• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Shi Yao, Li Jiayi, Gao Na, Zheng Xi. Assessment on socio-ecosystem vulnerability in shallow mountain area of Beijing under climate change background[J]. Journal of Beijing Forestry University, 2020, 42(4): 132-141. DOI: 10.12171/j.1000-1522.20190091
Citation: Shi Yao, Li Jiayi, Gao Na, Zheng Xi. Assessment on socio-ecosystem vulnerability in shallow mountain area of Beijing under climate change background[J]. Journal of Beijing Forestry University, 2020, 42(4): 132-141. DOI: 10.12171/j.1000-1522.20190091

Assessment on socio-ecosystem vulnerability in shallow mountain area of Beijing under climate change background

More Information
  • Received Date: February 26, 2019
  • Revised Date: September 10, 2019
  • Available Online: March 25, 2020
  • Published Date: April 26, 2020
  • ObjectiveUnder the background of climate change, regional vulnerability assessment under the perspective of socio-ecosystem can identify regional climate risks more comprehensively. In urban areas, shallow mountain area has their uniqueness because of the importance of climate regulation and the vulnerability of climate adaptation, and the coupling between social system and ecosystem is more obvious. As an important link of climate adaptation, the socio-ecosystem vulnerability assessment under climate change background in Beijing shallow mountain area is helpful to provide quantitative reference for climate adaptation strategies in spatial planning.
    MethodIn this study, the assessment framework of “risk-exposure-sensitivity-adaptability” was adopted to construct an index set containing 44 indicators. Through the principal component analysis method, dimensionality reduction screening and weight determination of indicators were carried out to form the index system of social-ecosystem vulnerability assessment. Then the spatial distribution of the vulnerability of socio-ecosystem in the shallow mountainous areas of Beijing was evaluated under the present and future climatic conditions.
    ResultThe current and future climate vulnerability showed a trend of gradually decreasing from the central urban area to the deep mountains, and the degree of vulnerability was mainly moderate and severe, while the overall future vulnerability showed an upward trend. Among administrative zones, the vulnerability of Changping, Shunyi and Haidian districts was at a lower level, and the vulnerability of Fangshan, Fengtai and Mentougou districts was more serious.
    ConclusionBy evaluating the spatial distribution of the vulnerability of socio-ecological system in the shallow mountainous area of Beijing under current and future climatic conditions, the key areas of the climate adaptation in the shallow mountainous area of Beijing were obtained, which provide the basis for the climate adaptation policy in the shallow mountainous area, and provide the method or index reference for the regional vulnerability assessment under climate change background.
  • [1]
    杨飞, 马超, 方华军. 脆弱性研究进展: 从理论研究到综合实践[J]. 生态学报, 2019, 39(2):441−453.

    Yang F, Ma C, Fang H J. Research progress on vulnerability: from theoretical research to comprehensive practice[J]. Acta Ecologica Sinica, 2019, 39(2): 441−453.
    [2]
    IPCC. Climate change 2014: impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2014.
    [3]
    袁潇晨. 气候变化风险评估方法及其应用研究[D]. 北京: 北京理工大学, 2016.

    Yuan X C. Climate change risk assessment: modeling and applications[D]. Beijing: Beijing Institute of Technology, 2016.
    [4]
    赵东升, 吴绍洪. 气候变化情景下中国自然生态系统脆弱性研究[J]. 地理学报, 2013, 68(5):602−610.

    Zhao D S, Wu S H. Responses of vulnerability for natural ecosystem to climate change in China[J]. Acta Geographica Sinica, 2013, 68(5): 602−610.
    [5]
    俞孔坚, 袁弘, 李迪华, 等. 北京市浅山区土地可持续利用的困境与出路[J]. 中国土地科学, 2009, 23(11):3−8, 20.

    Yu K J, Yuan H, Li D H, et al. Difficulties and solutions of the sustainable land use strategy in suburban hilly area in Beijing[J]. China Land Science, 2009, 23(11): 3−8, 20.
    [6]
    柯敏. 北京浅山区土地利用潜力与利用模式研究[D]. 北京: 清华大学, 2010.

    Ke M. Study on the land potential and use pattern in shallow mountain area of Beijing[D]. Beijing: Tsinghua University, 2010.
    [7]
    Ruiz-Labourdette D, Schmitz M F, Pineda F D. Changes in tree species composition in Mediterranean mountains under climate change: indicators for conservation planning[J]. Ecological Indicators, 2013, 24: 310−323. doi: 10.1016/j.ecolind.2012.06.021
    [8]
    冯艺佳. 风景园林视角下的北京市浅山区绿色空间理想格局构建策略研究[D]. 北京: 北京林业大学, 2016.

    Feng Y J. Study on the ideal pattern construction strategy of green space in shallow mountain area of Beijing though the view of landscape architecture[D]. Beijing: Beijing Forestry University, 2016.
    [9]
    高占平. 北京山区生态退化与生态修复规划研究[D]. 北京: 首都师范大学, 2009.

    Gao Z P. Study on ecological degradation and ecological restoration planning of Beijing mountain area by Beijing Institute of Technology[D]. Beijing: Capital Normal University, 2009.
    [10]
    郭佳蕾. 平潭岛社会−生态系统脆弱性评价[D]. 福州: 福建师范大学, 2017.

    Guo J L. Assessment on the vulnerability of social-ecological systems in Pingtan Island[D]. Fuzhou: Fujian Normal University, 2017.
    [11]
    王林峰, 张平宇, 李鹤, 等. 东北西部农牧交错带社会生态系统脆弱性[J]. 中国科学院大学学报, 2018, 35(3):345−352.

    Wang L F, Zhang P Y, Li H, et al. Vulnerability of social-ecosystem in agro-pastoral ecotone in western Northeast China[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(3): 345−352.
    [12]
    杨新军, 张慧, 王子侨. 基于情景分析的西北农村社会−生态系统脆弱性研究: 以榆中县中连川乡为例[J]. 地理科学, 2015, 35(8):952−959.

    Yang X J, Zhang H, Wang Z Q. Vulnerability assessment of rural social-ecological system based on scenario analysis: a case study of Zhonglianchuan Town in Yuzhong County[J]. Scientia Geographica Sinica, 2015, 35(8): 952−959.
    [13]
    温晓金. 恢复力视角下山区社会−生态系统脆弱性及其适应[D]. 西安: 西北大学, 2017.

    Wen X J. The social-ecological vulnerability and adaption in mountainous areas under the perspective of resilience thinking[D]. Xi’an: Northwest University, 2017.
    [14]
    陈佳, 杨新军, 尹莎, 等. 基于VSD框架的半干旱地区社会−生态系统脆弱性演化与模拟[J]. 地理学报, 2016, 71(7):1172−1188.

    Chen J, Yang X J, Yin S, et al. The vulnerability evolution and simulation of the social-ecological systems in the semi-arid area based on the VSD framework[J]. Acta Geographica Sinica, 2016, 71(7): 1172−1188.
    [15]
    Ippolito A, Sala S, Faber J H, et al. Ecological vulnerability analysis: a river basin case study[J]. Science of the Total Environment, 2010, 408(18): 3880−3890. doi: 10.1016/j.scitotenv.2009.10.002
    [16]
    谢作轮, 李秀珍, 姜德刚, 等. 基于海岛生态脆弱性模拟的朱家尖岛空间管控对策[J]. 应用生态学报, 2019, 30(8):2783−2792.

    Xie Z L, Li X Z, Jiang D G, et al. Spatial management strategy of Zhujiajian Island based on island ecological vulnerability simulation[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2783−2792.
    [17]
    Huang P H, Tsai J S, Lin W T. Using multiple-criteria decision-making techniques for eco-environmental vulnerability assessment: a case study on the Chi-Jia-Wan Stream Watershed, Taiwan[J]. Environmental Monitoring and Assessment, 2010, 168(1/4): 141−158.
    [18]
    朱琪, 周旺明, 贾翔, 等. 长白山国家自然保护区及其周边地区生态脆弱性评估[J]. 应用生态学报, 2019, 30(5):1633−1641.

    Zhu Q, Zhou W M, Jia X, et al. Ecological vulnerability assessment on Changbai Mountain National Nature Reserve and its surrounding areas, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1633−1641.
    [19]
    Sam K, Chakma N. Vulnerability profiles of forested landscape to climate change in Bengal Duars Region, India[J]. Environmental Earth Sciences, 2018, 77(12): 459. doi: 10.1007/s12665-018-7649-2
    [20]
    García-López J M, Allué C. A phytoclimatic-based indicator for assessing the inherent responsitivity of the European forests to climate change[J]. Ecological Indicators, 2012, 18: 73−81. doi: 10.1016/j.ecolind.2011.10.004
    [21]
    王义臣. 气候变化视角下城市高温热浪脆弱性评价研究[D]. 北京: 北京建筑大学, 2015.

    Wang Y C. Research on urban heat wave vulnerability assessment under climate change[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2015.
    [22]
    刘利. 北京典型山地森林生态脆弱性的研究[D]. 北京: 北京林业大学, 2011.

    Liu L. Study on ecological vulnerability of typical mountain forest in Beijing[D]. Beijing: Beijing Forestry University, 2011.
    [23]
    Phung D, Rutherford S, Dwirahmadi F, et al. The spatial distribution of vulnerability to the health impacts of flooding in the Mekong Delta, Vietnam[J]. International Journal of Biometeorology, 2016, 60(6): 857−865. doi: 10.1007/s00484-015-1078-7
    [24]
    Gigović L, Pamučar D, Lukić D, et al. GIS-Fuzzy DEMATEL MCDA model for the evaluation of the sites for ecotourism development: a case study of “Dunavski ključ” region, Serbia[J]. Land Use Policy, 2016, 58: 348−365. doi: 10.1016/j.landusepol.2016.07.030
    [25]
    Yang J, Zhang Z C, Li X M, et al. Spatial differentiation of China’s summer tourist destinations based on climatic suitability using the universal thermal climate index[J]. Theoretical and Applied Climatology, 2017, 134(3/4): 859−874.
    [26]
    郭兵, 姜琳, 罗巍, 等. 极端气候胁迫下西南喀斯特山区生态系统脆弱性遥感评价[J]. 生态学报, 2017, 37(21):7219−7231.

    Guo B, Jiang L, Luo W, et al. Study of an evaluation method of ecosystem vulnerability based on remote sensing in a southwestern karst mountain area under extreme climatic conditions[J]. Acta Ecologica Sinica, 2017, 37(21): 7219−7231.
    [27]
    Kim H G, Lee D K, Jung H, et al. Finding key vulnerable areas by a climate change vulnerability assessment[J]. Natural Hazards, 2016, 81(3): 1683−1732. doi: 10.1007/s11069-016-2151-1
    [28]
    何彦龙, 袁一鸣, 王腾, 等. 基于GIS的长江口海域生态系统脆弱性综合评价[J]. 生态学报, 2019, 39(11):3918−3925.

    He Y L, Yuan Y M, Wang T, et al. Integrated assessment of marine ecological vulnerability in the Yangtze River Estuary using GIS[J]. Acta Ecologica Sinica, 2019, 39(11): 3918−3925.
    [29]
    Hagenlocher M, Renaud F G, Haas S, et al. Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards[J]. Science of the Total Environment, 2018, 631−632: 71−80. doi: 10.1016/j.scitotenv.2018.03.013
  • Related Articles

    [1]Liu Shuwen, Guo Sujuan. Stigma receptivity and optimal pollination time of chestnut ‘Yanshanzaofeng’[J]. Journal of Beijing Forestry University, 2025, 47(1): 85-94. DOI: 10.12171/j.1000-1522.20230368
    [2]Wang Xin, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Xie Han, Hu Haiyang, Li Jun. Effects of photosynthesis on soil respiration of Quercus variabilis plantation in southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 66-76. DOI: 10.12171/j.1000-1522.20200010
    [3]Wu Jianzhao, Yan Siwei, Cui Yu, Luo Qinghu, Lin Yongming, Wang Daojie, Wu Chengzhen. Dynamics of soil respiration and its influencing factors at the early stage of ecological restoration of two kinds of climate in earthquake-affected area[J]. Journal of Beijing Forestry University, 2019, 41(3): 93-104. DOI: 10.13332/j.1000-1522.20180192
    [4]Liu Zhengcai, Qu Yaoyao. Vegetation change and its response to climate change based on SPOT-VGT in Hunan Province of southern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 80-87. DOI: 10.13332/j.1000-1522.20180278
    [5]Duan Bei-xing, Man Xiu-ling, Song Hao, Liu Jia-lin. Soil respiration and its component characteristics under different types of Larix gmelinii forests in the north of Daxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 40-50. DOI: 10.13332/j.1000-1522.20170215
    [6]LIU Dan, LIU Shi-ling, GUO Zhong-ling, CUI Xiao-yang, FAN Chun-nan. Population life table and time sequence prediction of Alnus sibirica[J]. Journal of Beijing Forestry University, 2017, 39(10): 62-69. DOI: 10.13332/j.1000-1522.20170035
    [7]SHAO Ying-nan, TIAN Song-yan, LIU Yan-kun, CHEN Yao, SUN Zhi-hu. Effects of density control on soil respiration in Larix olgensis plantation.[J]. Journal of Beijing Forestry University, 2017, 39(6): 51-59. DOI: 10.13332/j.1000-1522.20170029
    [8]LI Si-si, HE Kang-ning, TIAN Yun, ZUO Wei, WANG Wei-lu, TANG Da, ZHANG Tan, LI Qian.. Seasonal changes and the driving factors of soil respiration among five typical forest types in the high-elevation-cold region, Qinghai, northwestern China.[J]. Journal of Beijing Forestry University, 2016, 38(10): 95-103. DOI: 10.13332/j.1000-1522.20160073
    [9]WU Peng, CUI Ying-chun, ZHAO Wen-jun, SHU De-yuan, YANG Wen-bin, DING Fang-jun. Effects of litter exclusion and addition on soil respiration of major forest communities at two successional stages in Maolan karst forest of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(9): 17-27. DOI: 10.13332/j.1000-1522.20150052
    [10]ZHOU Cun-yu, ZHOU Guo-yi, WANG Ying-hong, ZHANG De-qiang, LIU Shi-zhong, WANG Yue-si, SUN Yang. Soil respiration of a coniferous and broad-leaved mixed forest in Dinghushan Mountain, Guangdong Province[J]. Journal of Beijing Forestry University, 2005, 27(4): 23-27.
  • Cited by

    Periodical cited type(2)

    1. 卢翠香,兰俊,陈健波,吴永富,邓紫宇,周维. 尾巨桉树轮异常结构的解剖学分析. 西南大学学报(自然科学版). 2019(04): 72-77 .
    2. 易敏,赖猛,张露,陈伏生,胡松竹. 人工林刨花楠木材主要特性的径向变异及其对气象因子的响应. 应用生态学报. 2018(11): 3677-3684 .

    Other cited types(5)

Catalog

    Article views (1861) PDF downloads (80) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return