Citation: | Cheng Wen, Wu Xiaoyu, Yeerjiang Baiketuerhan, Wang Juan, Zhao Xiuhai, Zhang Chunyu. Research on the relationship between tree height and DBH of temperate coniferous and broadleaved mixed forests based on mixed effects and quantile regression[J]. Journal of Beijing Forestry University, 2024, 46(2): 28-39. DOI: 10.12171/j.1000-1522.20220428 |
The aim of this study was to construct tree height equation for quantile regression and mixed-effects based on nonlinear regression and generalized models. And fitting effect and prediction accuracy of nonlinear models, different quntile models (τ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), generalized models and nonlinear mixed-effects models were compared and analyzed, so as to provide theoretical basis for further study of stand growth and harvest.
Based on 21.12 ha sample plot data, taking the main tree species (Pinus koraiensis, Acer mono, Tilia amurensis and Fraxinus mandshurica) from coniferous and broadleaved mixed forest of Jiaohe, Jilin Province of northeastern China as the research object. And the base model was first selected from 11 widely-used tree height equations, then we explored the influence of stand variables on tree height and constructed generalized model containing stand variables. Finally, on the basis of basic model and the generalized model, the quantile model was constructed, and the mixed-effect model was established considering the impact of sample effect on tree height.
(1) Richards was selected as base model for all tree species because of its higher fitting accuracy and biological significance. And considering the correlation between stand variables and tree height and the convergence of models, the generalized model established by adding dominant tree height can significantly improve the fitting effect. (2) All models based on the median (τ = 0.5) performed best, and the prediction accuracy was close to the nonlinear regression. The highest R2 values of Pinus koraiensis, Acer mono, Tilia amurensis and Fraxinus mandshurica were 0.811, 0.809, 0.724 and 0.617, respectively. The generalized median regression prediction ability was further improved, and R2 values were 0.891, 0.874, 0.858 and 0.627, respectively. (3) Mixed-effect models can significantly improve the prediction accuracy compared with other models, among which base mixed model was slightly better than generalized mixed model, and the R2 values of four tree species reached 0.937, 0.919, 0.906 and 0.643, respectively, indicating that mixed models including sample effect can improve the more accurate and stable prediction results.
Compared with base model, generalized model and median regression model established by traditional methods, the height-diameter model based on nonlinear mixed-effects has higher prediction accuracy, and base mixed-effects model has superiority and stability for height-DBH model construction of mixed forests in Jiaohe, Jilin Province of northeastern China.
[1] |
Koenker R, Bassett G. Regression quantiles[J]. Econometrica: Journal of the Econometric Society, 1978, 46(1): 33−50. doi: 10.2307/1913643
|
[2] |
田德超, 李凤日, 董利虎. 依据分位数回归建立的长白落叶松潜在最大冠幅预测模型[J]. 东北林业大学学报, 2019, 47(8): 41−46. doi: 10.3969/j.issn.1000-5382.2019.08.008
Tian D C, Li F R, Dong L H. Potential maximum crown width prediction model of Larix olgensis by quantile regression[J]. Journal of Northeast Forestry University, 2019, 47(8): 41−46. doi: 10.3969/j.issn.1000-5382.2019.08.008
|
[3] |
Özçelik R, Cao Q V, Trincado G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. Forest Ecology and Management, 2018, 419−420: 240−248. doi: 10.1016/j.foreco.2018.03.051
|
[4] |
高慧淋. 东北林区针叶树树冠轮廓及特征因子模拟[D]. 哈尔滨: 东北林业大学, 2017.
Gao H L. Modelling crown profile and characteristic attributes of coniferous tree species in northeast China[D]. Harbin: Northeast Forestry University, 2017.
|
[5] |
赵梦草, 顾海燕. 用分位数回归建立的混交林树高生长模型[J]. 东北林业大学学报, 2020, 48(2): 24−28, 53. doi: 10.13759/j.cnki.dlxb.2020.02.005
Zhao M C, Gu H Y. Tree height growth model of mixed forest using quantile regression[J]. Journal of Northeast Forestry University, 2020, 48(2): 24−28, 53. doi: 10.13759/j.cnki.dlxb.2020.02.005
|
[6] |
王君杰, 夏宛琦, 姜立春. 基于分位数回归和哑变量模型的大兴安岭兴安落叶松树高−胸径模型[J]. 中南林业科技大学学报, 2020, 40(9): 24−32, 40.
Wang J J, Xia W Q, Jiang L C. Height-diameter models for Larix gmelinii in Daxing’ anling based on quantile regression and dummy variable model[J]. Journal of Central South University of Forestry & Technology, 2020, 40(9): 24−32, 40.
|
[7] |
Cao Q V, Wang J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015, 61(2): 213−219. doi: 10.5849/forsci.14-008
|
[8] |
佟艺玟, 陈东升, 冯健, 等. 基于线性分位数混合效应的辽东山区红松冠幅模型[J]. 应用生态学报, 2022, 33(9): 2321−2330. doi: 10.13287/j.1001-9332.202209.002
Tong Y W, Chen D S, Feng J, et al. Crown width model for planted Korean pine in eastern Liaoning mountains based on mixed effect linear quantile[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2321−2330. doi: 10.13287/j.1001-9332.202209.002
|
[9] |
Zhang X F, Fu L Y, Sharma R P, et al. A nonlinear mixed-effects height-diameter model with interaction effects of stand density and site index for Larix olgensis in Northeast China[J]. Forests, 2021, 12(11): 1460. doi: 10.3390/f12111460
|
[10] |
燕云飞, 王君杰, 姜立春. 基于混合效应模型的人工红松枝下高模型研建[J]. 北京林业大学学报, 2020, 42(9): 28−36. doi: 10.12171/j.1000-1522.20190366
Yan Y F, Wang J J, Jiang L C. Construction of the height to crown base mixed model for Korean pine[J]. Journal of Beijing Forestry University, 2020, 42(9): 28−36. doi: 10.12171/j.1000-1522.20190366
|
[11] |
Schmidt M, Kiviste A, Gadow K. A spatially explicit height-diameter model for Scots pine in Estonia[J]. European Journal of Forest Research, 2011, 130(2): 303−315. doi: 10.1007/s10342-010-0434-8
|
[12] |
曾伟生, 唐守正, 夏忠胜, 等. 利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程[J]. 林业科学研究, 2011, 24(3): 285−291. doi: 10.13275/j.cnki.lykxyj.2011.03.011
Zeng W S, Tang S Z, Xia Z S, et al. Using linear mixed model and dummy variable model approaches to construct generalized single-tree biomass equations in Guizhou[J]. Forestry Research, 2011, 24(3): 285−291. doi: 10.13275/j.cnki.lykxyj.2011.03.011
|
[13] |
Temesgen H, Zhang C H, Zhao X H. Modelling tree height-diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China[J]. Forest Ecology and Management, 2014, 316: 78−89. doi: 10.1016/j.foreco.2013.07.035
|
[14] |
Stage A R. Prediction of height increment for models of forest growth[M/OL]. Ogden: Intermountain Forest and Range Experiment Station, Forest Service, U.S. Dept. of Agriculture, 1975 [2022−05−19]. https://doi.org/10.5962/bhl.title.69034.
|
[15] |
Curtis R. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forest Science, 1967, 13(4): 365−375.
|
[16] |
Wykoff W R, Crookston N L, Stage A R. User’s guide to the stand prognosis model[R/OL]. Gen. Tech. Rep. INT-GTR-133. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1982: 112. https://doi.org/10.2737/INT-GTR-133.
|
[17] |
Meyer H A. A mathematical expression for height curves[J]. Journal of Forestry, 1940, 38(5): 415−420.
|
[18] |
Schumacher F X. New growth curve and its application to timber-yield studies[J]. Journal of Forestry, 1939, 37: 819−820.
|
[19] |
Richards F J. Aflexible growth function for empirical use[J]. Journal of Experimental Botany, 1959, 10(2): 290−300. doi: 10.1093/jxb/10.2.290
|
[20] |
Sibbesen E. Some new equations to describe phosphate sorption by soils[J]. Journal of Soil Science, 1981, 32(1): 67−74. doi: 10.1111/j.1365-2389.1981.tb01686.x
|
[21] |
Ratkowsky D A. Handbook of non-linear regression[M]. New York: Marcel and Dekker, 1990: 120.
|
[22] |
Winsor C P. The gompertz curve as a growth curve[J]. PNAS, 1932, 18(1): 1−8. doi: 10.1073/pnas.18.1.1
|
[23] |
Prodan M. Growth functions in: forest biometrics[M]. Oxford: Pergamon Press, 1968.
|
[24] |
Pearl R, Reed L J. On the rate of growth of the population of United States since 1790 and its mathematical representation[M]//Smith D P, Keyfitz N. Mathematical demography: selected papers. Berlin: Springer, 1977: 341−347.
|
[25] |
Zhang L, Bi H, Gove J H, et al. A comparison of alternative methods for estimating the self-thinning boundary line[J]. Canadian Journal of Forest Research, 2005, 35(6): 1507−1514. doi: 10.1139/x05-070
|
[26] |
Mehtätalo L, Gregoire T G, Burkhart H E. Comparing strategies for modeling tree diameter percentiles from remeasured plots[J]. Environmetrics: the Official Journal of the International Environmetrics Society, 2008, 19(5): 529−548.
|
[27] |
辛士冬, 姜立春. 利用分位数回归模拟人工樟子松树干干形[J]. 北京林业大学学报, 2020, 42(2): 1−8.
Xin S D, Jiang L C. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forsetry University, 2020, 42(2): 1−8.
|
[28] |
Ma A Y, Miao Z, Xie L F, et al. Crown width prediction for Larix olgensis plantations in Northeast China based on nonlinear mixed-effects model and quantile regression[J]. Trees, 2022, 36(6): 1761−1776. doi: 10.1007/s00468-022-02326-9
|
[29] |
Ciceu A, Garcia-Duro J, Seceleanu I, et al. A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands[J/OL]. Forest Ecology and Management, 2020, 477 [2020−08−20]. https://doi.org/10.1016/j.foreco.2020.118507.
|
[30] |
Huang S, Price D, Titus S J. Development of ecoregion-based height-diameter models for white spruce in boreal forests[J]. Forest Ecology and Management, 2000, 129(3): 139−141.
|
[31] |
臧 颢, 雷相东, 张会儒. 红松树高−胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6): 8−16.
Zang H, Lei X D, Zhang H R. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8−16.
|
[32] |
王君杰, 姜立春. 基于线性分位数组合的兴安落叶松冠幅预测[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 161−170.
Wang J J, Jiang L C. Predicting crown width for Larix gmelinii based on linear quantiles groups[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 161−170.
|
[33] |
高慧淋, 董利虎, 李凤日. 基于分位数回归的长白落叶松人工林最大密度线[J]. 应用生态学报, 2016, 27(11): 3420−3426.
Gao H L, Dong L H, Li F R. Maximum density-size line for Larix olgensis plantations based on quantile regression[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3420−3426.
|
[34] |
王君杰, 姜立春. 利用分位数组合预测兴安落叶松枝下高[J]. 北京林业大学学报, 2021, 43(3): 9−17.
Wang J J, Jiang L C. Predicting height to crown base for Larix gmelinii using quantile groups[J]. Journal of Beijing Forestry University, 2021, 43(3): 9−17.
|
[35] |
Özçelik R, Diamantopoulou M J, Trincado G, et al. Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey[J]. Computers and Electronics in Agriculture, 2019, 162: 773−782. doi: 10.1016/j.compag.2019.05.033
|
[36] |
Xu H, Sun Y J, Wang X J, et al. Height-diameter models of Chinese fir ( Cunninghamia lanceolata) based on nonlinear mixed effects models in Southeast China[J]. Advance Journal of Food Science and Technology, 2014, 6(4): 445−452. doi: 10.19026/ajfst.6.53
|
[37] |
Cui K D, Wu X Y, Zhang C Y, et al. Estimating height-diameter relations for structure groups in the natural forests of Northeastern China[J/OL]. Forest Ecology and Management, 2022, 519 [2022−06−09]. https://doi.org/10.1016/j.foreco.2022.120298.
|
[38] |
王冬至, 张冬燕, 张志东, 等. 基于非线性混合模型的针阔混交林树高与胸径关系[J]. 林业科学, 2016, 52(1): 30−36.
Wang D Z, Zhang D Y, Zhang Z D, et al. Height-diameter relationship for conifer mixed forest based on nonlinear mixed-effects model[J]. Scientia Silvae Sinicae, 2016, 52(1): 30−36.
|
[39] |
陈 浩, 罗 扬. 马尾松树高−胸径非线性混合效应模型构建[J]. 森林与环境学报, 2021, 41(4): 439−448.
Chen H, Luo Y. Construction of nonlinear mixed effect height-diameter model for Pinus massoniana[J]. Journal of Forest and Environment, 2021, 41(4): 439−448.
|
[40] |
周晏平, 雷泽勇, 赵国军, 等. 沙地樟子松不同树高−胸径模型比较分析[J]. 华南农业大学学报, 2019, 40(3): 75−91.
Zhou Y P, Lei Z Y, Zhao G J, et al. Comparing different height-diameter models of Pinus sylvestris var. mongolica in sandy land[J]. Journal of South China Agricultural University, 2019, 40(3): 75−91.
|
[41] |
Zang H, Lei X D, Zeng W S. Height-diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models[J]. Forestry, 2016, 89(4): 434−445. doi: 10.1093/forestry/cpw022
|
[1] | Cui Yanhong, Bi Huaxing, Hou Guirong, Wang Ning, Wang Shanshan, Zhao Danyang, Ma Xiaozhi, Yun Huiya. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122 |
[2] | Li Cong, Lu Mei, Ren Yulian, Du Fan, Tao Hai, Yang Luoping, Wang Dongxu. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(12): 63-73. DOI: 10.12171/j.1000-1522.20200252 |
[3] | Wang Fengjuan, Tong Xinyu, Xia Xiaoyu, Fu Qun, Guo Qingqi. Effects of simulated different cooking temperatures on the quality of Korean pine seed oil and principal component analysis[J]. Journal of Beijing Forestry University, 2019, 41(11): 116-124. DOI: 10.13332/j.1000-1522.20190115 |
[4] | Zhao Yu, Jin Kun. Preliminary analysis on the summer habitat selection of Mongolia subspecies of goitred gazelle in Wulate, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 115-123. DOI: 10.13332/j.1000-1522.20180049 |
[5] | Li Lianqiang, Niu Shukui, Chen Feng, Tao Changsen, Chen Ling, Zhang Peng. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58-67. DOI: 10.13332/j.1000-1522.20180361 |
[6] | AN Hai-long, LIU Qing-qian, CAO Xue-hui, ZHANG Gang, WANG Hui, LIU Chao, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. DOI: 10.13332/j.1000--1522.20150164 |
[7] | CHEN Si-yu, YANG Hui, HAN Jiao, ZHANG Da-wei, ZHAO Shan-shan, ZHANG Zhong-hui, GUO Zhong-ling, YANG Yu-chun. Provenance variation of seed traits of Juglans mandshurica in Changbai mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(12): 32-40. DOI: 10.13332/j.1000-1522.20150278 |
[8] | QU Chao-qi, MAN Xiu-ling, DUAN Liang-liang. Comprehensive evaluation on the effects of different biological agents on survival rate, growth, physiological and biochemical indexes of desert plant Yucca brevifolia seedlings[J]. Journal of Beijing Forestry University, 2012, 34(4): 67-72. |
[9] | ZHUANG Jian-qi, , CUI Peng, GE Yong-gang, HONG Yong. Relationship between rainfall characteristics and total amount of debris flow[J]. Journal of Beijing Forestry University, 2009, 31(4): 77-83. |
[10] | MO Chang-ming, MA Xiao-jun, , QI Li-wang, BAI Long-hua, SHI Lei, FENG Shi-xin. Genetic variation, correlation and path analysis of Siraitia grosvenorii germplasm characters.[J]. Journal of Beijing Forestry University, 2008, 30(4): 121-125. |