• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Geng Daotong, Ning Jibin, Li Zhaoguo, Yu Hongzhou, Di Xueying, Yang Guang. Spread rate and parameter correction of surface fuel in Pinus koraiensis plantation based on Rothermel model[J]. Journal of Beijing Forestry University, 2021, 43(11): 79-88. DOI: 10.12171/j.1000-1522.20200247
Citation: Geng Daotong, Ning Jibin, Li Zhaoguo, Yu Hongzhou, Di Xueying, Yang Guang. Spread rate and parameter correction of surface fuel in Pinus koraiensis plantation based on Rothermel model[J]. Journal of Beijing Forestry University, 2021, 43(11): 79-88. DOI: 10.12171/j.1000-1522.20200247

Spread rate and parameter correction of surface fuel in Pinus koraiensis plantation based on Rothermel model

More Information
  • Received Date: August 09, 2020
  • Revised Date: September 10, 2020
  • Available Online: September 25, 2021
  • Published Date: November 29, 2021
  •   Objective  Based on laboratory simulation burning experiment, this paper aims to measure the spread rate of surface fuel in Pinus koraiensis plantation under different slopes and water contents, compared with the spread rate calculated by Rothermel model, and modify the parameter of Rothermel model to increase the applicability in Korean pine plantation.
      Method  Taking surface fuel of Pinus koraiensis plantation as experimental materials, according to the field conditions of sample plots, the fuel bed was established with different water contents and slopes. 30 times burning experiments were conducted under no slope and no wind conditions, 5°, 10°, 15° and 20° each for 15 times, in a total of 90 time experiments. The calculation of spread rate was based on thermocouple, its location data, and fit the parameters of Rothermel model in no slope and no wind conditions to obtain the optimal model, and correct slope coefficient of Rothermel model.
      Result  In all experiments, the maximum spread rate was 0.631 m/min, and the minimum spread rate was 0.114 m/min. The mean average absolute error was 0.059 m/min, and the range was 0.003−0.241 m/min, and the average relative error was 27.4%, which was calculated by Rothermel model, and the range was 2.40%−152.6%. On the basis of re-correcting the fuel characteristic parameter βop of the Rothermel model with the burning test data under flat ground and no wind, the slope correction parameters were corrected based on the burning test data under the conditions of 5°−20°, and the mean value of average absolute error for Rothermel model after the correction had reduced by 0.024 m/min, which was 0.035 m/min, the range was 0.003−0.102 m/min, and the average relative error had reduced by 10.44% , being 17.0%, and the range was 1.8%−65.5%; R2 was 0.913 5 between measured spread rate and predicted value after parameter correction.
      Conclusion  The Rothermel model cannot be directly used to predict the spread rate of surface fuel in Pinus koraiensis plantation under the slope of 0°−20°, the fuel characteristic parameter and slope coefficient parameter need to be corrected. After parameter correction, the prediction error is significantly reduced, and the prediction accuracy is significantly improved. Then it is possible to predict the surface fuel spread rate in Pinus koraiensis plantation under low slope conditions in China.
  • [1]
    李佳. 凉山州森林火灾防控对策研究[J]. 森林防火, 2019(3):9−14.

    Li J. Study on countermeasures of forest fire prevention and control in Liangshan Prefecture[J]. Forest Fire Prevention, 2019(3): 9−14.
    [2]
    杨光, 舒立福, 邸雪颖. 气候变化背景下黑龙江大兴安岭林区夏季火险变化趋势[J]. 应用生态学报, 2012, 23(11):3157−3163.

    Yang G, Shu L F, Di X Y. Change trends of summer fire danger in Great Xing ’an Mountains forest region of Heilongjiang Province, Notheast China under climate change[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 3157−3163.
    [3]
    Simeoni A, Santoni P A, Balbi J H. A strategy to elaborate forest fire spread models for management tools including a computer time-saving algorithm[J]. International Journal of Modelling and Simulation, 2002, 22(4): 213−224.
    [4]
    Koo E, Pagni P, Woycheese J, et al. A simple physical model for forest fire spread rate[J]. Fire Safety Science, 2005, 8(8): 851−862.
    [5]
    陶奇, 谢小冬, 张林鹤, 等. 点火源引燃的上坡火蔓延实验研究[J]. 火灾科学, 2018, 27(2):92−99.

    Tao Q, Xie X D, Zhang L H, et al. Experimental research on upslope fire spread with point ignition[J]. Fire Safety Science, 2018, 27(2): 92−99.
    [6]
    Viegas D X. On the existence of a steady state regime for and wind driven fires[J]. International Journal of Wildland Fire, 2004, 13(1): 101−107.
    [7]
    Weise D R, Biging G S. A qualitative comparison of fire spread model incorporating wind and slope effects[J]. Forest Science, 1997, 43(2): 170−180.
    [8]
    Baines P G. Physical mechanisms for the propagation of surface fires[J]. Mathematical and Computer Modelling, 1990, 13(12): 83−94.
    [9]
    Liu N A, Wu J M, Zhu J P, et al. Effect of slope on spread of a liner flame front over a pine needle fuel bed: experiments and modeling[J]. International Journal of Wildland Fire, 2014, 23(8): 1087−1096.
    [10]
    路长, 朱霁平, 邵占杰, 等. 峡谷地形中森林地表火蔓延实验研究[J]. 火灾科学, 2003, 12(1):19−22.

    Lu C, Zhu J P, Shao Z J, et al. Study of forest fire spread in valley topography[J]. Fire Safety Science, 2003, 12(1): 19−22.
    [11]
    邵占杰, 林其钊, 路长. 基于燃料床的小坡度地表火研究模型蔓延[J]. 燃料科学与技术, 2003, 9(3):219−223.

    Shao Z J, Lin Q Z, Lu C. Study on model of spread across a fuel bed in small slope[J]. Journal of Combustion Science and Technology, 2003, 9(3): 219−223.
    [12]
    姚树人. 由三起森林火灾事故引发的思考[J]. 森林防火, 2003(2):33−35.

    Yao S R. Thinking caused by three forest fire accidents[J]. Forest Fire Prevention, 2003(2): 33−35.
    [13]
    Mendes-Lopes J M, Ventura J M, Amaral J M. Flame characteristics, temperature-time curves, and rate of spread in fires propagating in a bed of pinus pinaster needles[J]. International Journal of Wildland Fire, 2003, 12(1): 67−84.
    [14]
    Dupuy J L, Marcechal J. Slope effect on laboratory fire spread: contribution of radiation and convection to fuel bed preheating[J]. International Journal of Wildland Fire, 2011, 20(2): 289−307.
    [15]
    Silvani X, Morandini F, Dupuy J L. Effects of slope on fire spread observed through video images and multiple-point thermal measurements measurements[J]. Experimental Thermal and Fluid Science, 2012, 41(9): 99−111.
    [16]
    Balbi J H, Chatelon F J, Morvan D, et al. A convective-radiative propagation model for wildland fires[J]. International Journal of Wildland Fire, 2020, 29(9): 723−738.
    [17]
    Houssami M E, Thomas J C, Lamorlette A, et al. Experimental and numerical studies characterizing the burning dynamics of wildland fuels[J]. Combustion & Flame, 2016, 168(6): 113−126.
    [18]
    Frangieh N, Morvan D, Meradji S, et al. Numerical simulation of grassland fires behavior using an implicit physical multiphase model[J]. Fire Safety Journal, 2018, 102(12): 37−47.
    [19]
    Morandini F, Silvani X, Dupuy J L, et al. Fire spread across a sloping fuel bed: flame dynamics and heat transfers[J]. Combustion & Flame, 2018, 190(4): 158−170.
    [20]
    Noble I, Gill A, Bary G. McArthur,s fire-danger meters expressed as equations[J]. Australian Journal of Ecology, 1980, 5(2): 201−203.
    [21]
    王正非. 山火初始蔓延速度测算法[J]. 山地研究, 1983, 1(2):42−51.

    Wang Z F. The mesurement method of the wildfire initial spread rate[J]. Journal of Mountain Research, 1983, 1(2): 42−51.
    [22]
    Rothermel R C. A mathematical model for predicting fire spread in wildland fuels[M]. Orden: Usda Forest Service General Technical Report, 1972.
    [23]
    Rossa C G, Fernandes P M. On the fire-spread rate influence of some fuel bed parameters derived from Rothermel’s model thermal energy balance[J]. Sumarski List, 2018, 142(1−2): 77−80.
    [24]
    张吉利, 刘礴霏, 褚腾飞, 等. 广义Rothermel模型预测平地无风条件下红松-蒙古栎林地表混合可燃物的火行为[J]. 应用生态学报, 2012, 23(6):1495−1502.

    Zhang J L, Liu B F, Zhu T F, et al. Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1495−1502.
    [25]
    满子源, 孙龙, 胡海清, 等. 南方8种森林地表死可燃物在平地无风时的燃烧蔓延速率与预测模型[J]. 林业科学, 2019, 55(7):197−204.

    Man Z Y, Sun L, Hu H Q, et al. Prediction model of the spread rate of eight typical surface dead fuel in southern China under windless and flat land[J]. Scientia Silvae Sinicae, 2019, 55(7): 197−204.
    [26]
    Woolford D G, Martell D L, Mcfayden C B, et al. The development and implementation of a human-caused wildland fire occurrence prediction system for the Province of Ontario, Canada[J]. Canadlan Journal of Forest Research, 2021, 51(2): 303−325.
    [27]
    张运林. 蒙古栎和红松凋落物含水率动态变化影响因素及预测模型研究[D]. 哈尔滨: 东北林业大学, 2019.

    Zhang Y L. Study on influencing factors and prediction model of dynamic change of litter moisture content of Mongolion oak and Pinus koraiensis[D]. Harbin: Northeast Forestry University, 2019.
    [28]
    谢小东. 上坡地表火蔓延的实验和理论研究[D]. 合肥: 中国科学技术大学, 2014.

    Xie X D. Experimental and theoretical research on upslope surface fire spread[D]. Hefei: University of Science and Technology of China, 2014.
    [29]
    王晓红, 张吉利, 金森. 林火蔓延模拟的研究进展[J]. 中南林业科技大学学报, 2013, 33(10):75−84.

    Wang X H, Zhang J L, Jin S. Research progress of forest fire spreading simulation[J]. Journal of Central South University of Forestry & Technology, 2013, 33(10): 75−84.
    [30]
    Dupuy J L, Marcechal J, Portier D, et al. The effects of slope and bed width on laboratory fire behaviour[J]. International Journal of Wildland Fire, 2011, 20(2): 272−288.
    [31]
    Sandberg D V, Riccardi C L, Schaaf M D. Reformulation of Rothermel’s wildland fire behaviour model for heterogeneous fuelbeds[J]. Revue Canadienne De Recherche Forestière, 2007, 37(12): 2438−2455.
    [32]
    胡海清. 林火生态与管理[M]. 北京: 中国林业出版社, 2005.

    Hu H Q. Forest fire ecology and management[M]. Beijing: China Forestry Publishing House, 2005.
  • Related Articles

    [1]Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148
    [2]Liu Xiaoting, Wei Jiatong, Wu Peili, Wu Lin, Xu Qingshan, Fang Yanlin, Yang Bin, Zhao Xiyang. Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 25-34. DOI: 10.12171/j.1000-1522.20200250
    [3]Zhu Yihong, Gao Lushuang, Jia Bo, Zhang Pingrui, Wang Yinpeng, Ou Lijin. Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes[J]. Journal of Beijing Forestry University, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289
    [4]LIANG De-yang, JIN Yun-zhe, ZHAO Guang-hao, DONG Yuan-hai, LENG Wei-wei, CHEN Chang-lin, WANG Huan, ZHAO Xi-yang. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51-59. DOI: 10.13332/j.1000-1522.20150465
    [5]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [6]GAO Hui-lin, LI Feng-ri, DONG Li-hu. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(3): 76-83. DOI: 10.13332/j.1000-1522.20140324
    [7]ZHANG Zhen, ZHANG Han-guo, ZHOU Yu, LIU Ling, YU Hong-ying, WANG Xu, FENG Wan-ju. Variation of seed characters in Korean pine (Pinus koraiensis ) multi-clonal populations[J]. Journal of Beijing Forestry University, 2015, 37(2): 67-78. DOI: 10.13332/j.cnki.jbfu.2015.02.020
    [8]LIU Ran, WANG Zhen-yu, CUI Jie, DENG Xin-rui, LU Jing. Effects of precursors and elicitations on the synthesis polyphenols of Pinus koraiensis.[J]. Journal of Beijing Forestry University, 2013, 35(5): 22-27.
    [9]WANG Qi, PENG Lu, YAN Shan-chun, LIAO Yue-zhi. Electroantennogram and behavioral responses of Pissodes nitidus to terpene volatiles of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2011, 33(4): 91-95.
    [10]CHEN Lie, ZHAO Xiu-hai, ZHANG Yun. Spatial distribution patterns and associations of Pinus koraiensis and Tilia amurensis in Tilia-Korean pine forest on the north slope of Changbai Mountain,northeastern China.[J]. Journal of Beijing Forestry University, 2009, 31(3): 6-10.
  • Cited by

    Periodical cited type(8)

    1. 罗光成,何潇,雷相东,吴璧芸,向玮. 长白落叶松人工林优势高广义代数差分生长模型. 林业科学. 2024(12): 1-12 .
    2. 张海军. 阴河林场华北落叶松幼龄人工林树高曲线研究. 林业勘查设计. 2023(01): 85-89 .
    3. 董灵波,邵威威,田栋元,刘兆刚. 基于林木分级的大兴安岭天然兴安落叶松树高曲线研究. 北京林业大学学报. 2023(05): 88-96 . 本站查看
    4. 刘金义. 辽东山区人工红松树高曲线研究. 辽宁林业科技. 2021(04): 9-11+31 .
    5. 王冬至,胡雪娇,李大勇,高雨珊,李天宇. 基于非线性混合效应模型的针阔混交林地位指数研究. 南京林业大学学报(自然科学版). 2020(04): 159-166 .
    6. 李想,董利虎,李凤日. 基于联立方程组的人工樟子松枝下高模型构建. 北京林业大学学报. 2018(06): 9-18 . 本站查看
    7. 段光爽,李学东,冯岩,符利勇. 华北落叶松天然次生林树高曲线的混合效应模型. 南京林业大学学报(自然科学版). 2018(02): 163-169 .
    8. 王冬至,张冬燕,张志东,黄选瑞. 塞罕坝华北落叶松人工林断面积预测模型. 北京林业大学学报. 2017(07): 10-17 . 本站查看

    Other cited types(5)

Catalog

    Article views (998) PDF downloads (85) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return