• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ren Cai, Jia Xin, Wu Yajuan, Ma Jingyong, Tian Yun, Zha Tianshan. Responses of PSII photochemical parameter to a snowfall event in early growing season in Artemisia ordosica[J]. Journal of Beijing Forestry University, 2019, 41(12): 119-127. DOI: 10.12171/j.1000-1522.20190058
Citation: Ren Cai, Jia Xin, Wu Yajuan, Ma Jingyong, Tian Yun, Zha Tianshan. Responses of PSII photochemical parameter to a snowfall event in early growing season in Artemisia ordosica[J]. Journal of Beijing Forestry University, 2019, 41(12): 119-127. DOI: 10.12171/j.1000-1522.20190058

Responses of PSII photochemical parameter to a snowfall event in early growing season in Artemisia ordosica

More Information
  • Received Date: January 23, 2019
  • Revised Date: February 24, 2019
  • Available Online: October 08, 2019
  • Published Date: November 30, 2019
  • ObjectiveThe aim is to examine the impact of a snow event in the early growing season on photosynthetically physiological status of a typical shrub, and to understand photosynthetically physiological mechanism to acclimate to the snow stress.
    MethodWe monitored the variations in chlorophyll fluorescence and calculated energy partitioning parameters continuously in situ by a multi-channel monitoring fluorometry during a snow event which covered a period of prior- and post-snowing days, in relation to environmental factors.
    ResultActual photosynthetic quantum yield (ΦPSII) was lowest on snow day. The daytime mean value of ΦPSII on snow day was 40% and 33% lower than that of prior and post snow. Regulatory energy dissipation (ΦNPQ) and non-photochemical quenching (NPQ) were highest on snow day, with daytime mean value of ΦNPQ being 95% and 48% higher than that of prior and post snow, respectively. The daytime mean value of NPQ on snow day was 94% and 76% higher than that of prior and post snow. Maximal quantum yield of PSII photochemistry (Fv/Fm) was 0.69 on snow day, smaller than that of prior snow, and smaller than stress line of 0.73. Fv/Fm recovered back within 3−4 days. There were opposite response trends at PAR threshold of 900 μmol/(m2·s)and at air temperature of 10 ℃, indicating different controlling environmental factors around the thresholds. Water availability was always one of the most common limitations during the stress recovery.
    ConclusionThere was a stress for Artemisia ordosica during the snow event. The stress was mainly induced by the synergy of low temperature and high radiation. A. ordosica acclimated to the stress by mechanism of increasing ratio of regulatory thermal energy dissipation of energy partitioning in PSII reaction center. The 3−4 days were needed for A. ordosica to recover from the snow stress. The recovery period could be shortened by condition of low radiation, moderate high temperature and high moisture.
  • [1]
    Donat G, Lowry L, Alexander V, et al. More extreme precipitation in the world’s dry and wet regions[J]. Nature Climate Change, 2016, 6(5): 508−513. doi: 10.1038/nclimate2941
    [2]
    葛红元, 王红义, 韦炜, 等. 春季降雪对祁连山区青海云杉林的影响[J]. 甘肃林业科技, 2014, 39(3):18−22. doi: 10.3969/j.issn.1006-0960.2014.03.005

    Ge H Y, Wang H Y, Wei W, et al. Effect of snow in spring on Picea crassifolia forest in Qilian Mountains[J]. Journal of Gansu Forestry Science and Technolgy, 2014, 39(3): 18−22. doi: 10.3969/j.issn.1006-0960.2014.03.005
    [3]
    Ashraf M, Harris C. Photosynthesis under stressful environments: an overview[J]. Photosynthetica, 2013, 51(2): 163−190. doi: 10.1007/s11099-013-0021-6
    [4]
    Pietrini F, Chaudhuri D, Thapliyal P, et al. Analysis of chlorophyll fluorescence transients in mandarin leaves during a photo-oxidative cold shock and recovery[J]. Agriculture Ecosystems & Environment, 2005, 106(2): 189−198.
    [5]
    丁金枝, 来利明, 赵学春, 等. 荒漠化对毛乌素沙地土壤呼吸及生态系统碳固持的影响[J]. 生态学报, 2011, 31(6):1594−1603.

    Ding J Z, Lai L M, Zhao X C, et al. Effects of desertification on soil respiration and ecosystem carbon fixation in Mu Us sandy land[J]. Acta Ecologica Sinica, 2011, 31(6): 1594−1603.
    [6]
    Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview[J]. Chlorophyll A Fluorescence: A Signature of Photosynthesis, 2004, 19: 279−319.
    [7]
    Perks P, Osborne A, Mitchell T. Rapid predictions of cold tolerance in Douglas-fir seedlings using chlorophyll fluorescence after freezing[J]. New Forests, 2004, 28(1): 49−62. doi: 10.1023/B:NEFO.0000031331.08847.49
    [8]
    Hegedűs A, Sára Erdei, Janda T, et al. Transgenic tobacco plants overproducing alfalfa aldose/aldehyde reductase show higher tolerance to low temperature and cadmium stress[J]. Plant Science, 2004, 166(5): 1329−1333. doi: 10.1016/j.plantsci.2004.01.013
    [9]
    Gilmore M, Ball C. Protection and storage of chlorophyll in overwintering evergreens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(20): 11098−11101. doi: 10.1073/pnas.150237697
    [10]
    Ensminger I, Busch F, Huner A. Photostasis and cold acclimation: sensing low temperature through photosynthesis[J]. Physiologia Plantarum, 2010, 126(1): 28−44.
    [11]
    Niinemets U. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation[J]. Forest Ecology and Management, 2010, 260(10): 1630−1639.
    [12]
    Porcar-Castell A, Pfündel E, Korhonen J, et al. A new monitoring PAM fluorometer (MONI-PAM) to study the short- and long-term acclimation of photosystem Ⅱ in field conditions[J]. Photosynthesis Research, 2008, 96(2): 173−179. doi: 10.1007/s11120-008-9292-3
    [13]
    张明艳, 贾昕, 查天山, 等. 油蒿(Artemisia ordosica)光系统Ⅱ光化学效率对去除降雨的响应[J]. 中国沙漠, 2017, 37(3):475−482. doi: 10.7522/j.issn.1000-694X.2016.00021

    Zhang M Y, Jia X, Zha T S, et al. PSⅡ photochemical efficiency of Artemisia ordosica in response to rainfall exclusion[J]. Journal of Desert Research, 2017, 37(3): 475−482. doi: 10.7522/j.issn.1000-694X.2016.00021
    [14]
    夏静芳, 王玉杰, 张友焱, 等. 半固定与固定沙地油蒿枝条水势及气体交换特征[J]. 水土保持研究, 2011, 18(1):239−242.

    Xia J F, Wang Y J, Zhang Y Y, et al. Water potential of branch and gas exchange characteristics of Artemisia ordosica in semi-fixed and fixed sand dunes[J]. Research of Soil and Water Conservation, 2011, 18(1): 239−242.
    [15]
    邓文红. 黑沙蒿群落植物演替过程中的化感作用研究[D]. 北京: 北京林业大学, 2016.

    Deng W H. Allelopathy of community in the process of plant succession[D]. Beijing: Beijing Forestry University, 2016.
    [16]
    Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 2014, 11(17): 4679−4693. doi: 10.5194/bg-11-4679-2014
    [17]
    Porcar-Castell A. A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris[J]. Physiologia Plantarum, 2011, 143(2): 139−153. doi: 10.1111/j.1399-3054.2011.01488.x
    [18]
    Zha T S, Wu Y J, Jia X, et al. Diurnal response of effective quantum yield of PSⅡ photochemistry to irradiance as an indicator of photosynthetic acclimation to stressed environments revealed in a xerophytic species[J]. Ecological Indicators, 2017, 74: 191−197. doi: 10.1016/j.ecolind.2016.11.027
    [19]
    Murchie H, Lawson T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications[J]. Journal of Experimental Botany, 2013, 64(13): 3983−3998. doi: 10.1093/jxb/ert208
    [20]
    Yajuan W, Cai R, Yun T, et al. Photosynthetic gas-exchange and PSⅡ photochemical acclimation to drought in a native and non-native xerophytic species (Artemisia ordosica and Salix psammophila)[J]. Ecological Indicators, 2018, 94: 130−138. doi: 10.1016/j.ecolind.2018.06.040
    [21]
    韩旖旎. 两种沙生灌木适应波动环境的非光化学淬灭调节[D]. 北京: 北京林业大学, 2016.

    Han Y N. Regulation of non-photochemical quenching in photosynthetica acclimation of two xerophytic shrubs to fluctuating environments[D]. Beijing: Beijing Forestry University, 2016.
    [22]
    Terashima I. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion[J]. Journal of Experimental Botany, 2005, 57(2): 343−354.
    [23]
    Ren C, Wu Y, Zha T, et al. Seasonal Changes in photosynthetic energy utilization in a desert shrub (Artemisia ordosica Krasch.) during its different phenophases[J]. Forests, 2018, 9(4): 171−176. doi: 10.3390/f9040176
    [24]
    Dennis J, Berg E, Sandell D, et al. Cooling the NGI - an approach to size a nebulised aerosol more accurately[J]. Pharmeur Sci Notes, 2008, 2008(1): 27−30.
    [25]
    杨毅. 中国云杉属主要物种光系统Ⅱ热稳定性研究[D]. 兰州: 兰州大学, 2017.

    Yang Y. Thermal stability of PSⅡ of main Picea species in China[D]. Lanzhou: Lanzhou University, 2017.
    [26]
    Yini H, Juying W, Yun T, et al. Light energy partitioning and photoprotection in an exotic species (Salix Psammophila) grown in a semi-arid area of northwestern China[J/OL]. Forests, 2018, 9(6): 341 [2018−12−19]. https://www.mdpi.com/1999-4907/9/6/341.
    [27]
    Horton P, Johnson P, Perez-Bueno L, et al. Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem Ⅱ in higher plant grana membranes regulate light harvesting states?[J]. The FEBS Journal, 2008, 275(6): 1069−1079. doi: 10.1111/j.1742-4658.2008.06263.x
    [28]
    吴雅娟, 查天山, 贾昕, 等. 油蒿(Artemisia ordosica)光化学量子效率和非光化学淬灭的动态及其影响因子[J]. 生态学杂志, 2015, 34(2):319−325.

    Wu Y J, Zha T S, Jia X, et al. Temporal variation and controlling factors of photochemical efficiency and non-photochemical quenching in Artemisia ordosica[J]. Chinese Journal of Ecology, 2015, 34(2): 319−325.
    [29]
    Sacharz J, Giovagnetti V, Ungerer P, et al. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex Ⅱ to control non-photochemical quenching[J/OL]. Nature Plants, 2017, 3: 16225 [2018−12−16]. https://www.nature.com/articles/nplants2016225.
    [30]
    Faik A, Popova V, Velitchkova M. Effects of long-term action of high temperature and high light on the activity and energy interaction of both photosystems in tomato plants[J]. Photosynthetica, 2016, 54(4): 611−619. doi: 10.1007/s11099-016-0644-5
    [31]
    Flexas J, Bota J, Escalona J M, et al. Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations[J]. Functional Plant Biology, 2002, 29(4): 461−471. doi: 10.1071/PP01119
  • Related Articles

    [1]Niu Yilong, Dong Lihu, Li Fengri. Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation[J]. Journal of Beijing Forestry University, 2020, 42(2): 9-18. DOI: 10.12171/j.1000-1522.20190036
    [2]Li Xiang, Dong Lihu, Li Fengri. Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 9-18. DOI: 10.13332/j.1000-1522.20170428
    [3]WANG Jin-song, WANG Chen, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on decomposition of single and mixed leaf litters in the plantation and natural forests of Pinus tabulaeformis.[J]. Journal of Beijing Forestry University, 2015, 37(10): 14-21. DOI: 10.13332/j.1000-1522.20140292
    [4]WANG Dong-zhi, ZHANG Zhi-dong, MU Hong-xiang, LI Yong-ning, HUANG Xuan-rui. Applications of structural equation model in the management of Larix principis-rupprechtii plantations[J]. Journal of Beijing Forestry University, 2015, 37(3): 69-75. DOI: 10.13332/j.1000-1522.20140326
    [5]LI Yao-xiang, JIANG Li-chun. Modeling wood tracheid length based on nonlinear mixed model for dahurian larch[J]. Journal of Beijing Forestry University, 2013, 35(3): 18-23.
    [6]SUN Zhi-hu, BI Yong-juan, MU Chang-cheng, CAI Ti-jiu. Using an ecosystem simulation model FORECAST to evaluate the effects of forest management strategies on long-term productivity of Korean larch plantations[J]. Journal of Beijing Forestry University, 2012, 34(6): 1-6.
    [7]JIA Wei-wei, LI Feng-ri, DONG Li-hu, ZHAO Xin. Carbon density and storage for Pinus sylvestris var. mongolica plantation based on compatible biomass models[J]. Journal of Beijing Forestry University, 2012, 34(1): 6-13.
    [8]LI Chun-ming, LI Li-xue. Height-diameter relationship for Quercus variabilisBlume plantations based on nonlinear mixed model.[J]. Journal of Beijing Forestry University, 2009, 31(4): 7-12.
    [9]LI Wen-bin, ZHANG Jun-mei, SA Chao, WANG De-ming, GAO Kai. Model for forecasting the electric field intensity of UHF wireless frequency band in plantations[J]. Journal of Beijing Forestry University, 2007, 29(4): 15-18. DOI: 10.13332/j.1000-1522.2007.04.004
    [10]HUANG Jia-rong, MENG Xian-yu, GUAN Yu-xiu. Neural network models of diameter distribution for Pinus massoniana plantations[J]. Journal of Beijing Forestry University, 2006, 28(1): 28-31.
  • Cited by

    Periodical cited type(8)

    1. 程雯,武晓昱,叶尔江·拜克吐尔汉,王娟,赵秀海,张春雨. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究. 北京林业大学学报. 2024(02): 28-39 . 本站查看
    2. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 .
    3. 于渤,王明霞,崔晨曦,尹赛男,单延龙,韩喜越. 我国北方森林地下火燃烧温度预测. 北华大学学报(自然科学版). 2023(02): 244-251 .
    4. 易达,李凤日,马爱云,林富成,郝元朔,董利虎. 基于混合效应模型和分位数回归的长白落叶松枝下高模型构建. 应用生态学报. 2023(04): 1035-1042 .
    5. 崔泽宇,张怀清,左袁青,杨廷栋,刘洋,张京,王林龙. 杉木三维模型各方向枝下高分布研究. 南京林业大学学报(自然科学版). 2022(01): 81-87 .
    6. 李应涛,刘时良,孙海龙,王卫霞,向玮. 云冷杉针阔混交林单木枝下高和冠幅模型构建. 森林与环境学报. 2022(03): 289-296 .
    7. 韩东阳,张加龙,杨健,王书贤,冯亚飞. 考虑地形效应的高山松地上生物量遥感估测模型构建. 中南林业科技大学学报. 2022(04): 12-21+67 .
    8. 肖伟伟,李海瑜,杨振景,王珂,尹昀洲,王树力. 水曲柳人工林树冠形态与林木生长形质的关系及其对修枝的响应. 中南林业科技大学学报. 2022(09): 47-54+158 .

    Other cited types(15)

Catalog

    Article views (3118) PDF downloads (64) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return