• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Xin, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Xie Han, Hu Haiyang, Li Jun. Effects of photosynthesis on soil respiration of Quercus variabilis plantation in southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 66-76. DOI: 10.12171/j.1000-1522.20200010
Citation: Wang Xin, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Xie Han, Hu Haiyang, Li Jun. Effects of photosynthesis on soil respiration of Quercus variabilis plantation in southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 66-76. DOI: 10.12171/j.1000-1522.20200010

Effects of photosynthesis on soil respiration of Quercus variabilis plantation in southern Taihang Mountain of northern China

More Information
  • Received Date: January 15, 2020
  • Revised Date: May 21, 2020
  • Available Online: December 03, 2020
  • Published Date: February 04, 2021
  •   Objective  This study aims to explore the effects of photosynthesis on soil respiration and build a new soil respiration model, which can improve the interpretation of soil respiration changes in the study area, and provide a theoretical basis for accurately estimating the intensity of soil respiration and the carbon budget in southern foot of the Taihang Mountains, northern China.
      Method  Taking the Quercus variabilis on the southern foot of Taihang Mountain as research object using field control experiments, which compared the treatment of cut roots and non-cut roots and the contribution rate of photosynthetic products to soil respiration. Through the model fitting of soil respiration, soil temperature, humidity and photosynthesis data, we explored whether adding photosynthetic factors can optimize the traditional soil respiration model.
      Result  On the hourly scale, soil temperature was the main factor affecting the soil respiration of the cork oak forests, and the relationship between them was significant (R2 = 0.74, P < 0.01). On the day scale, the curves of soil respiration and temperature were not consistent. The soil temperature in each month showed a continuous increase from 10:00−18:00, but the soil respiration rate did not show the same law. The daily change of soil respiration showed a single peak or a double peak curve, and the highest point generally appeared between 14:00−16:00. The temperature sensitivity (Q10 values) dissimilated under different conditions with the root cutting treatment component (1.90) > control group score (1.77). Results showed that forest photosynthesis can account for up to 36.5% of soil respiration, and there was a significant linear correlation between photosynthesis and soil respiration (R2 = 0.39, P < 0.01). Regression model with adding photosynthesis variable significantly improved the fitting R2.
      Conclusion  Soil respiration is a complex process affected by multiple factors. It is not comprehensive to analyze and estimate soil respiration based on the function of a single factor. Soil temperature can only explain 74% variations of soil respiration, whereas soil temperature and photosynthesis in the model jointly determine the variation of soil respiration above 80%, and the model fit degree can reach up to 0.81.
  • [1]
    汪业勖, 赵士洞, 牛栋. 陆地土壤碳循环的研究动态[J]. 生态学杂志, 1999, 18(5):29−35. doi: 10.3321/j.issn:1000-4890.1999.05.006.

    Wang Y X, Zhao S D, Niu D. Research state of soil carbon cycling in terrestrial ecosystem[J]. Chinese Journal of Ecology, 1999, 18(5): 29−35. doi: 10.3321/j.issn:1000-4890.1999.05.006.
    [2]
    陈花丹. 中亚热带阔叶林土壤呼吸动态及其影响因素研究[J]. 林业勘察设计, 2017, 37(1):38−42.

    Chen H D. Research on dynamics and influencing factors of soil respiration in mid-subtropical broad-leaved forest[J]. Forestry Prospect and Design, 2017, 37(1): 38−42.
    [3]
    刘博奇, 牟长城, 邢亚娟, 等. 小兴安岭典型温带森林土壤呼吸对强降雨的响应[J]. 北京林业大学学报, 2016, 38(4):77−85.

    Liu B Q, Mu C C, Xing Y J, et al. Effect of strong rainfalls on soil respiration in a typical temperate forest in Lesser Xing’an Mountains, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 77−85.
    [4]
    井艳丽, 关德新, 吴家兵, 等. 光合作用调控土壤呼吸研究进展[J]. 应用生态学报, 2013, 24(1):269−276.

    Jing Y L, Guan D X, Wu J B, et al. Research progress on photosynthesis regulating and controlling soil respiration[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 269−276.
    [5]
    Huang N, Niu Z. Estimating soil respiration using spectral vegetation indices and abiotic factors in irrigated and rainfed agroecosystems[J]. Plant Soil, 2013, 367(1): 535−550.
    [6]
    Liu X P, Liang J Y, Gu L H. Photosynthetic and environmental regulations of the dynamics of soil respiration in a forest ecosystem revealed by analyses of decadal time series[J/OL]. Agricultural and Forest Meteorology. 2020, 282: 107863 (2019−11−29) [2020−01−26]. https://doi.org/10.1016/j.agrformet.2019.107863.
    [7]
    Vargas R, Allen M F. Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration[J]. New Phytol, 2008, 179(2): 460−471.
    [8]
    Baldocchi D, Tang J, Xu L. How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna[J/OL]. Journal Of Geophysical Research-Biogeosciences, 2006, 111: G02008 (2006−06−01) [2019−11−26]. https://doi.org/10.1029/2005JG000063.
    [9]
    Cardon Z G, Czaja A D, Funk J K. Periodic carbon flushing to roots of Quercus rubra saplings affects soil respiration and rhizosphere microbial biomass[J]. Oecologia, 2002, 133(4): 626−626. doi: 10.1007/s00442-002-1083-5.
    [10]
    徐菲楠, 田志伟, 王维真. 西北干旱区玉米农田光合作用对地表能量平衡的影响[J]. 兰州大学学报(自然科学版), 2018, 54(2):224−232.

    Xu F N, Tian Z W, Wang W Z. Effect of the photosynthesis on the surface energy balance in corn farmland in the arid region of Northwest China[J]. Journal of lanzhou University (Natural Sciences), 2018, 54(2): 224−232.
    [11]
    Yan L M, Chen S P, Huang J H, et al. Water regulated effects of photosynthetic substrate supply on soil respiration in a semiarid steppe[J]. Global Change Biology, 2011, 17: 1990−2001. doi: 10.1111/j.1365-2486.2010.02365.x.
    [12]
    Tang J W, Baldocch D, Xu L K. Tree photosynthesis modulates soil respiration on a diurnal time scale[J]. Global Change Biology, 2005, 11: 1298−1304. doi: 10.1111/j.1365-2486.2005.00978.x.
    [13]
    井艳丽. 水曲柳幼树光合作用调控土壤呼吸的实验研究[D]. 北京: 中国科学院大学, 2015.

    Jing Y L. Experimental study on regulating and controlling soil respiration by photosynthesis of Fraxinus mandshurica seedlings[D]. Beijing: University of Chinese Academy of Sciences, 2015.
    [14]
    Bahn M, Lattanzi F A, Hasibeder R, et al. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland[J]. New Phytologist, 2013, 198: 116−126. doi: 10.1111/nph.12138.
    [15]
    Han G X, Luo Y Q, Li D J, et al. Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland[J]. Soil Biology and Biochemistry, 2014, 68: 85−94. doi: 10.1016/j.soilbio.2013.09.024.
    [16]
    Zhang Q, Phillips R P, Manzoni S, et al. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship[J]. Agricultural and Forest Meteorology, 2018, 259: 184−195. doi: 10.1016/j.agrformet.2018.05.005.
    [17]
    林力涛, 孙学凯, 雷倩, 等. 光合速率与光合条件对沙质草地土壤呼吸的调控作用[J]. 生态学杂志, 2018, 37(7):2107−2113.

    Lin L T, Sun X K, Lei Q, et al. The role of ecosystem photosynthetic rate and photosynthetic conditions in regulating soil respiration in a sandy grassland[J]. Chinese Journal of Ecology, 2018, 37(7): 2107−2113.
    [18]
    Gaumont-Guay D, Black T A, Barr A G, et al. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand[J]. Tree Physiology, 2008, 28: 161−171. doi: 10.1093/treephys/28.2.161.
    [19]
    Kuzyakov Y, Cheng W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition[J]. Soil Biology and Biochemistry, 2001, 33: 1915−1925. doi: 10.1016/S0038-0717(01)00117-1.
    [20]
    Jia X, Zha T S, Wang S, et al. Canopy photosynthesis modulates soil respiration in a temperate semi-arid shrub land at multiple timescales[J]. Plant and Soil, 2018, 432: 437−450. doi: 10.1007/s11104-018-3818-z.
    [21]
    徐春华, 张华, 张兰, 等. 基于通径分析的兰州北山三种典型植物光合作用影响因子[J]. 生态学杂志, 2015, 34(5):1289−1294.

    Xu C H, Zhang H, Zhang L, et al. Factors influencing photosynthesis of three typical plant species in Beishan Mountain of Lanzhou based on path analysis[J]. Chinese Journal of Ecology, 2015, 34(5): 1289−1294.
    [22]
    姜瑞芳. 珙桐幼苗生长与光合特性的主要影响因子[D]. 北京: 北京林业大学, 2016.

    Jiang R F. Effect of environmental factors on the growth and photoynthetic characteristics of Davidia involucrata seedlings[D]. Beijing: Beijing Forestry University, 2016.
    [23]
    Kirschbaum M U, Farquhar G D. Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora [J]. Plant Physiology, 1987, 83: 1032−1037. doi: 10.1104/pp.83.4.1032.
    [24]
    Prado C, Moraes J. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition[J]. Photosynthetica, 1997, 33: 103−112.
    [25]
    Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45: 637−640. doi: 10.1007/s11099-007-0110-5.
    [26]
    Fang L D, Zhang S Y, Zhang G C, et al. Application of five light-response models in the photosynthesis of Populus × Euramericana cv. ‘Zhonglin46’ leaves[J]. Applied Biochemistry and Biotechnology, 2015, 176: 86−100. doi: 10.1007/s12010-015-1543-0
    [27]
    李理渊, 李俊, 同小娟, 等. 不同光环境下栓皮栎和刺槐叶片光合光响应模拟[J]. 应用生态学报, 2018, 29(7):2295−2306.

    Li L Y, Li J, Tong X J. Simulation on photosynthetic light-responses of leaves of Quercus variabilis and Robinia pseudoacacia under different light conditions[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2295−2306.
    [28]
    任博, 李俊, 同小娟, 等. 太行山南麓栓皮栎和刺槐叶片光合光响应模拟[J]. 生态学杂志, 2017, 36(8):2206−2216.

    Ren B, Li J, Tong X J, et al. Simulation on photosynthetic light-response of Quercus variabilis and Robinia pseudoacacia in the southern foot of the Taihang Mountain[J]. Chinese Journal of Ecology, 2017, 36(8): 2206−2216.
    [29]
    郑桂姿. 北带马尾松林土壤呼吸的模型模拟[D]. 武汉: 华中农业大学, 2012.

    Zheng G Z. The model of soil respiration in Pinus massoniana forest of northern zone[D]. Wuhan: Huazhong Agricultural University, 2012.
    [30]
    李元, 时伟宇, 闫美杰, 等. 土壤呼吸影响因素概述及展望[J]. 水土保持研究, 2013, 20(5):311−316.

    Li Y, Shi W Y, Yan M J, et al. Review and prospect on lmpact factors of soil respiration[J]. Research of Soil and Water Conservation, 2013, 20(5): 311−316.
    [31]
    郝龙飞, 王庆成, 刘婷岩. 东北地区4种林分土壤呼吸及温、湿度敏感性对氮添加的短期响应[J]. 生态学报, 2019, 40(2):560−567.

    Hao L F, Wang Q C, Liu T Y. Short-term responses of soil respiration, temperature and humidity sensitivity to nitr-ogen addition[J]. Acta Ecologica Sinica, 2019, 40(2): 560−567.
    [32]
    徐昳晅, 同小娟, 张劲松, 等. 太行山南麓刺槐人工林土壤呼吸与土壤温度间的滞后关系[J]. 北京林业大学学报, 2019, 41(4):78−87.

    Xu Y X, Tong X J, Zhang J S, et al. Time lag between soil respiration and soil temperature in a Robinia pseudoacacia plantation in the south of the Taihang Mountains[J]. Journal of Beijing Forestry University, 2019, 41(4): 78−87.
    [33]
    Speckman H N, Frank J M, Bradford J B, et al. Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles[J]. Global Change Biology, 2015, 21(2): 708−721.
    [34]
    吴孟霖. 天目山常绿落阔混交林土壤呼吸与碳通量的变化特征[D]. 临安: 浙江农林大学, 2016.

    Wu M L.The observation of soil respiration and CO2 fluxes of evergreen and deciduous broad-leaved mixed forest in Tianmu Mountain[D]. Lin’an: Zhejiang A&F University, 2016.
    [35]
    黄湘, 李卫红, 马建新, 等. 通过改变光热条件分析胡杨群落光合作用对土壤呼吸速率的影响[J]. 中国沙漠, 2011, 31(5):1167−1173.

    Huang X, Li W H, Ma J X, et al. Influence of photosynthesis on soil respiration rates for Populus euphratica in different light conditions in arid environments[J]. Journal of Desert Research, 2011, 31(5): 1167−1173.
    [36]
    林力涛, 韩潇潇, 于占源, 等. 施氮处理下植物光合对沙质草地土壤呼吸的调控作用[J]. 应用生态学报, 2019, 30(9):3019−3027.

    Lin L T, Han X X, Yu Z Y, et al. Role of photosynthesis in regulating soil respiration under nitrogen application in a sandy grassland[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3019−3027.
    [37]
    Pumpanen J S, Heinonsalo J, Rasilo T, et al. Carbon balance and allocation of assimilated CO2 in Scots pine, Norway spruce,and silver birch seedlings determined with gas exchange measurements and 14C pulse labeling[J]. Trees-Structure and Function, 2009, 23: 611−621. doi: 10.1007/s00468-008-0306-8.
  • Related Articles

    [1]Ma Xiaodong, Li Xia, Liu Junxiang, Zhai Feifei, Sun Zhenyuan, Han Lei. Effects of Crucibulum laeve inoculation on photosynthesis of Salix viminalis cultivated in PAHs-contaminated soil[J]. Journal of Beijing Forestry University, 2020, 42(5): 80-87. DOI: 10.12171/j.1000-1522.20190340
    [2]Zhao Haiyan, Wei Ning, Sun Congcong, Bai Yilin, Zheng Caixia. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28-41. DOI: 10.13332/j.1000-1522.20180258
    [3]Zhang Jiatong, Guan Yinghui, Si Liqing, Peng Xiawei, Meng Bingnan, Zhou Jinxing. Effects of Pb2+ and Cd2+ combined stress on photosynthesis of Morus alba[J]. Journal of Beijing Forestry University, 2018, 40(4): 16-23. DOI: 10.13332/j.1000-1522.20170332
    [4]SUN Yan-shuang, XING Bao-yue, YANG Guang, LIU Gui-feng. Effects of NaHCO3 stress on growth, photosynthesis and chlorophyll fluorescence characteristics in Populus davidiana × P. bolleana overexpressed TaLEA[J]. Journal of Beijing Forestry University, 2017, 39(10): 33-41. DOI: 10.13332/j.1000-1522.20170099
    [5]YANG Bo-wen, SUN Hai-long, WU Chu. Effects of phosphorus stress on photosynthesis and nitrogen assimilation of Fraxinus mandshurica seedlings[J]. Journal of Beijing Forestry University, 2015, 37(8): 18-23. DOI: 10.13332/j.1000-1522.20140417
    [6]ZHAO Juan, SONG Yuan, MAO Zi-jun. Response in photosynthesis and chlorophyll fluorescence of Quercus mongolica seedlings to the interaction of temperature and precipitation[J]. Journal of Beijing Forestry University, 2013, 35(1): 64-71.
    [7]LIN Xia, ZHENG Jian, CHEN Qiu-xia, KONG Qiang, YE Yan-ling. Effects of NaCl stress on photosynthesis and antioxidant activity in Ficus concinna var. subsessilis[J]. Journal of Beijing Forestry University, 2011, 33(4): 70-74.
    [8]ZHANG Peng-chong, HU Zeng-hui, SHEN Ying-bai, GAO Rong-fu. Effects of three types of wound on photosynthetic activity of Populus simonii × P. pyramidalis ‘Opera 8277’ seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 35-38.
    [9]ZHAO Tian-hong, WANG Mei-yu, ZHAO Yi-xin, GUO Dan, HE Xing-yuan, FU Shi-lei. Effects of elevated atmospheric ozone concentration on photosynthetic mechanism of Pinus tabulaeformis Carr.[J]. Journal of Beijing Forestry University, 2009, 31(1): 31-36.
    [10]ZHU Jiao-jun, KANG Hong-zhang, LI Zhi-hui. Comparison of different types of drought stresses affecting photosynthesis of Mongolian pine seedlings on sandy soils[J]. Journal of Beijing Forestry University, 2006, 28(2): 57-63.
  • Cited by

    Periodical cited type(2)

    1. 于淼,张志文,战丽. 林间病虫害树木巡检标记车的越障能力分析与试验研究. 森林工程. 2023(04): 118-125 .
    2. 谢宝玲. 橡胶履带式行走机构越障特性检测方法仿真. 计算机仿真. 2019(03): 61-64+91 .

    Other cited types(4)

Catalog

    Article views (1470) PDF downloads (82) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return