time series[J]. Transactions in Gis, 2011, 15(5): 599. doi: 10.1111/j.1467-9671.2011.01280.x
    [42]
    Von Storch H. Misuses of statistical analysis in climate research[M]. New York: Springer-Verlag, 1995.
    [43]
    Eastman J R. TerrSet: geospatial monitoring and modeling system manual[EB/OL]. (2016−10−11)[2018−12−21]. http://clarklabs.org/wp-content/uploads/2016/10/Terrset-Manual.pdf.
    [44]
    Mitchell T D, Jones P D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids[J]. International Journal of Climatology, 2005, 25(6): 693−712. doi: 10.1002/joc.1181
    [45]
    吴燕锋, 巴特尔巴克, 罗那那, 等. 1901—2013年塔吉克斯坦极端降水事件时空变化特征[J]. 干旱区研究, 2016, 33(5):943−951.

    Wu Y F, Baterbake, Luo N N, et al. Spatiotemporal variation of extreme precipitation events in Tajikistan during the period of 1901−2013[J]. Arid Zone Research, 2016, 33(5): 943−951.
    [46]
    Hu Z Y, Zhou Q M, Chen X, et al. Variations and changes of annual precipitation in Central Asia over the last century[J]. International Journal of Climatology, 2017, 37: 157−170.
    [47]
    张强, 张存杰, 白虎志, 等. 西北地区气候变化新动态及对干旱环境的影响[J]. 干旱气象, 2010, 28(1):1−7. doi: 10.3969/j.issn.1006-7639.2010.01.001

    Zhang Q, Zhang C J, Bai H Z, et al. New development of climate change in northwest China and its impact on arid environment[J]. Journal of Arid Meteorology, 2010, 28(1): 1−7. doi: 10.3969/j.issn.1006-7639.2010.01.001
    [48]
    张延伟, 李红忠, 魏文寿, 等. 1961—2010年北疆地区极端气候事件变化[J]. 中国沙漠, 2013, 33(6):1891−1897. doi: 10.7522/j.issn.1000-694X.2013.00245

    Zhang Y W, Li H Z, Wei W S, et al. Change of extreme climate events during 1961 to 2010 in Northern Xinjiang, China[J]. Journal of Desert Research, 2013, 33(6): 1891−1897. doi: 10.7522/j.issn.1000-694X.2013.00245
    [49]
    姜逢清, 朱诚, 胡汝骥. 新疆1950—1997年洪旱灾害的统计与分形特征分析[J]. 自然灾害学报, 2002, 11(4):96−100. doi: 10.3969/j.issn.1004-4574.2002.04.016

    Jiang F Q, Zhu C, Hu R J. Statistical and fractal features of the flood and drought disasters in Xinjiang from 1950 to 1997[J]. Journal of Natural Disasters, 2002, 11(4): 96−100. doi: 10.3969/j.issn.1004-4574.2002.04.016
    [50]
    Bolch T. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data[J]. Global and Planetary Change, 2007, 56(1–2): 1−12.
    [51]
    陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学: 地球科学, 2012, 41(11):1647−1657.

    Chen F H, Huang W, Jin L Y, et al. Characteristics and spatial differences of precipitation in arid region of Central Asia under the background of global warming[J]. Chinese Science: Earth Science, 2012, 41(11): 1647−1657.
    [52]
    Ho P. Rangeland degradation in north China revisited? A preliminary statistical analysis to validate non-equilibrium range ecology[J]. Journal of Development Studies, 2001, 37(3): 99−133. doi: 10.1080/00220380412331321991
    [53]
    Chen X, Wang S S, Hu Z Y, et al. Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in Central Asia during 1901 –2013[J]. Journal of Geographical Sciences, 2018, 28(9): 1341−1368. doi: 10.1007/s11442-018-1529-2
    [54]
    沈伟峰, 缪启龙, 魏铁鑫, 等. 中亚地区近130多a温度变化特征[J]. 干旱气象, 2013, 31(1):32−36.

    Shen W F, Liao Q L, Wei T X, et al. Analysis of temperature variation in recent 130 years in Central Asia[J]. Journal of Arid Meteorology, 2013, 31(1): 32−36.
    [55]
    Wehrden H V, Hanspach J, Ronnenberg K, et al. Inter-annual rainfall variability in Central Asia : a contribution to the discussion on the importance of environmental stochasticity in drylands[J]. Journal of Arid Environments, 2010, 74(10): 1212−1215. doi: 10.1016/j.jaridenv.2010.03.011
    [56]
    Xu H J, Wang X P, Zhang X X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 52: 390−402. doi: 10.1016/j.jag.2016.07.010
    [57]
    Angert A, Biraud S, Bonfils C, et al. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 10823−10827. doi: 10.1073/pnas.0501647102
  • Related Articles

    [1]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [2]Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148
    [3]Liu Xiaoting, Wei Jiatong, Wu Peili, Wu Lin, Xu Qingshan, Fang Yanlin, Yang Bin, Zhao Xiyang. Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 25-34. DOI: 10.12171/j.1000-1522.20200250
    [4]Zhu Yihong, Gao Lushuang, Jia Bo, Zhang Pingrui, Wang Yinpeng, Ou Lijin. Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes[J]. Journal of Beijing Forestry University, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289
    [5]LIANG De-yang, JIN Yun-zhe, ZHAO Guang-hao, DONG Yuan-hai, LENG Wei-wei, CHEN Chang-lin, WANG Huan, ZHAO Xi-yang. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51-59. DOI: 10.13332/j.1000-1522.20150465
    [6]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [7]GAO Hui-lin, LI Feng-ri, DONG Li-hu. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(3): 76-83. DOI: 10.13332/j.1000-1522.20140324
    [8]ZHANG Zhen, ZHANG Han-guo, ZHOU Yu, LIU Ling, YU Hong-ying, WANG Xu, FENG Wan-ju. Variation of seed characters in Korean pine (Pinus koraiensis ) multi-clonal populations[J]. Journal of Beijing Forestry University, 2015, 37(2): 67-78. DOI: 10.13332/j.cnki.jbfu.2015.02.020
    [9]LIU Ran, WANG Zhen-yu, CUI Jie, DENG Xin-rui, LU Jing. Effects of precursors and elicitations on the synthesis polyphenols of Pinus koraiensis.[J]. Journal of Beijing Forestry University, 2013, 35(5): 22-27.
    [10]WANG Qi, PENG Lu, YAN Shan-chun, LIAO Yue-zhi. Electroantennogram and behavioral responses of Pissodes nitidus to terpene volatiles of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2011, 33(4): 91-95.
  • Cited by

    Periodical cited type(11)

    1. 赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
    2. 任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
    3. 杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
    4. 赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 . 本站查看
    5. 李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 . 本站查看
    6. 刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
    7. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
    8. 周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
    9. 吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
    10. 张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
    11. 陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .

    Other cited types(14)

Catalog

    Article views (2324) PDF downloads (98) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return