• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Haixing, Sun Xiaoxin, Man Xiuling, Wang Qingbo, Li Dong, Hu Yanling. Changes of soil heavy metal contents and pollution evaluation during the restoration of wetlands[J]. Journal of Beijing Forestry University, 2020, 42(3): 134-142. DOI: 10.12171/j.1000-1522.20190338
Citation: Li Haixing, Sun Xiaoxin, Man Xiuling, Wang Qingbo, Li Dong, Hu Yanling. Changes of soil heavy metal contents and pollution evaluation during the restoration of wetlands[J]. Journal of Beijing Forestry University, 2020, 42(3): 134-142. DOI: 10.12171/j.1000-1522.20190338

Changes of soil heavy metal contents and pollution evaluation during the restoration of wetlands

More Information
  • Received Date: August 19, 2019
  • Revised Date: November 13, 2019
  • Available Online: March 18, 2020
  • Published Date: March 30, 2020
  • ObjectiveThis study was designed to evaluate the effects of converting farmland to wetland on the contents of heavy metals in soil.
    MethodWe measured heavy metal contents of the soil in soybean fields, restored reclaimed wetlands and natural Carex schmidti-Deyeuxia angustifolia marsh in Heilongjiang Sanjiang National Nature Reserve of northeastern China. We also evaluated the effects of converting farmland to wetland on the potential ecological hazard by the Hankanson potential ecological hazard index method.
    ResultThe results showed that the highest heavy metal pollutant in the soil of restored sites in this reserve was Pb, followed by Cu, while the effects of Zn, Mn and Cr were small. The contents of Cu, Pb, Zn, Mn and Cr fluctuated with the soil deepened. The contents of Cu and Pb were highest in the soil layer of 0−10 cm during the begining 11-years restoration. However, those were the highest in the soil layer of 40−50 cm after 11-years restoration. Other heavy metal contents had no certain trends along with soil depth. The contents of Cu, Pb, Zn and Cr in soil increased first and then decreased with prolonged restoration time, while the increasing and reducing of Zn content were not reaching significant level (P > 0.05). The contents of Mn in restoration sites were significantly lower than that in soybean field (P < 0.05) from the first year of restoration. The soybean fields and plots within 6-years restoration had strong potential ecological risk hazards. The potential ecological risk hazard indexes of sample plots after 8-years, 11-years restoration as well as C. schmidti- D. angustifolia marsh were moderate, while that of sample plots after 15 years restoration was mild.
    ConclusionThe contents of Cu, Pb, Zn and Cr in soil increase first and then decrease with prolonged restoration time. Those contents reach the level of natural wetlands after 15, 12, 2 and 10 years restoration, respectively. However, there is no significant differences in soil Mn content between restored wetlands and natural marsh (P > 0.05). The potential ecological risk of ecosystems reduces gradually with the restoration time extends.
  • [1]
    韩大勇, 杨永兴, 杨杨, 等. 湿地退化研究进展[J]. 生态学报, 2012, 32(4):1293−1307. doi: 10.5846/stxb201012011707

    Han D Y, Yang Y X, Yang Y, et al. Recent advances in wetland degradation research[J]. Acta Ecologica Sinica, 2012, 32(4): 1293−1307. doi: 10.5846/stxb201012011707
    [2]
    杨艳芳, 孟向东, 张平究. 不同退耕年限条件下菜子湖湿地土壤理化性质变化[J]. 生态与农村环境学报, 2013, 29(3):322−328. doi: 10.3969/j.issn.1673-4831.2013.03.009

    Yang Y F, Meng X D, Zhang P J. Physical and chemical properties of soils in wetlands of Caizi Lake different in restoration history in Anqing, Anhui Province[J]. Journal of Ecology and Rural Environment, 2013, 29(3): 322−328. doi: 10.3969/j.issn.1673-4831.2013.03.009
    [3]
    Bruland G L, Richardson C J. Hydrologic, edaphic, and vegetative responses to microtopographic reestablishment in a restored wetland[J]. Restoration Ecology, 2005, 13(3): 515−523. doi: 10.1111/j.1526-100X.2005.00064.x
    [4]
    田应兵, 熊明标, 宋光煜. 若尔盖高原湿地土壤的恢复演替及其水分与养分变化[J]. 生态学杂志, 2005, 24(1):21−25. doi: 10.3321/j.issn:1000-4890.2005.01.005

    Tian Y B, Xiong M B, Song G Y. Restoration succession of wetland soils and their changes of water and nutrient in Ruoergai Plateau[J]. Chinese Journal of Ecology, 2005, 24(1): 21−25. doi: 10.3321/j.issn:1000-4890.2005.01.005
    [5]
    丁秋祎, 白军红, 高海峰, 等. 黄河三角洲湿地不同植被群落下土壤养分含量特征[J]. 农业环境科学学报, 2009, 28(10):2092−2097. doi: 10.3321/j.issn:1672-2043.2009.10.016

    Ding Q W, Bia J H, Gao H F, et al. Soil nutrient contents in Yellow River Delta Wetlands with different plant communities[J]. Journal of Agro-Environment Science, 2009, 28(10): 2092−2097. doi: 10.3321/j.issn:1672-2043.2009.10.016
    [6]
    郑立地, 肖蓉, 姚新颖, 等. 黄河三角洲潮汐区和生态恢复区湿地土壤特征和重金属分布[J]. 湿地科学, 2015, 13(5):535−542.

    Zheng L D, Xiao R, Yao X Y, et al. Soil properties and heavy metal distributions in soils of tidal areas and restored areas in the Yellow River Delta[J]. Wetland Science, 2015, 13(5): 535−542.
    [7]
    Yao X Y, Xiao R, Ma Z W, et al. Distribution and contamination assessment of heavy metals in soils from tidal flat, oil exploitation zone and restored wetland in the Yellow River Delta[J]. Wetlands, 2016, 36(1): 153−165.
    [8]
    于君宝, 董洪芳, 王慧彬, 等. 黄河三角洲新生湿地土壤金属元素空间分布特征[J]. 湿地科学, 2011, 9(4):297−304.

    Yu J B, Dong H F, Wang H B, et al. Spatial distribution characteristics of metals in new-born coastal wetlands in the Yellow River Delta[J]. Wetland Science, 2011, 9(4): 297−304.
    [9]
    Gao W, Du Y, Gao S, et al. Heavy metal accumulation reflecting natural sedimentary processes and anthropogenic activities in two contrasting coastal wetland ecosystems, eastern China[J]. Soils Sediments, 2016, 16: 1093−1108. doi: 10.1007/s11368-015-1314-0
    [10]
    Esmaeilzadeh M, Karbassi A R, Moattar F. Assessment of metal pollution in the Anzali Wetland sediments using chemical partitioning method and pollution indices[J]. Acta Oceanol Sin, 2016, 35(10): 28−36. doi: 10.1007/s13131-016-0920-z
    [11]
    Zhang Y, Shi T, Zhang Y, et al. Spatial distribution and risk assessment of heavy metals in sediments from a hypertrophic plateau lake Dianchi, China[J]. Environ Monit Assess, 2014, 186: 1219−1234. doi: 10.1007/s10661-013-3451-5
    [12]
    刘晶, 滕彦国, 崔艳芳, 等. 土壤重金属污染生态风险评价方法综述[J]. 环境监测管理与技术, 2007, 19(3):6−11. doi: 10.3969/j.issn.1006-2009.2007.03.003

    Liu J, Teng Y G, Cui Y F, et al. Review in ecological risk assessment methods for heavy metal polluted soils[J]. The Administration and Technique of Environmental Monitoring, 2007, 19(3): 6−11. doi: 10.3969/j.issn.1006-2009.2007.03.003
    [13]
    叶华香, 臧淑英, 张丽娟, 等. 扎龙湿地沉积物重金属空间分布特征及其潜在生态风险评价[J]. 环境科学, 2013, 34(4):1333−1339.

    Ye H X, Zang S Y, Zhang L J, et al. Distribution and potential ecological risk assessment of heavy metals in sediments of Zhalong Wetland[J]. Environmental Science, 2013, 34(4): 1333−1339.
    [14]
    Wang X, Sun Y, Li S, et al. Spatial distribution and ecological risk assessment of heavy metals in soil from the Raoyanghe Wetland, China[J/OL]. PLoS One, 2019, 14(8) (2018−12−21) [2019−08−09]. https://doi.org/10.1371/journal.pone.0220409.
    [15]
    任华丽, 崔保山, 白军红, 等. 哈尼梯田湿地核心区水稻土重金属分布与潜在的生态风险[J]. 生态学报, 2008, 28(4):1625−1634. doi: 10.3321/j.issn:1000-0933.2008.04.033

    Ren H L, Cui B S, Bai J H, et al. Distribution of heavy metal in paddy soil of Hani Terrace core zone and assessment on its potential ecological risk[J]. Acta Ecologica Sinica, 2008, 28(4): 1625−1634. doi: 10.3321/j.issn:1000-0933.2008.04.033
    [16]
    张曼胤, 崔丽娟, 盛连喜, 等. 衡水湖湿地底泥重金属污染及潜在生态风险评价[J]. 湿地科学, 2007, 5(4):362−369. doi: 10.3969/j.issn.1672-5948.2007.04.011

    Zhang M Y, Cui L J, Sheng L X, et al. Pollution and ecological risk assessment of heavy metals in the Hengshuihu Wetland[J]. Wetland Science, 2007, 5(4): 362−369. doi: 10.3969/j.issn.1672-5948.2007.04.011
    [17]
    富德义, 吴敦虎. 三江平原土壤中微量元素背景值的研究[J]. 土壤通报, 1982, 13(1):26−29.

    Fu D Y, Wu D H. Study on the natural background value of trace element in soil of Sangjiang Plain[J]. Chinese Journal of Soil Science, 1982, 13(1): 26−29.
    [18]
    Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8
    [19]
    Fernández J A, Carballeira A. Evaluation of contamination, by different elements, in terrestrial mosses[J]. Archives of Environmental Contamination and Toxicology, 2001, 40(4): 461−468. doi: 10.1007/s002440010198
    [20]
    马建华, 王晓云, 侯千, 等. 某城市幼儿园地表灰尘重金属污染及潜在生态风险[J]. 地理研究, 2011, 30(3):486−495.

    Ma J H, Wang X Y, Hou Q, et al. Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens[J]. Geographical Research, 2011, 30(3): 486−495.
    [21]
    李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015, 36(3):1037−1044.

    Li Y M, Ma J H, Liu D X, et al. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China[J]. Environmental Science, 2015, 36(3): 1037−1044.
    [22]
    徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2):112−115. doi: 10.3969/j.issn.1003-6504.2008.02.030

    Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals, toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2): 112−115. doi: 10.3969/j.issn.1003-6504.2008.02.030
    [23]
    商书波. 包气带中的土壤可移动胶体及对重金属迁移影响的研究[D]. 长春: 吉林大学, 2008.

    Shang S B. Study on the impact of soil colloid on heavy metals migration in vadose zone[D]. Changchun: Jilin University, 2008.
    [24]
    白梅. 影响土壤中重金属淋溶的主要因素的研究[D]. 长沙: 湖南农业大学, 2011.

    Bai M. The research about the main factors which effect on the eluviation of heavy metals in the soil[D]. Changsha: Hunan Agricultural University, 2011.
    [25]
    雷鸣, 廖柏寒, 秦普丰. 土壤重金属化学形态的生物可利用性评价[J]. 生态环境, 2007, 16(5):1551−1556.

    Lei M, Liao B H, Qin P F. Assessment of bioavailability of heavy metal in contaminated soils with chemical fractionation[J]. Ecology and Environment, 2007, 16(5): 1551−1556.
    [26]
    Yang J, Zheng G, Yang J, et al. Phytoaccumulation of heavy metals (Pb, Zn, and Cd) by 10 wetland plant species under different hydrological regimes[J]. Ecological Engineering, 2017, 107: 56−64. doi: 10.1016/j.ecoleng.2017.06.052
    [27]
    滕葳, 柳琪, 李倩, 等. 重金属污染对农产品的危害与风险评估[M]. 北京: 化学工业出版社, 2010.

    Teng W, Liu Q, Li Q, et al. Hazard and risk assessment of heavy metal pollution on agricultural products[M]. Beijing: Chemicel Industry Press, 2010.
    [28]
    王耀平, 白军红, 肖蓉, 等. 黄河口盐地碱蓬湿地土壤-植物系统重金属污染评价[J]. 生态学报, 2013, 33(10):3083−3091. doi: 10.5846/stxb201202230246

    Wang Y P, Bai J H, Xiao R, et al. Assessment of heavy metal contamination in the soil-plant system of the Suaeda salsa wetland in the Yellow River Estuary[J]. Acta Ecologica Sinica, 2013, 33(10): 3083−3091. doi: 10.5846/stxb201202230246
    [29]
    徐明露. 不同退耕年限下湿地土壤重金属含量、生物有效性及风险评价[D]. 芜湖: 安徽师范大学, 2016.

    Xu M L. The character of heavy metals content, biologcal effectiveness and risk evaluation in the wetland from reurning farmland within various periods in Caizi lake, Anhui Province[D]. Wuhu: Anhui Normal University, 2016.
    [30]
    耿慧, 张平究, 李云飞, 等. 不同退耕年限下菜子湖湿地土壤Cu和Zn形态特征[J]. 土壤通报, 2017, 48(5):1256−1263.

    Geng H, Zhang P J, Li Y F, et al. Characteristics of soil Cu and Zn forms in wetland with different restoration ages around the Caizi Lake, Anhui Province[J]. Chinese Journal of Soil Science, 2017, 48(5): 1256−1263.
    [31]
    张仲胜, 吕宪国, 宋晓林. 三江平原土地利用方式变化对土壤锰形态影响[J]. 环境科学, 2013, 34(7):2782−2787.

    Zhang Z S, Lü X G, Song X L. Effects of land use on manganese distribution and fractions in wetland soil of Sanjiang Plain, northeast China[J]. Environmental Science, 2013, 34(7): 2782−2787.
    [32]
    Ashraf S, Ali Q, Zahir Z A, et al. Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils[J]. Ecotoxicology and Environmental Safety, 2019, 174: 714−727. doi: 10.1016/j.ecoenv.2019.02.068
    [33]
    李庆华. 人工湿地植物重金属分布规律及富集性研究[D]. 西安: 长安大学, 2014.

    Li Q H. Spatial distribution and accumulation characteristics of heavy metals in constructed wetlands plants[D]. Xi,an: Chang,an University, 2014.
    [34]
    杨俊兴, 郑国砥, 胡健, 等. 湿地植物铅的富集特征及根际铅移动性的影响因素研究[J]. 植物营养与肥料学报, 2018, 24(4):1058−1067. doi: 10.11674/zwyf.17214

    Yang J X, Zheng G D, Hu J, et al. Characterization of Pb accumulation and factors influencing Pb mobilityin rhizosphere soils of wetland plants[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1058−1067. doi: 10.11674/zwyf.17214
    [35]
    Berg G A V D, Loch J P G, Winkels H J. Effect of fluctuating hydrological conditions on the mobility of heavy metals in soils of a freshwater estuary in the Netherlands[J]. Water, Air, and Soil Pollution, 1998, 102(3−4): 377−388.
    [36]
    吴萍萍, 李录久, 李敏. 生物炭负载铁前后对复合污染土壤中Cd、Cu、As淋失和形态转化的影响研究[J]. 环境科学学报, 2017, 37(10):3959−3967.

    Wu P P, Li L J, Li M. Effects of biochar and Fe-loaded biochar on the leaching and fraction transformation of Cd, Cu and As in multi-contaminated soil[J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3959−3967.
    [37]
    韩志轩, 王学求, 迟清华, 等. 珠江三角洲冲积平原土壤重金属元素含量和来源解析[J]. 中国环境科学, 2018, 38(9):3455−3463. doi: 10.3969/j.issn.1000-6923.2018.09.032

    Han Z X, Wang X Q, Chi Q H, et al. Occurrence and source identification of heavy metals in the alluvial soils of Pearl River Delta region, south China[J]. China Environmental Science, 2018, 38(9): 3455−3463. doi: 10.3969/j.issn.1000-6923.2018.09.032
    [38]
    曹宏杰, 王立民, 罗春雨, 等. 三江平原地区农田土壤中几种重金属空间分布状况[J]. 生态与农村环境学报, 2014, 30(2):155−161. doi: 10.3969/j.issn.1673-4831.2014.02.003

    Cao H J, Wang L M, Luo C Y, et al. Spatial distribution of heavy metals in agricultural soil in Sanjiang Plain[J]. Journal of Ecology and Rural Environment, 2014, 30(2): 155−161. doi: 10.3969/j.issn.1673-4831.2014.02.003
    [39]
    尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学, 2018, 39(10):4670−4683.

    Shang E P, Xu E Q, Zhang H Q, et al. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China[J]. Environmental Science, 2018, 39(10): 4670−4683.
    [40]
    谭小爱, 王平, 王倩, 等. 大山包黑颈鹤国家级自然保护区湿地土壤重金属污染评价[J]. 湿地科学, 2016, 14(6):916−922.

    Tan X A, Wang P, Wang Q, et al. Evaluation on heavy metals, contamination in the soils of wetlands in Dashanbao Black-necked Crane National Nature Reserve[J]. Wetland Science, 2016, 14(6): 916−922.
    [41]
    王涛. 大山包不同退耕年限湿地土壤理化性质研究[D]. 昆明: 云南师范大学, 2015.

    Wang T. Physical and chemical properties of soil in the wetland from reurning farmland within various periods in Dashanbao Black-necked Crane National Nature Reserve[D]. Kunming: Yunnan Normal University, 2015.
    [42]
    崔德杰, 张玉龙. 土壤重金属污染现状与修复技术研究进展[J]. 土壤通报, 2004, 35(3):366−370. doi: 10.3321/j.issn:0564-3945.2004.03.029

    Cui D J, Zhang Y L. Current situation of soil contamination by heavy metals and research advances on the remediation techniques[J]. Chinese Journal of Soil Science, 2004, 35(3): 366−370. doi: 10.3321/j.issn:0564-3945.2004.03.029
    [43]
    Weis J S, Weis P. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration[J]. Environment International, 2004, 30(5): 685−700.
    [44]
    Su H T, Guo P Y, Zhang Y X, et al. Effects of planting patterns on trace metals in soils following wetland restoration[J]. Clean - Soil, Air, Water, 2018, 46(6): 1700338.1−1700338.10. doi: 10.1002/clen.201700338
    [45]
    Yao X, Xiao R, Ma Z, et al. Distribution and contamination assessment of heavy metals in soils from tidal flat, oil exploitation zone and restored wetland in the Yellow River Estuary[J]. Wetlands, 2016, 36(Suppl. 1): 153−165.
  • Related Articles

    [1]Yu Yongchao, Kang Feng, Zheng Yongjun, Lü Haotun, Wang Yaxiong. Design and simulation of the automatic-leveling high-position platform in orchards[J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. DOI: 10.12171/j.1000-1522.20200398
    [2]Zhu Li, Ma Jingyao, Meng Zhaoxin, Shi Jinsong, Xing Xin, Jiang Zhongjin. Compensation control of woodworking feeding platform based on self-adaptive genetic optimization recurrent neural network[J]. Journal of Beijing Forestry University, 2020, 42(12): 125-134. DOI: 10.12171/j.1000-1522.20200248
    [3]Meng Zhaoxin, Cao Jiajia, Zhu Li, Ma Jingyao, Shi Jinsong. Kinetics analysis and strategy of compensation control study for feeding platform of curve saw for wood[J]. Journal of Beijing Forestry University, 2020, 42(2): 159-166. DOI: 10.12171/j.1000-1522.20190234
    [4]MENG Zhao-xin, XIAO Ding-fu, YIN Hang, LI Shang, ZHANG Cong.. Mechanism error compensation method of parallel curve feeding platform.[J]. Journal of Beijing Forestry University, 2016, 38(9): 95-101. DOI: 10.13332/j.1000-1522.20160026
    [5]HUANG He-shan, LI Ting, LIU Jin-hao. Dynamic modeling and simulation analysis of 6-HUS parallel moving platform[J]. Journal of Beijing Forestry University, 2015, 37(4): 143-150. DOI: DOI:10.13332/j.1000-1522.20140349
    [6]YU Yang, YU Guo-sheng, DE Xue-hong, YUAN Da-long, CHEN Zhong-jia. Trajectory simulation of the internal cylinder meshing forming device based on ADAMS method[J]. Journal of Beijing Forestry University, 2014, 36(4): 147-151. DOI: 10.13332/j.cnki.jbfu.2014.04.003
    [7]DUAN Xu-liang, FENG Xiu-lan, ZHAO Lei, ZHANG Zhi-xiang, LIN Shan-zhi. Design and development of information sharing platform on forest and flower germplasm resources[J]. Journal of Beijing Forestry University, 2007, 29(5): 147-152. DOI: 10.13332/j.1000-1522.2007.05.027
    [8]GAO Kai, LI Wen-bin, KAN Jiang-ming. An automatic measuring method for the trunk curvature of standing tree based on computer vision[J]. Journal of Beijing Forestry University, 2007, 29(4): 10-14. DOI: 10.13332/j.1000-1522.2007.04.003
    [9]LIU Peng-ju, ZHOU Yu-fei, TANG Xiao-ming. Intelligent data input software of forest resources on PDA[J]. Journal of Beijing Forestry University, 2007, 29(2): 105-110.
    [10]DU Hua-qiang, FAN Wen-yi, ZHAO Xian-wen, WANG Xue. Fractal and geo-statistic analysis software system for remote sensing data based on Matlab[J]. Journal of Beijing Forestry University, 2005, 27(5): 92-97.
  • Cited by

    Periodical cited type(2)

    1. 詹茹心,李慧,马洪娜. 缺磷胁迫对益母草幼苗叶片的影响. 耕作与栽培. 2024(05): 18-24 .
    2. 姚诗雨,王杰,黄文娟,彭承志,宋双飞. 不同展叶物候期胡杨离子分布、吸收和运输特征及其与土壤盐分关系. 西北植物学报. 2023(12): 2118-2129 .

    Other cited types(1)

Catalog

    Article views (1654) PDF downloads (42) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return