• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Xiaoyan, Li Yufei, Liu Guihua, Xu Zaoshi, Deng Bo. Effects of nitrogen application on growth and triterpenoids accumulation of 1-year-old Cyclocarya paliurus[J]. Journal of Beijing Forestry University, 2020, 42(4): 60-68. DOI: 10.12171/j.1000-1522.20190294
Citation: Zhang Xiaoyan, Li Yufei, Liu Guihua, Xu Zaoshi, Deng Bo. Effects of nitrogen application on growth and triterpenoids accumulation of 1-year-old Cyclocarya paliurus[J]. Journal of Beijing Forestry University, 2020, 42(4): 60-68. DOI: 10.12171/j.1000-1522.20190294

Effects of nitrogen application on growth and triterpenoids accumulation of 1-year-old Cyclocarya paliurus

More Information
  • Received Date: July 11, 2019
  • Revised Date: September 02, 2019
  • Available Online: April 10, 2020
  • Published Date: April 26, 2020
  • ObjectiveThe effects of nitrogen application on the growth and triterpenoids accumulation of Cyclocarya paliurus were studied in order to provide theoretical basis for regulating the cultivation of medicinal plantation and improving the triterpenoids yield per unit area of medicinal plants.
    MethodThe 1-year-old seedlings of C. paliurus were used as test materials under five different N levels, including N1 (0 g/plant), N2 (1 g/plant), N3 (3.4 g/plant), N4 (6 g/plant), N5 (10 g/plant). And the seedling height, ground diameter, biomass, total triterpenoid and three main triterpenoids were measured in the middle and late days of each month from May to August.
    Result(1) The seedling height and ground diameter growth of C. paliurus increased first and then decreased with increased N application, and the highest net growth of seedling height and basal diameter were got in treatment N4, increased by 103.90% and 57.58%, respectively compared with N1. Similar variation pattern was also observed for the biomass and total biomass accumulation in roots, stalks and leaves, and the greatest total biomass accumulation was got in treatment N4, reaching 7.24 g. (2) With the increase of N application, the N content in leaves of plants increased linearly (that in roots and stalks was comparatively stable), while the C content did not change significantly, resulting in the C/N in leaves decreased linearly, and ranged from 20.42% to 12.19%. (3) Leaf was the main accumulating organ in C. paliurus, and the largest total accumulation and three individual triterpenoids (arjunolic acid, cyclocaric acid B and cyclocarioside I) in leaf showed a single peak variation pattern, with the peak values of 2.45, 0.73, 0.44 and 22.95 mg/g, respectively under relatively low N condition (N2). In addition, among the three individual triterpenoids tested, the main individual triterpenoid was arjunolic acid (0.73 mg/g, dry mass), followed by cyclocaric acid B (0.23 mg/g, dry mass) and cyclocarioside I (0.12 mg/g, dry mass). (4) N application significantly affected the yield of total and three individual triterpenoids in C. paliurus and the triterpenoid and arjunolic acid per plant reached highest under treatment N3, ranged in 95.21−279.45 mg/plant and 4.64−17.21 mg/plant. The yield of total triterpenoid and three individual triterpenoids per plant were found lowest under treatment N1 or N5.
    ConclusionModerately high N application could promote the growth of C. paliurus seedlings, while moderately low N application could promote the accumulation of triterpenoid.
  • [1]
    方升佐, 洑香香. 青钱柳资源培育与开发利用的研究进展[J]. 南京林业大学学报(自然科学版), 2007, 31(1):95−100. doi: 10.3969/j.issn.1000-2006.2007.01.023

    Fang S Z, Fu X X. Research progress on cultivation, development and utilization of Cyclocarya paliurus resources[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2007, 31(1): 95−100. doi: 10.3969/j.issn.1000-2006.2007.01.023
    [2]
    舒任庚, 徐昌瑞, 黎莲娘. 青钱柳甜味成分的研究[J]. 药学学报, 1995, 30(10):757−761. doi: 10.3321/j.issn:0513-4870.1995.10.009

    Shu R G, Xu C R, Li L N. Study on sweet cmponents of Cyclocarya paliurus[J]. Actapharmsin, 1995, 30(10): 757−761. doi: 10.3321/j.issn:0513-4870.1995.10.009
    [3]
    洑香香, 方升佐. 青钱柳次生代谢产物及其生理功能[J]. 安徽农业科学, 2009, 37(28):3612−3614.

    Fu X X, Fang S Z. Secondary metabolites of Cyclocarya paliurus and their physiological functions[J]. Journal of Anhui Agricultural Sciences, 2009, 37(28): 3612−3614.
    [4]
    Wang Q, Jiang C, Fan S, et al. Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type2 diabetic rats[J]. Journal of Ethnopharmacology, 2013, 150: 1119−1127. doi: 10.1016/j.jep.2013.10.040
    [5]
    李夏蕾. 青钱柳化学成分研究[D]. 长春: 长春中医药大学, 2012.

    Li X L. Studies on chemical constituents of Cyclocarya paliurus[D]. Changchun: Changchun University of Traditional Chinese Medicine, 2012.
    [6]
    Shu R, Xu C, Li L, et al. Cyclocariosides II and III: two secodammarane triterpenoid saponins from Cyclocarya paliurus[J]. Planta Medica, 1995, 61: 551−553. doi: 10.1055/s-2006-959369
    [7]
    谢雪姣, 刘国华, 武青庭, 等. 青钱柳主要化学成分研究进展[J]. 江西中医药, 2017, 48(12):78−80.

    Xie X J, Liu G H, Wu Q T, et al. Advances in main chemical constituents of Cyclocarya paliurus[J]. Jiangxi Traditional Chinese Medicine, 2017, 48(12): 78−80.
    [8]
    王晓敏, 舒任庚, 蔡永红, 等. 青钱柳水提液对糖尿病小鼠胰岛细胞的保护作用[J]. 时珍国医国药, 2010, 21(12):3146−3147. doi: 10.3969/j.issn.1008-0805.2010.12.050

    Wang X M, Shu R G, Cai Y H, et al. Protective effect of water extract of Cyclocarya paliurus on islet cells of diabetic mice[J]. Lishizhen Medicine and Materia Medica Research, 2010, 21(12): 3146−3147. doi: 10.3969/j.issn.1008-0805.2010.12.050
    [9]
    Fang Z, Shen S, Wang J, et al. Triterpenoids from Cyclocarya paliurus that enhance glucose uptake in 3T3-L1 adipocytes[J/OL]. Molecules, 2019, 24(1): 187[2019−08−04]. https://doi.org/10.3390/molecules24010187.
    [10]
    杨万霞, 方升佐. 青钱柳种子综合处理过程中内源激素的动态变化[J]. 南京林业大学学报: 自然科学版, 2008, 32(5):85−88.

    Yang W X, Fang S Z. Dynamic changes of endogenous hormones in Cyclocarya paliurus seeds during comprehensive treatment[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2008, 32(5): 85−88.
    [11]
    Carlsen S C K, Fomsgaard I S. Biologically active secondary metabolites in white clover (Trifolium repens L.): a review focusing on contents in the plant, plant-pest interactions and transformation[J]. Chemoecology, 2008, 18: 129−170. doi: 10.1007/s00049-008-0402-7
    [12]
    Szakiel A, Paczkowski C, Henry M. Influence of environmental abiotic factors on the content of saponins in plants[J]. Phytochemistry Rviews, 2011, 10(4): 471−491. doi: 10.1007/s11101-010-9177-x
    [13]
    潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 2012: 171−179.

    Pan R C. Plant physiology[M]. Beijing: Higher Education Press, 2012: 171−179.
    [14]
    Morcuende R, Bari R P, Gibon Y, et al. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus[J]. Plant Cell and Environment, 2007, 30(1): 85−112. doi: 10.1111/j.1365-3040.2006.01608.x
    [15]
    Cronin G, Lodge M D. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes[J]. Oecologia, 2003, 137(1): 32−41. doi: 10.1007/s00442-003-1315-3
    [16]
    Groenbaek M, Jensen S, Neugart S, et al. Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica)[J]. Food Chemistry, 2016, 197: 530−538. doi: 10.1016/j.foodchem.2015.10.108
    [17]
    Deng B, Li Y, Lei G, et al. Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus[J]. Plant Physiology and Biochemistry, 2019, 135: 111−118. doi: 10.1016/j.plaphy.2018.12.001
    [18]
    Huang W, Xue A, Niu H, et al. Optimised ultrasonicassisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro[J]. Food Chemistry, 2009, 114: 1147−1154. doi: 10.1016/j.foodchem.2008.10.079
    [19]
    舒任庚, 刘玉凤, 舒积成. 比色法测定青钱柳中三萜类成分的含量[J]. 中国现代应用药学, 2006, 23(5):406−408. doi: 10.3969/j.issn.1007-7693.2006.05.027

    Shu R G, Liu Y F, Shu J C. Determination of triterpenoids in Cyclocarya paliurus by colorimetry[J]. Chinese Journal of Modern Applied Pharmacy, 2006, 23(5): 406−408. doi: 10.3969/j.issn.1007-7693.2006.05.027
    [20]
    苏文华, 张光飞, 李秀华, 等. 植物药材次生代谢产物的积累与环境的关系[J]. 中草药杂志, 2005, 36(9):139−142.

    Su W H, Zhang G F, Li X H, et al. The relationship between the accumulation of secondary metabolites of plant medicinal materials and environment[J]. Chinese Traditional and Herbal Drugs, 2005, 36(9): 139−142.
    [21]
    李双喜, 杨曾奖, 徐大平, 等. 施氮量对檀香幼苗生长及养分积累的影响[J]. 植物营养与肥料学报, 2015, 21(3):807−814. doi: 10.11674/zwyf.2015.0329

    Li S X, Yang Z J, Xu D P, et al. Effects of nitrogen application on growth and nutrient accumulation of sandalwood seedlings[J]. Plant Nutrition and Fertilizer Science, 2015, 21(3): 807−814. doi: 10.11674/zwyf.2015.0329
    [22]
    梁峥, 郑光植. 高等植物的次生代谢[J]. 植物生理学通讯, 1981, 1(1):14−21.

    Liang Z, Zheng G Z. Secondary metabolism in higher plants[J]. Plant Physiological Communication, 1981, 1(1): 14−21.
    [23]
    邓波, 刘桂华, 余云云, 等. 遮荫和种源对青钱柳三萜类化合物积累的影响[J]. 生态学杂志, 2018, 37(2):383−390.

    Deng B, Liu G H, Yu Y Y, et al. Effects of shading and provenance on triterpenoid accumulation in leaves of Cyclocarya paliurus[J]. Chinese Journal of Ecology, 2018, 37(2): 383−390.
    [24]
    Deng B, Shang X L, Fang S Z, et al. Integrated effects of light intensity and fertilization on growth and flavonoid accumulation in Cyclocarya paliurus[J]. Journal of Agricultural and Food Chemistry, 2012, 60: 6286−6292. doi: 10.1021/jf301525s
    [25]
    曾波, 钟章成. 四川大头茶黄酮类化合物的聚酰胺薄膜层析分析[J]. 植物生态学报, 1997, 21(1):90−96. doi: 10.3321/j.issn:1005-264X.1997.01.013

    Zeng B, Zhong Z C. Analysis of flavonoids in Sichuan Datou tea by polyamide film chromatography[J]. Journal of Plant Ecology, 1997, 21(1): 90−96. doi: 10.3321/j.issn:1005-264X.1997.01.013
    [26]
    金则新, 李钧敏, 丁军敏. 青钱柳叶片次生代谢产物含量分析[J]. 福建林业科技, 2007, 34(3):6−9. doi: 10.3969/j.issn.1002-7351.2007.03.002

    Jin Z X, Li J M, Ding J M. Analysis of secondary metabolites in Cyclocarya paliurus leaves[J]. Journal of Fujian Forestry Science and Technology, 2007, 34(3): 6−9. doi: 10.3969/j.issn.1002-7351.2007.03.002
    [27]
    Nguyen P M, Niemeyer E D. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.)[J]. Journal of Agricultural and Food Chemistry, 2008, 56(18): 8685−8691. doi: 10.1021/jf801485u
    [28]
    Coruzzi G, Bush D R. Nitrogen and carbon nutrient and metabolite signaling in plants[J]. Plant Physiology, 2001, 125: 61−64. doi: 10.1104/pp.125.1.61
    [29]
    Grechi I, Vivin P, Hilbert G, et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine[J]. Environmental and Experimental Botany, 2007, 59(2): 139−149. doi: 10.1016/j.envexpbot.2005.11.002
    [30]
    杨蓓芬, 金则新, 李钧敏. 七子花叶片次生代谢产物含量的动态分析[J]. 西北林学报, 2008, 23(6):155−158.

    Yang B F, Jin Z X, Li J M. Dynamic analysis of secondary metabolites content in leaves of Heptacodium miconioides Rehd[J]. Journal of Northwest Forestry, 2008, 23(6): 155−158.
    [31]
    Larbat R, Robin C, Lillo C, et al. Modeling the diversion of parmary carbon flux into secondary metabolism under variable nitrate and light/dark conditions[J]. Journal of Theoretical Biology, 2016, 402: 144−157. doi: 10.1016/j.jtbi.2016.05.008
    [32]
    Paul M J, Driscoll S P. Sugar repression of photosynthesis: the role of carbohydrates in signaling nitrogen deficiency through source: sink imbalance[J]. Plant Cell and Environment, 1997, 20: 110−116. doi: 10.1046/j.1365-3040.1997.d01-17.x
    [33]
    Stamp N. Out of the quagmire of plant defense hypotheses[J]. The Quarterly Review of Biology, 2003, 78: 23−55. doi: 10.1086/367580
    [34]
    Stamp N. Can the growth-differentiation balance hypothesis be tested rigorously?[J]. Oikos, 2004, 107: 439−448. doi: 10.1111/j.0030-1299.2004.12039.x
    [35]
    Buer C S, Muday G K, Djordjevic M A. Flavonoids are differentially taken up and transported long distances in Arabidopsis[J]. Plant Physiology, 2007, 145(2): 478−490. doi: 10.1104/pp.107.101824
    [36]
    Poutaraud A, Girardin P. Improvement of medicinal plant quality: a Hypericum perforatum literature review as an example[J]. Plant Genetic Resources, 2005, 3: 178−189. doi: 10.1079/PGR200567
    [37]
    Cai Z Q, Wang W H, Yang J, et al. Growth, photosynthesis and root reserpine concentrations of two Rauvolfia species in response to a light gradient[J]. Industrial Crops and Products, 2009, 30(2): 220−226. doi: 10.1016/j.indcrop.2009.03.010
  • Related Articles

    [1]Gao Qingqing, Yu Xiaomeng, Xu Zhurui, Ma Xuman, Meng Yaxin, Xu Xuehua. Effects of aspect on growth and biomass allocation of Quercus mongolica saplings in the mountain area of northern Hebei Province, northern China[J]. Journal of Beijing Forestry University, 2023, 45(12): 49-58. DOI: 10.12171/j.1000-1522.20230160
    [2]Lu Yapei, Luo Jiufu, Wang Lina, Zhou Jinxing, Yang Xiao, Han Jinbin, Wang Fudao. Effects of altitude and slope aspect on soil seed banks on natural steep slope of Funiu Mountain, Henan Province of central China[J]. Journal of Beijing Forestry University, 2022, 44(6): 74-84. DOI: 10.12171/j.1000-1522.20210480
    [3]Geng Daotong, Ning Jibin, Li Zhaoguo, Yu Hongzhou, Di Xueying, Yang Guang. Spread rate and parameter correction of surface fuel in Pinus koraiensis plantation based on Rothermel model[J]. Journal of Beijing Forestry University, 2021, 43(11): 79-88. DOI: 10.12171/j.1000-1522.20200247
    [4]Yan Ming, Liu Peng-ju, Jiang Yu-hao, Zhang Ying-kai, Sun Li. Extraction method of slope aspect based on DEM and solar radiation in mountain area of Beijing[J]. Journal of Beijing Forestry University, 2018, 40(1): 67-73. DOI: 10.13332/j.1000-1522.20170311
    [5]LIU Peng-ju, XIA Zhi-wu, TANG Xiao-ming. Slope position extraction method based on DEM and slope features[J]. Journal of Beijing Forestry University, 2016, 38(2): 68-73. DOI: 10.13332/j.1000-1522.20150140
    [6]ZHU Yong-jie, BI Hua-xing, CHANG Yi-fang, HUO Yun-mei, WANG Xiao-xian. Effects of Cynodon dactylon grassland with 90% coverage on reducing single rainfall runoff.[J]. Journal of Beijing Forestry University, 2015, 37(10): 103-109. DOI: 10.13332/j.1000-1522.20150085
    [7]ZHANG Ting, SHI Hao, XU Yan-nan, XUE Jian-hui, CHU Jun, GENG Qing-hong. Quantitative evaluation on the impact of the Sloping Land Conversion Program on landscape pattern of land use in Karst area[J]. Journal of Beijing Forestry University, 2015, 37(3): 34-43. DOI: 10.13332/j.1000-1522.20140312
    [8]GUO Qing-qi, ZHANG Na, LI Meng-yun, ZHANG Zhi, WANG Zhen-yu. Relationship between polyphenols and antioxidation in larch pine cones and growing slope aspect.[J]. Journal of Beijing Forestry University, 2014, 36(1): 62-65.
    [9]LIU Xiu-ping, CHEN Li-hua, SONG Wei-feng, GAO Zhen-lin, ZHANG Chao-bo. Influence of side slope shape on the stability of Robinia pseudoacacia forest slope[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 228-233.
    [10]TAN Wei, FENG Zhong-ke, ZHANG Yan, YAO Shan, SHI Li-ping. Approach of terrain analysis of the compartment based on the component GIS[J]. Journal of Beijing Forestry University, 2006, 28(2): 91-95.

Catalog

    Article views (1780) PDF downloads (37) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return